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Abstract

Maps of science representing the structure of science help us understand science and 
technology development. Thus, research in scientometrics has developed techniques for 
analyzing research activities and for measuring their relationships; however, navigating 
the recent scientific landscape is still challenging, since conventional inter-citation and 
co-citation analysis has difficulty in applying to recently published articles and ongo-
ing projects. Therefore, to characterize what is being attempted in the current scientific 
landscape, this article proposes a content-based method of locating research articles/
projects in a multi-dimensional space using word/paragraph embedding. Specifically, 
for addressing an unclustered problem, we introduced cluster vectors based on the infor-
mation entropies of technical concepts. The experimental results showed that our method 
formed a clustered map from approx. 300 k IEEE articles and NSF projects from 2012 to 
2016. Finally, we confirmed that formation of specific research areas can be captured as 
changes in the network structure.

Keywords: map of science, content-based, paragraph vector, information entropy, 
clustering

1. Introduction

In 1965, Price [1] proposed studying science using scientific methods. Since then, research 
in scientometrics has developed techniques for analyzing research activities and for mea-
suring their relationships and constructed maps of science, one of the major topics in scien-
tometrics, that provides a bird’s eye view of the scientific landscape. Maps of science have 
been useful tools for understanding the structure of science, their spread, and interconnec-
tion of disciplines. By knowing such information, science, and technology enterprises can 
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anticipate changes, especially those initiated in their immediate vicinity. Research laborato-
ries and universities that are organized according to the established standards of disciplin-
ary departments can understand an organization’s environment. Furthermore, such maps are 
important to policy analysts and funding agencies. Since research funding should be based 
on quantitative and qualitative scientific metrics, they usually perform several analyses on the 
map with statistical analysis and careful examination by human experts. However, conven-
tional approaches to understanding research activities focus on what authors told us about 
past accomplishments through inter-citation and co-citation analysis of published research 
articles. Thus, ongoing project and the recently published articles that do not have enough 
citations have not been analyzed.

Therefore, we propose to analyze them using a content-based method using natural language 
processing (NLP) techniques. Recently, word/paragraph embedding has been proposed for 
finding relationships between unstructured descriptions. Such embedding techniques repre-
sent words and paragraphs as real-valued vectors of several hundred dimensions. The dis-
tances between the descriptions are calculated from the similarities between vectors. Thus, 
we constructed a new mapping tool that represents the recent scientific trends, where nodes 
represent research projects or the articles that are linked by certain distances of the content 
similarity. Moreover, we drew a map from approx. 300,000 IEEE articles and National Science 
Foundation (NSF) projects, and then from its chronological changes we obtained some find-
ings regarding the formation processes of research areas.

The remainder of this chapter is organized as follows. In Section 2 discusses related work, and 
Section 3 describes our proposed method for calculating the content similarity and its evalu-
ations. Then, Section 4 introduces our tool, Mapping Science, and we confirm on the map the 
formation process of research areas such as the Internet of Things in Section 5, final conclu-
sions and suggestions for future work are provided in Section 6.

2. Related work

Maps of Science (http://mapofscience.com/) are a well-known website. Katy et al. also provides 
Sci2Tool visualization tools [2] and maps of journals and documents [3]. In Japan, National 

Institute of Science and Technology Policy (NISTEP) provides Science Map (http://www.
nistep.go.jp/wp/wp-content/uploads/ScienceMapWebEdition2014.html). In such studies, the 
similarity between journals and articles is calculated based on the cosine and/or Jaccard simi-
larity of inter-citation and co-citation. These maps promote interdisciplinary research collabo-
ration, but citation analysis cannot be utilized for ongoing projects and recently published 
articles, although project descriptions will eventually include articles in their research results.

Funding agencies and publishers generally have their own classification systems. Projects/
articles have more than one code; thus, interdisciplinary projects can be found by searching 
multi-labeled projects. However, even if two projects/articles are assigned the same category, 
their similarity may not be found. Moreover, funding agencies and publishers use different 
categories, and there is no comprehensive scheme for characterizing projects or articles; thus, 

they cannot be compared between different agencies or publishers. For example, comparing 
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articles with Association for Computing Machinery classification (https://www.acm.org/pub-
lications/class-2012) with Springer Nature classification requires taxonomy exchanges.

Therefore, several content-based methods are proposed in the related literature. Previous stud-
ies have examined automatic topic classification using probabilistic latent semantic analysis 
(pLSA) [4] and latent Dirichlet allocation (LDA) [5]. One uses LDA to find the five most proba-
ble words for a topic, and each document is viewed as a mixture of topics [6]. This approach can 

classify documents across different agencies and publishers. However, the similarity between 
projects/articles cannot be computed directly. In this regard, the National Institutes of Health 

(NIH) Visual Browser [7, 8] (http://nihmaps.org/index.php) computed the similarities between 
projects as the mixture of classification probability to each topic based on pLSA, using the aver-
age symmetric Kullback-Leibler divergence function [9]. However, this similarity is a combi-
nation of probabilities; that is, it is not derived from sentence context. Other studies are also 
based on the similarity between sets of words (bag-of-word) included in documents like term 

frequency-inverse document frequency (TF-IDF), and not considering the sentence context.

By contrast, a word/paragraph vector, which is a distributed representation of words and para-
graphs, is attracting attention in NLP. Assuming that context determines the meaning of a word 
[10], words appearing in similar contexts are considered to have a similar meaning. In the basic 
form, a word vector is represented as a matrix, whose elements are the co-occurrence frequen-
cies between a word w with a certain usage frequency in the corpus and words within a fixed 
window size c from w. A popular representation of word vectors is word2vec [11, 12]. Word2vec 
creates word vectors using a two-layered neural network obtained by a skip-gram model with 
negative sampling. Specifically, word vectors are obtained by calculating the maximum likeli-
hood of objective function L in Eq. (1), where T is the number of words with a certain usage 
frequency in the corpus. Word2vec clusters words with similar meanings in a vector space.

  L =   1 __ 
T

     ∑  
t=1
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     ∑  
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In addition, Le and Mikolov [13] proposed a paragraph vector that learns fixed-length feature 
representations using a two-layered neural network from variable-length pieces of texts such 
as sentences, paragraphs, and documents. A paragraph vector is considered another word 

in a paragraph and is shared across all contexts generated from the same paragraph but not 
across paragraphs. The contexts are fixed length and sampled from a sliding window over the 
paragraph. The paragraph vectors are computed by fixing the word vectors and training the 
new paragraph vector until convergence, as shown in Eq. (2).
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where d
i
 is a vector for a paragraph i that includes w

t
. Whereas word vectors are shared across 

paragraphs, paragraph vectors are unique among paragraphs and represent the topics of the 

paragraphs. By considering word order, paragraph vectors also address the weaknesses of 

bag-of-words models in LDA and pLSA. Therefore, paragraph vectors are considered more 
accurate representations of the context of the content. We can then input resulting vectors 

Mapping Science Based on Research Content Similarity
http://dx.doi.org/10.5772/intechopen.77067

177



into the analysis using machine learning and clustering techniques for finding similar articles 
in different academic subjects as well as the relationships between projects from different 
agencies. Thus, we tried to convert the natural sentences in project descriptions and article 

abstracts to paragraph vectors in this study.

3. Paragraph embedding using information entropy

This section introduces our proposed paragraph embedding method using entropy and then 
evaluates whether the similarity of the resulting vectors accurately represents the content 

similarity of documents.

3.1. Proposal of the paragraph embedding method

Before introducing the proposed method, we present a problem in applying the paragraph 
vectors for research project descriptions. We implemented the paragraph embedding tech-
nique using the Deep Learning Library for Java (https://deeplearning4j.org). Then, we con-
structed paragraph vectors for approx. 30,000 NSF projects mentioned in the next section. 
Although we need a more systematic way, but this time the hyperparameters were set empiri-
cally as follows: 500 dimensions were established for 66,830 words that appeared more than 5 
times; the window size c was 10, and the learning rate and minimum learning rate were 0.025 
–0.0001, respectively, with an adaptive gradient algorithm. The learning model is a distrib-
uted memory model with hierarchical softmax.

However, the result showed that projects are scattered and not clustered by any subject or dis-
cipline in the vector space. Most projects are slightly connected to a low number of projects. 
Thus, it is difficult to grasp trends and compare an ordinary classification system. Closely 
observing the vector space reveals some of the reasons for this unclustered problem: each word 
with nearly the same meaning has slightly different word vectors, and shared but unimport-
ant words are considered the commonality of paragraphs. In fact, Le and Mikolov reported 

classification accuracy with multiple categories of less than 50% [13].

Therefore, for addressing this problem, we introduce the information entropy [14] for clus-
tering word vectors before constructing paragraph vectors. The fact that synonyms tend to 
gather in a word vector space indicates that the semantics of a word spatially spread to a 

certain distance. This observation is also suggested in the related literature [15]. Therefore, 

to unify word vectors of almost the same meanings, excluding trivial common words, we 

generated clusters of the word vectors based on the semantic diversity of each concept in a 
thesaurus. We first extracts 19,685 hypernyms (broader terms) with one or more hyponym 
(narrower term) from the Japan Science and Technology Agency (JST) science and technology 
thesaurus [16]. The JST thesaurus primarily consists of keywords that have been frequently 
indexed in 36 million articles accumulated by the JST since 1975. Currently, this thesaurus is 
updated every year and includes 276,179 terms with English and Japanese notations in 14 cat-
egories from bioscience to computer science and civil engineering. Based on the World Wide 
Web Consortium (W3C) Simple Knowledge Organization System (SKOS), the JST thesaurus 
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also exists in W3C Resource Description Framework (RDF, https://www.w3.org/RDF/) format 
with semantic relationships SKOS: broader, SKOS: narrower, and SKOS: related. A broader or 
narrower relationship essentially represents an is-a subsumption relationship but sometimes 
denotes a part-of relationship in geography, body organ terminology, and other academic 
disciplines. The JST thesaurus is publicly accessible from Web APIs on the J-GLOBAL website 
(http://jglobal.jst.go.jp/en/), along with the visualization tool Thesaurus Map (http://thesau-
rus-map.jst.go.jp/jisho/fullIF/index.html). We then calculate the information entropy of each 
concept in the JST thesaurus from the dataset. Shannon’s entropy in information theory is an 
estimate of event informativeness. We used this entropy to measure the semantic diversity of 
a concept [17]. After creating clusters according to the degree of entropy, we unify all word 

vectors in the same cluster to a cluster vector and constructed paragraph vectors based on the 
cluster vectors. The overall flow is shown in Figure 1.

Hereafter, the “word” is a word in the dataset, the “term” is a term in a thesaurus, and terms are 
classified into hypernyms, hyponyms, and their synonyms. The “concept” is defined as a com-
bination of a hypernym and one or more hyponyms one level below the hypernym indicated as 
a red box in Figure 2. Given that a thesaurus consists of terms T

i
, we calculated the entropy of a 

concept C by considering the appearance frequencies of a hypernym T
0
 and its hyponyms T1…

T
n
 as an event probability. The frequencies of synonyms S

i0
…S

im
 of term T

i
 was summarized to 

a corresponding concept (synonyms S
ij
 include descriptors of terms T

i
 themselves).
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In Eq. (3), p(S
ij
|C) is the probability of a synonym S

ij
 given a concept and terms T

i
. For each 

concept in the thesaurus, we calculated the entropy H(C) in the dataset. As the probabilities of 
events become equal, H(C) increases. If only particular events occur, H(C) is reduced because 
of low informativeness. Thus, the proposed entropy of a concept increases when a hypernym 

Figure 1. Construction of paragraph vectors based on cluster vectors.
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and hyponyms that construct a concept separately appear with a certain frequency in the 

dataset. Therefore, the degree of entropy indicates the semantic diversity of a concept. Then, 

assuming that the degree of entropy and the spatial size of a concept in a word vector space 

are proportional to a certain extent, we split the word vector space into clusters. In fact, our 

preliminary experiment indicated that the entropy of a concept has high correlation R = 0.602 
with the maximum Euclidean distance of hyponyms in the concept in a vector space, at least 

while the entropy is rather high. Specifically, we refined clusters by repeatedly subdividing 
them until the defined criterion was satisfied. In our method, we set the determination condi-
tion as shown in Eq. (4).
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This condition represents that the word vectors w
0
…w

T
 are subdivided into two clusters pro-

portionally to the ratio of the highest two concept entropies H(C(w
i
)) and H(C(w

j
)), which are 

selected from all entropies of concepts in a cluster (an initial cluster is the whole vector space). 
C(w

i
) and C(w

j
) mean concepts C to which words w

i
 and w

j
 belong, respectively. The words 

w
i
 and w

j
 are words, whose lemmatized forms are identical to terms or synonyms in the the-

saurus. However, note that the entropies of the other words whose correspondences are not 
included in the thesaurus are not calculated in Eq. (3). Cl(w) means a cluster to which a vector 
of a word w should be classified.

The vector space is subdivided until the entropy becomes lower than 0.25 (the top 1.5% of 
entropies) or the number of elements in a cluster is lower than 10. These parameters were 
also determined empirically through the experiments. After generating 1260 clusters from 
66,830-word vectors, we considered the centroid of all vectors in a cluster as a cluster vector. 
Then, we constructed paragraph vectors using the cluster vectors rather than word vectors, 

as shown in Eq. (5) that is an extension of Eq. (2). After all, each cluster vector represents a 
concept that has the highest entropy in all concepts included in the cluster.
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Figure 2. Concepts in a thesaurus.
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3.2. Evaluation of paragraph vectors

Next, we evaluate the resulting vectors on the map constructed from the following dataset. In 

this article, the dataset includes titles and abstracts of 266,772 IEEE conference articles pub-
lished from 2012 to 2016, including 2,290,743 sentences in total and titles and descriptions of 
34,192 NSF projects from 2012 to 2016, including 730,563 sentences in total. Note that IEEE 
journal, transaction, symposium, and workshop articles are not included, and NSF project 
domains are limited to Computer and Information Science and Engineering, Mathematical 
and Physical Sciences, and Engineering in accordance with IEEE articles. All words in the sen-
tences were tokenized and lemmatized by Stanford CoreNLP before creating the vector space.

In terms of the unclustered problem, we confirmed that the proposed method successfully 
formed several clusters compared with the original paragraph embedding method. For a 
quantitative comparison, in Figure 3 shows the relationships between the cosine similarities 
and the number of edges, and the relationship between the degree centrality and the number 
of nodes (i.e., projects) in the case of the cosine similarities of >0.35. As a result, we confirmed 
that edges with a higher cosine similarity and nodes with higher degrees increase. The reason 

for this result is because, through the use of high-entropy concepts, which are significant in 
scientific and technological contexts excluding scientifically unimportant words—as elements 
between paragraph vectors, the paragraph vectors were able to comprise meaningful groups. 
Simultaneously, newly, unknown synonyms, and closely related words that are not defined 
in the thesaurus can be unified to a cluster vector, if they are in the same cluster. Taking the 
centroid vector as a representative vector in a cluster involves separating each cluster vector 

as much as possible to form a clear difference in the vector space.

In terms of the accuracy of content similarities, the evaluation encounters difficulty since, to the 
best of our knowledge, there is no gold standard for evaluating the similarity among scientific 
and technological documents. Therefore, we first evaluated the degree of the similarities based 
on a sampling method. We randomly extracted 100 pairs of projects with a cosine similarity of 
>0.5 (similarities less than 0.5 are not considered in the map layout), to make the distribution 
similar to the entire distribution. Each pair has two project titles and descriptions, and a cosine 
value that is divided into three levels: weak (0.5 ≤ cos. < 0.67), middle (0.67 ≤ cos. < 0.84), and 
strong (0.84 ≤ cos.). Some examples of two projects and their cosine value are shown in Table 1. 

Then, three members of our organization, a funding agency in Japan, evaluated the similarity of 
each pair. The members were provided the prior explanations for the intended use of the map 

Figure 3. Comparison between paragraph vectors and those with entropy clustering.
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and some examples of evaluation. The members received the same data, and their backgrounds 
are bioscience, psychology, and computer science. As a result, we confirmed that 78% of the 
similarities matched majority votes of the members’ opinions. Examples misjudged include, for 
example, the not related pairs of two projects that have the same acronyms with different mean-
ings, and the stronger pairs of two projects that have only a few common words, but which 
are recent technologies attracting attention. We expect that those words will eventually have 
higher entropies and then the project similarities will be estimated to be stronger. We also plan 
to replace acronyms in project descriptions with full words before making vectors. By contrast, 
the accuracy of the similarities of the original paragraph embedding method was 21%. The 
evaluation results were determined to be in “fair” agreement (Fleiss’ Kappa κ = 0.29) (Table 2).

Moreover, we evaluated the accuracy of content similarities using the artificial data, part of 
which is randomly replaced with the other projects/articles. We replaced 10, 20, …, 100% of 

Similarity Weak Middle Strong

Precision 77.5 83.3 100.0

Recall 98.6 33.3 83.3

F1 value 86.8 47.6 90.9

Table 2. Evaluation of similarity based on sampling (%).

Table 1. Example of sampled projects/articles.
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a project description or a article abstract with sentences randomly selected from the others. 
Then, we measured a cosine similarity between a vector generated from the artificial project/
article and a vector of the original project/article. The projects/articles were randomly selected 
from all projects/articles, and then we evaluated 1000 pairs of the original project/article and 
the artificial project/article. The relationship of the replacement ratios and the cosine simi-
larities is shown in Figure 4. As a result, we confirmed that there is an obvious correlation 
between content similarities of projects/articles and their cosine similarities with R2 = 0.89. 
The paragraph vectors without the entropy clustering also had the same trend, but the vec-
tors with the entropy clustering had higher similarities on average. This result matches the 

relationships between the cosine similarities and the number of edges shown in Figure 3.

4. Mapping Science

This section describes our content-based map of science, Mapping Science [18, 19]. After intro-
ducing its interface, we describe our clustering and layout method of articles and projects in 
the map and analytical functions provided.

4.1. Interfaces

In Figure 5 shows three main views of the Mapping Science, which are a portfolio view, a 
clustered view, and analytic views.

In the portfolio view, five research areas, Information, Mathematics and Physics, Commu-
nication, Electronics and Mechatronics, and Power and Energy, to which the entire dataset 
has been divided by full-text search with predefined queries, are shown. The size of circles 
corresponds to the number of articles and projects in the area.

Figure 4. Cosine similarities of artificial data with partial replacement.

Mapping Science Based on Research Content Similarity
http://dx.doi.org/10.5772/intechopen.77067

183



In the clustered view that opens when users click one of the areas in the portfolio view, the 

results of clustering all the articles and projects in the area are shown. The details of the clus-
tering method are shown in the next section. This view is for taking a look at the technologies 

in the area. Each cluster has at most 10 labels, which are extracted as feature phrases using a 
probabilistic information retrieval method, BM25 [20].

In the analytic view that opens when users click one of the clusters in the clustered view, each 

node corresponds to a article or a project, and distances between the nodes are proportional to 
the cosine similarities between articles/projects, as much as possible. In addition, direct citation 
links between articles (citing → cited) are shown in light green edges with labels showing com-
mon phrases between two articles, which are also extracted by the BM25 method. When users 
click a node, the detailed information about the node (article or project) is shown on the map.

In all the views, the search box located at the upper-left corner provides full-text search for all 
articles and projects included in the current view, and the search results are highlighted in the 

view. Moreover, the analytic view provides the time-shift bar, which displays the cumulative 
changes in a cluster according to published/started years of articles/projects. The trial version 
of this map is publicly available at https://jipsti.jst.go.jp/foresight/.

4.2. Clustering and layout method of the nodes

In this section, we describe a method for generating the clustered view and the analytic view. 
There are too many nodes (articles and projects) even in a research area to explore a spe-
cific research topic (over 160,000 nodes included in the Information area in Table 3). We thus 

Figure 5. Interface of Mapping Science.
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divided them into several hundred clusters and provided analytic functions described in the 
next section to explore articles and projects in each cluster.

A major concern in clustering and laying out the nodes is to reduce 500-dimensional paragraph 
vectors to a 2D network structure. In general, conventional clustering or dimension reduction 
techniques such as multi-dimensional scaling (MDS) have O(n3) computational complexity, 

which increases the calculation time in proportion to that. We thus, to accommodate the practi-
cal calculation time, generated a network structure only from the edges that are the 30 highest 

similarities (at least, 0.5 or more) to other nodes. Sci2Tool [3] also generated the network only 

from the 15 highest similarities edges and successfully created an informative map of journals.

Clusters in the clustered view are calculated by info map [21], which is one of modularity-
based network clustering algorithms [22]. By increasing the modularity, the nodes are divided 

into clusters that have more edges within the clusters than edges between the clusters. Thus, 
articles or projects in a cluster have relatively high similarities and form meaningful sets. 

However, the simple application of the info map generated too many clusters to explore the 
clustered view (over 2800 clusters included in Electronics & Mechatronics area in Table 3). 
Therefore, we merged small clusters comprised of less than 50 nodes into the nearest cluster, 
which has the highest similarity pair between any of two nodes in the clusters. This operation 
corresponds to a single linkage clustering in agglomerative clustering. As a result, the num-
bers of clusters are reduced as in Table 3. Although the accuracy of the clustering result falls 

(the modularity decreases), nodes incorporated into the nearest cluster tend to form indepen-
dent sets of nodes in the analytic view and can be distinguished in the view. The distances 
between clusters in the clustered view mean the distances in the single linkage-clustering.

The layout algorithm in the analytic view is OpenOrd (formally, DrL) [23]. This is a well-
known force-directed layout algorithm and frequently used in other maps of science such as 
Sci2Tool. In Figure 6 shows a comparison of layout algorithms for Internet of thing cluster (see 

the next section), which includes the OpenOrd (edge cut parameter: 0.88, 0.91, and 0.94), MDS 
with cosine dissimilarity, large graph layout (LGL) [24] and Fruchterman Reingold layout 
(FR) [25]. The LGL and the FR are also force-directed algorithms. We can obviously confirm 
several clusters in the OpenOrd, but those are not clear in the other algorithms. The number 
of clusters in the OpenOrd increase as the edge cut parameter increases. Thus, we empirically 

set the OpenOrd with the edge cut parameter: 0.91 in the analytic view by default. The other 
parameters were also empirically set to show the structural features as much as possible. 
However, as shown in the next section, the analytic view provides several other layout algo-
rithms and parameters; thus, users can change the layout of nodes according to their needs.

Information Mathematics and 

Physics

Communication Electronics and 

Mechatronics

Power and 

Energy

# of nodes 165,823 113,982 99,995 88,023 89,845

# of clusters 474 345 338 400 303

# of clusters (only 

by infomap)
2313 1614 1630 2807 1776

Table 3. # of nodes and clusters in each research area.
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4.3. Analytical functions provided on the map

In addition to the functions described in Section 4.1, the Mapping Science provides the following 
analytical functions: (1) translation of article abstracts and project descriptions, (2) visualization 
of statistical information, (3) summarization of feature phrases, (4) querying and exporting using 
SPARQL, (5) change of layout algorithms, and (6) generation of customized analytic views.

4.3.1. Abstract/description translation function

In the analytic views, users can see the detailed information, such as titles, article abstracts/
project descriptions, authors/project members, affiliations, and publication year/ proposed 

Figure 6. Comparison of graph layout algorithms.
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year. In addition, the abstracts/descriptions are translated into Japanese by clicking “Translate” 
buttons. The users can read the original abstracts/descriptions in the same pane for confirm-
ing the translation validity.

4.3.2. Visualization function of statistical information

As in Figure 7, the analytic view can visualize the summary of bibliometric information of the 
nodes contained in the view. There are several widgets, such as for citation (Impact Factor, 
SJR, and CiteScore) metrics, publications by year, citations by year, and publications by each 
country. Moreover, the users can select the nodes in a rectangle area and see the statistical 

information of the selected nodes. The upper part of the publication by country shows an 
article count (AC) (https://www.natureindex.com/faq). The AC means the country-level par-
ticipation in a study, where a country is counted if one or more authors of the article are from 

the country. For example, if countries of three authors’ affiliations in a article are A, B, and B, 
A is counted as one and B is also counted as one. In contrast, the lower part of the publication 
by country shows a fractional count (FC) that means the contribution of each country. In the 
above example, A becomes 1/3, B becomes 2/3.

4.3.3. Summarization function of feature phrases

As in Figure 8, the feature phrases of the selected nodes can be summarized in word clouds. 
At most 10 feature phrases of each node are extracted based on the BM25 method in advance. 
Then, if the users select the multiple nodes, the feature phrases with higher frequencies are 

displayed larger and placed closer to the center of the word cloud. This function is useful for 

understanding specific themes of the selected nodes in a cluster.

Figure 7. Statistical information.
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4.3.4. Query function and export function

The background data in the Mapping Science have been converted to RDF data and stored 
in a graph database. Therefore, the analytic views provide a high-level search using a formal 
query language, SPARQL, as in Figure 9. For example, the users can search for articles, which 
have >0.8 similarities with articles cited 100+ times from journals with >10 impact factor (such 
articles might be obscure but important). When the users click a node ID in the result table, 

Figure 9. SPARQL search widget.

Figure 8. Feature phrases in the selected nodes.
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the node is highlighted and the viewpoint is automatically moved to the node. Moreover, the 

users can store their own SPARQL queries as macros. Therefore, users who are not familiar 
with SPARQL can simply call the macros and obtain the query results.

In addition, since we received requests for downloading the information displayed on the map, 

the information of the selected nodes and all nodes in a cluster can be exported in comma-sepa-
rated values (CSV) format. The result of SPARQL queries can be also exported in CSV format.

4.3.5. Layout change function

As described in the previous section, the layout of the analytic view was calculated by the 
OpenOrd (edge-cutting value: 0.91). In addition to that, the analytic views can be redrawn 
by the OpenOrd (edge-cutting value: 0.94 or 0.88), LGL, Fruchterman-Raingold, or Kamada-
Kawai [26]. When the users select a layout, the layout algorithm is executed in the back-
ground, the resulting layout information is stored and the view is redrawn. If the layout 

information is stored in advance, the layout is redrawn immediately. The layout calculation 

time depends on the number of nodes, and the average time is a few seconds to a few minutes.

4.3.6. Custom analytic view function

The analytic views were composed by the info map algorithm, but the users can create the cus-
tomized Analytic views by keyword search. When the users enter keywords into the widget in 
the portfolio view, the nodes are extracted by the full-text search for all nodes in five research 
areas, and then the layout is calculated by the OpenOrd based on the cosine similarities of the 
extracted nodes. For example, an analytic view for studies related to neural networks and arti-
ficial intelligence across multiple research areas can be created by keywords such as “Artificial 
Intelligence [AND] Neural Network.” This function could help find interdisciplinary studies. 
The calculation time depends on the number of nodes, and the average time is a few seconds to 
a few minutes. The information on the customized analytic views is stored in the background; 
the same view is immediately displayed for the second time. The customized analytic view 

can provide the same analytical functions, such as keyword search, visualization of statistical 

information, visualization of the cumulative changes by year, and layout change.

5. Case study for the formation process of research areas

In this map, we try to understand the formation processes of several research areas through 

chronological changes of network structure. This section describes two cases for the Internet 
of Things (IoT) and Brain-Computer Interface (BCI).

In Figure 10 shows the analytic views for an IoT area from 2012 to 2016, which includes 574 
nodes as of 2016. The last view is the analytic view in 2016 displaying >0.6 cosine similarities 
as edges.

In 2012, four islands (places, at which nodes are densely located) mainly for IoT frameworks 
and networks and for IoT system and security are barely found (labels of each island have 
been extracted by the summarization function of feature phrases).
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In 2013, a funding project (orange node) was firstly established in the security, and then the 
corresponding island grew bigger, that is, the number of articles increased, although a causal 
relationship is unclear.

Then, in 2014, the island of the IoT frameworks and networks also had a funding project and 
grew bigger. At the same time, researchers of each island, which seem to correspond to the 
different research community, started to recognize with each other, and thus mutual citation 
links (light green edges) between islands began to be drawn.

In 2015 and 2016, this movement was accelerated; thus, we can confirm that the islands were 
getting bigger and denser, and mutual citation links increased. Moreover, the other islands 
than the first four islands, for example, an island for IoT services and semantics at the upper-
left corner also gradually grew, and some of them are greatly increasing the articles by getting 
funding projects.

Finally, the edges of the cosine similarity 0.6 in the last view mean relatively weak simi-
larity described in Section 3.2. In contrast, nodes which compose an island are mutually 
connected with stronger similarities, although they are too dense to confirm in the figure. 
Therefore, in this IoT area, there are several research communities dedicated to specific 
research themes, and they are mutually connected with their content similarity and cita-
tion relations. Thus, we can understand that they are developing each theme while form-
ing the IoT area as a whole.

Figure 10. Formation of IoT areas.
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We confirmed several other processes of research area formation in our case studies. For exam-
ple, in Figure 11 shows the analytic view for BCI in 2016. In this figure, an island at the top is 
growing while citing articles for several specific research themes, such as medical applications, 
brain waves, pattern recognition, and steady state visual evoked potentials (SSVEP). Thus, 
we can understand that the BCI has been simultaneously approached from several different 
conventional research themes, and is integrating them. In this manner, we confirmed that the 
formation processes of research areas can be captured by closely observing the map.

6. Conclusion and future work

In this study, we developed a map of science, Mapping Science based on the research content 
similarity for funding project descriptions and recently published articles, which have dif-
ficulty in applying the citation analysis. After improving the existing paragraph embedding 
technique with an entropy-based clustering method of word vectors, we confirmed the good 
face validity. Then, we introduced the map constructed from approx. 300 k IEEE articles and 

NSF projects from 2012 to 2016 with the clustering and layout method of articles/projects and 
analytic functions provided on the map. Finally, we confirmed that formation processes of 
some specific research areas can be captured as changes of network structure.

Figure 11. Formation of BCI.
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As the next step, we plan to have a comparison with citation-based methods on concrete sce-
narios and incorporate patent information on the map. In addition, by overlaying domestic 
funding projects with NSF and Horizon2020 through the JST thesaurus that has English and 
Japanese notations, we will identify the trend of public grants. Finally, we try to extract met-
rics from chronological changes of the network structure of research areas. Foresight and 
understand from scientific exposition (FUSE) program in Intelligence advanced research 
projects activity (IAPRA) already conducted a study for identifying emerging research area 
based on several metrics obtained from several maps of science from 2011 to 2015. We, JST, 
will also utilize such metrics in statistical analysis and machine learning techniques to detect 

emerging research areas in their early stage for the next science and technology policies.
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