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Abstract

This chapter presents an extension and offers a more comprehensive overview of our
previous paper entitled “Stability conditions for a class of nonlinear time delay systems”
published in “Nonlinear Dynamics and Systems Theory” journal. We first introduce a
more complete approach of the nonlinear system stability for the single delay case. Then,
we show the application of the obtained results to delayed Lur’e Postnikov systems. A
state space representation of the class of system under consideration is used and a new
transformation is carried out to represent the system, with delay, by an arrow formmatrix.
Taking advantage of this representation and applying the Kotelyanski lemma in combina-
tion with properties of M-matrices, some new sufficient stability conditions are deter-
mined. Finally, illustrative example is provided to show the easiness of using the given
stability conditions.

Keywords: nonlinear systems, time delay, arrow matrix, M-matrix, Lur’e Postnikov,
stability conditions

1. Introduction

Studying stability of dynamical systems with time delay has received the attention of many

researchers from the control community in the past decades, see [1–27] and the references

therein. Time-varying delay which varies within an interval with nonzero lower bound is

encountered in a variety of engineering applications which spreads from recurrent neural

networks to chemical reactors and power systems with loss-less transmission lines. It is there-

fore more appropriate to study stability analysis and control synthesis of these dynamical

systems with time-varying delays as these delays are usually time varying in nature. There

are mainly two strategies in obtaining stability conditions. We can obtain delay-independent
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(i.o.d) results [28, 29] and the references therein, which are applicable to delays of arbitrary size

or when there is no information about the delay. In general this lack of information about the

delay will result in conservative criteria, especially when the delay is relatively small. When-

ever it is possible to include information on the size of the delay, we can get delay-dependent

(d.d) conditions which are usually less conservative. Most of the systems described above are

nonlinear in practical engineering problems. For this reason, the chapter focuses on determin-

ing easy to test sufficient stability conditions for nonlinear systems with time-varying delay

[30–33].

New delay dependent stability conditions are derived by employing arrow form state space

representation [31–34], Kotelyanski lemma and using tools from M-matrix theory and

Lyapunov functional method.

The obtained results are exploited to design a state feedback controller that stabilizes Lur’e

systems with time-varying delay and sector-bounded nonlinearity [26, 28, 34]. In fact, Lur’e

control systems is considered as one the most important classes of nonlinear control systems

and continue to be one of the important problems in control theory that has been studied

widely because it has many practical applications [32–36].

The chapter is organized as follows: Section 2 presents the notation used throughout the

chapter and some facts on M-matrices that will be needed in proving the obtained results. In

sections 3 the main results are given. Application of these results to delayed nonlinear nth

order all pole plant and the well-known Lur’e systems, is presented in Section 4. Illustrative

example is given in Section 5 and some concluding remarks are provided in Section 6.

2. Notation and facts

Let us fix the notation used. Let Cn ¼ C -τ 0½ �;Rnð Þ be the Banach space of continuous functions

mapping the interval -τ 0½ � into Rn with the topology of uniform convergence. Let xt ∈Cn be

defined by xt θð Þ ¼ x tþ θð Þ,θ∈ -τ 0½ �where x tð Þ ¼ y tð Þ _y tð Þ … y n-1ð Þ tð Þ
� �0

. For a given φ∈Cn,

we define φk k ¼ sup -τ ≤θ ≤ 0 φ θð Þk k,φ θð Þ∈Rn. The functions ai :ð Þ, bi :ð Þ, i ¼ 1,…,n-1 are

completely continuous mapping the set Ja � CH
n � Sϖ into R, where CH

n = φ∈Cn; φk k < Hf g,

H > 0, Ja ¼ a þ ∞½ Þ, a∈R and Sϖ ¼ ϖ; k1 ≤ϖ ≤ k2=k1 ≤k2 ∈Rf g: In the sequel, we denote

t; xt;ϖð Þ ¼ :ð Þ.

Now we introduce several useful facts, including some definitions of M-matrices and the

Kotelyanski lemma that will be used in subsequent parts of the chapter.

Definition 1. The n� n matrix A ¼ ai, j
� �

1 ≤ i, j ≤ n
is called an M-matrix if the following condi-

tions are satisfied for i ¼ 1, 2,…, n [34]:

1. ai, i > 0 , ai, j ≤ 0 i 6¼ j; j ¼ 1; 2;…; nð Þ.

2. Successive principal minors of A are positive, i.e.
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det

a1,1 … a1, i

⋮ … ⋮

ai,1 … ai, i

0

B

@

1

C

A
> 0

Definition 2. The matrix A is the opposite of an M-matrix if (�A) is an M-matrix. There are

many equivalent conditions for characterizing an M matrix. In fact, the following definition is

the most appropriate for our purposes [34].

Definition 3. The matrix A ¼ ai, j
� �

n ≤ i, j ≤n
is called an M-matrix if ai, i > 0 i ¼ 1; 2;…;nð Þ,

ai, j ≤ 0 , i 6¼ j, i; j ¼ 1; 2;…;nð Þ and for any vector σ∈R∗n
þ , the algebraic equation A

0

c ¼ σ has a

solution c ¼ A
0

� �-1
σ∈R∗n

þ [34].

Kotelyanski Lemma

The real parts of the eigenvalues of a matrix A, with non-negative off diagonal elements, are

less than a real number μ if and only if all those of the matrix M, M ¼ In � μA, are positive,

with In the n� n identity matrix [34, 35].

3. Sufficient stability conditions

Our work consists of determining stability conditions for systems described by the following

equation:

y nð Þ tð Þ þ
X

n-1

i¼0

ai t; xt;ϖð Þy ið Þ tð Þ þ
X

n

j¼0

bj t; xt;ϖð Þy jð Þ t-τð Þ ¼ u tð Þ

y ið Þ tð Þ ¼ φi tð Þ, t∈ -τ 0½ �, i ¼ 0,…,n-1,

8

>

>

<

>

>

:

(1)

where τ is a constant delay and ai :ð Þ, bi :ð Þ, i ¼ 1,…,n-1 are nonlinear functions.

We start by representing the system (1), under another form. Using the following notation:

xiþ1 tð Þ ¼ y ið Þ tð Þ, i ¼ 0,…,n-1 (2)

we get:

_x i tð Þ ¼ xiþ1 tð Þ i ¼ 1,…,n-1

_xn tð Þ ¼ -
X

n-1

i¼0

ai :ð Þxi tð Þ-
X

n-1

i¼0

bi :ð Þxi t-τð Þ

8

>

<

>

:

(3)

or under matrix form:

_x tð Þ ¼ A :ð Þx tð Þ þ B :ð Þx t-τð Þ (4)

A :ð Þ and B :ð Þ are n� n matrices given by:
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A :ð Þ ¼

0 1 … 0

⋮ ⋱ ⋱ ⋮

0 0 … 1

-a0 :ð Þ -a1 :ð Þ … -an-1 :ð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,B :ð Þ ¼

0 … 0

⋮ … ⋮

0 … 0

-b0 :ð Þ … -bn-1 :ð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(5)

The regular basis change P transforms the original system to the new one defined by:

x tð Þ ¼ Pz tð Þ, (6)

with:

P ¼

1 1 … 1

α1 α2 … αn-1

⋮ ⋮ … ⋮

αn-1
1 αn-1

2 … αn-1
n-1

0

0

⋮

1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(7)

The new state space representation is:

_z tð Þ ¼ F :ð Þz tð Þ þD :ð Þz t-τð Þ (8)

with:

F :ð Þ ¼ P�1A :ð ÞP ¼

α1 β1

α2 β2

⋱ ⋮

αn-1 βn-1
γ1 :ð Þ γ2 :ð Þ … γn-1 :ð Þ γn :ð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(9)

Elements of the matrix F :ð Þ are defined in [33] by:

γi :ð Þ ¼ -pA αi; :ð Þ for i ¼ 1,…,n-1,

γn :ð Þ ¼ -an-1 :ð Þ-
X

n-1

i¼1

αi

8

>

<

>

:

(10)

where

pA s; :ð Þ ¼ sn þ
X

n-1

i¼0

ai :ð Þsi (11)

and

βi ¼
λ-αi

Q λð Þ λ ¼ αi

for i ¼ 1,…,n-1

�

�

�

�

(12)
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where

Q λð Þ ¼
Y

n-1

j¼1

λ-αj

� �

(13)

and the matrix D :ð Þ is given by:

D :ð Þ ¼ P�1B :ð ÞP ¼
On-1,n-1 On-1,1

δ1 :ð Þ … δn-1 :ð Þ δn :ð Þ

� �

(14)

Elements of the matrix D :ð Þ are defined in [18] by:

δi :ð Þ ¼ -pB αi; :ð Þ, i ¼ 1,…,n-1

δn :ð Þ ¼ -bn-1 :ð Þ

	

(15)

Based on this transformation and the arbitrary choice of parameters αi, i ¼ 1,…, n� 1 which

play an important role in simplifying the use of aggregate techniques, we give now the main

result. Let us start by writing our system in another form. By using the Newton-Leibniz

formula

x t-τð Þ ¼

ðt

t-τ
_x uð Þdu (16)

Equation (Eq. 8) becomes

_z tð Þ ¼ F :ð Þ þD :ð Þð Þz tð Þ-D :ð Þ

ðt

t-τ
_x θð Þdθ (17)

Let Ω be a domain of Rn, containing a neighborhood of the origin, and sup Jτ,Ω, Sϖ
the suprema

calculated for t∈ Jτ i:e t ≥ τð Þ, for functions x with values in Ω, and for ϖ in Sϖ.

Next, using the special form of system (Eq. (1)) and applying the notation sup Jτ,Ω, Sϖ
¼ sup

:½ �,

we can announce the following theorem.

Theorem 2.1. The system (Eq. (1)) is asymptotically stable, if there exist distinct parameters

αi < 0, i ¼ 1,…,n-1, such that the matrix ~F :ð Þ is the opposite of an M-matrix, where ~F :ð Þ is

given by

~F :ð Þ ¼

α1 β1

�

�

�

�

α2 β2

�

�

�

�

⋱ ⋮

αn-1 βn-1
�

�

�

�

~γ1 :ð Þ ~γ2 :ð Þ … ~γn-1 :ð Þ ~γn :ð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(18)

and the elements ~γi :ð Þ, i ¼ 1,…,n, are given by
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~γi :ð Þ ¼
γi :ð Þ þ δi :ð Þ
�

�

�

�þ τ αij jsup
:½ � δi :ð Þj j

1� τ sup
:½ � δn :ð Þj j

, i ¼ 1,…,n-1

~γ
n
:ð Þ ¼ γn :ð Þ þ δn :ð Þ þ

τ sup
:½ � δn :ð Þj j γn :ð Þ þ δn :ð Þ

�

�

�

�

1� τ sup
:½ � δn :ð Þj j

þ
X

n

i¼1

τ βi

�

�

�

�sup
:½ � δi :ð Þj j

1� τ sup
:½ � δn :ð Þj j

8

>

>

>

>

>

<

>

>

>

>

>

:

(19)

Proof:

We use the following vector norm p zð Þ ¼ p1 zð Þ p2 zð Þ p3 zð Þ…pn zð Þ
� �0

, where

pi zð Þ ¼ zij j, i ¼ 1,…,n-1

pn zð Þ ¼ znj j þ

X

n

i¼1

sup
:½ � δi :ð Þj j

1� τ sup
:½ � δn :ð Þj j

ð0

�τ

ðt

tþθ

_zi ϑð Þj j dϑdθ

8

>

>

>

>

>

<

>

>

>

>

>

:

(20)

with the condition

τ sup
:½ � δn :ð Þj j < 1 (21)

Let V tð Þ be a radially unbounded Lyapunov function given by (Eq. (22)).

V tð Þ ¼ p z tð Þð Þ
� �0

;w
D E

¼
X

n

i¼1

wipi z tð Þð Þ (22)

where w∈Rn
þ,wi > 0, i ¼ 1,…,n. First, note that

V t0ð Þ ≤
X

n

i¼1

wi zi t0ð Þj j þwn zn t0ð Þj j þ
sup

:½ � jδn :ð Þjð Þ

1-τ sup
:½ � jδn :ð Þjð Þ

sup
-τ;0½ �

_φn

�

�

�

�

τ2

2

 !

≔r < þ∞

and

V tð Þ ≥
X

n

i¼1

wi zi tð Þj j

The right Dini derivative of V tð Þ, along the solution of (Eq. (22)), gives

DþV tð Þ ¼
X

n

i¼1

wi
dþpi z tð Þð Þ

dtþ
(23)

For clarification reasons, each element of
dþpi z tð Þð Þ

dtþ
, i = 1, …, n is calculated separately. Let us

begin with the first n-1ð Þ elements. Because zij j ¼ zisign zið Þ, we can write, for i ¼ 1,…,n-1,
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dþpi z tð Þð Þ

dtþ
¼

dþ zi tð Þj j

dtþ
¼

dþzi tð Þ

dtþ
sign zi tð Þð Þ

¼ αi zi tð Þj j þ βizn tð Þsign zi tð Þð Þ

≤αi zi tð Þj j þ βi

�

�

�

� zn tð Þj j

(24)

and

dþpn zð Þ

dtþ
¼

dþ znj j

dtþ
þ

P

n

i¼1

sup
:½ � δi :ð Þj j

1-τ sup
:½ � δn :ð Þj j

dþ

dtþ

ð0

-τ

ðt

tþθ

_zi υð Þj j dυdθ (25)

because

P

n

i¼1

sup
:½ � δi :ð Þj j

1� τ sup
:½ � δn :ð Þj j

dþ

dtþ

ð0

�τ

ðt

tþθ

_zi ϑð Þj j dϑdθ ¼

P

n

i¼1

sup
:½ � δi :ð Þj j

1-τ sup
:½ � jδn :ð Þjð Þ

τ _zi tð Þj j �

ðt

t�τ

_zi ϑð Þj jdϑ

� �

and

dþ zn tð Þj j

dtþ
≤ γn :ð Þ þ δn :ð Þ
� �

zn tð Þj j þ
X

n-1

i¼1

γi :ð Þ þ δi :ð Þ
�

�

�

� zi tð Þj j þ
X

n

i¼1

sup
:½ � δi :ð Þj j

ðt

t-τ
_zi θð Þj jdθ

Finally, it is easy to see that equation (Eq. (25)) can be overvalued by the following one

dþpn zð Þ

dtþ
≤

X

n

i¼1

~γi :ð Þ zij j

Then we obtain the following inequality

DþV tð Þ < ~F :ð Þ z tð Þj j;wi



(26)

where z tð Þj j ¼ z1 tð Þj j … zn tð Þj jð Þ0, and

~F :ð Þ ¼

α1 β1

�

�

�

�

α2 β2

�

�

�

�

⋱ ⋮

αn-1 βn-1
�

�

�

�

~γ1 :ð Þ ~γ2 :ð Þ … ~γn-1 :ð Þ ~γn :ð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(27)

Because the nonlinear elements of ~F :ð Þ are isolated in the last row, the eigenvector v t; xt;ϖð Þ

relative to the eigenvalue λm is constant [34, 35], where λm is such that Re λmð Þ ¼

maxi Re λið Þ;λi ∈λ ~F :ð ÞÞ
� ��

. Then, in order to have DþV tð Þ < 0, it is sufficient to have ~F :ð Þ as
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the opposite of an M-matrix. Indeed, according to properties of M-matrices, we have

∀σ∈R∗n
þ , ∃w∈R∗n

þ such that - ~F0
:ð Þ

� �-1
σ ¼ w. This enables us to write the following equation

DþV tð Þ < ~F :ð Þ z tð Þj j
� �0

;w
D E

¼ z tð Þj j0; ~F0
:ð Þw


 

¼ z tð Þj j0;�σ

 

¼ �
X

n

i¼1

σi zi tð Þj j < 0 (28)

This completes the proof of theorem.

Corollary 2.1. The system (Eq. (1)) is asymptotically stable, if there exist distinct parameters

αi < 0, i ¼ 1,…,n-1, such that the following condition:

μ :ð Þ þ 2τν :ð Þ � ξ :ð Þ < 0 (29)

is satisfied.

where:

μ :ð Þ ¼ γn :ð Þ þ δn :ð Þ þ τ sup
:½ � δn :ð Þj j γn :ð Þ þ δn :ð Þ

�

�

�

�� γn :ð Þ þ δn :ð Þ
� �� �

ν :ð Þ ¼
X

n�1

i¼1

βi

�

�

�

�sup
:½ � δi :ð Þj j

ξ :ð Þ ¼
X

n�1

i¼1

γi :ð Þ þ δi :ð Þ
�

�

�

� βi

�

�

�

�

αi
þ

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(30)

Proof:

Basing on definition 1 and definition 2, the choice of αk < 0, k ¼ 1,…,n-1, αi 6¼ αj for i 6¼ j, the

condition of signs on the principal minors is as follows

det

-α1 0

⋱

0 -αi

0

B

@

1

C

A
> 0 , i ¼ 1; 2; 3;…;n-1ð Þ (31)

and

det -~F :ð ÞÞ ¼ - ~γn :ð Þ-
X

n-1

i¼1

~γi :ð Þ βi

�

�

�

�

αi

 !

Y

n-1

i¼1

-αið Þ > 0

 

(32)

which yields to the following condition

~γn :ð Þ-
X

n-1

i¼1

~γi :ð Þ βi

�

�

�

�

αi
< 0 (33)

Replacing each term in (Eq. (33)) of by its expression we get
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~γn :ð Þ-
X

n-1

i¼1

~γi :ð Þ βi

�

�

�

�

αi
≔γ

n
:ð Þ þ δn :ð Þ þ

τ sup
:½ �

∣δn :ð Þkγ
n
:ð Þ þ δn :ð Þ∣

1� τ sup
:½ �

∣δn :ð Þ∣
þ

τ
X

n�1

i¼1

∣β
i
∣ sup

:½ �

∣δi :ð Þ∣

1� τ sup
:½ �

∣δn :ð Þ∣

�
X

n�1

i¼1

jγ
i
:ð Þ þ δi :ð Þj þ τjαij sup

:½ �

jδi :ð Þj

 !

∣β
i
∣

1� τ sup
:½ �

jδn :ð Þj

 !

αi

¼ 1� 2 sup
:½ �

jδn :ð Þj

 !

γ
n
:ð Þ þ δn :ð Þ

� �

þ τ
X

n�1

i¼1

∣β
i
∣ sup

:½ �

∣δi :ð Þ∣

�
X

n�1

i¼1

jγ
i
:ð Þ þ δi :ð Þj � ταi sup

:½ �

jδi :ð Þj

 !

∣β
i
∣

αi

which can be re-written as:

μ :ð Þ þ τ ν :ð Þ �
X

n�1

i¼1

∣γ
i
:ð Þ þ δi :ð Þkβi∣

αi

�
X

n�1

i¼1

�ταi sup
:½ �

∣δi :ð Þkβi∣

αi

¼ μ :ð Þ þ τ ν :ð Þ � ξ :ð Þ þ τ ν :ð Þ

¼ μ :ð Þ þ 2τ ν :ð Þ � ξ :ð Þ

where:

μ :ð Þ ¼ ð1� 2τ sup
:½ �

δn :ð Þð Þ γ
n
:ð Þ þ δn :ð Þ

� �

ν :ð Þ ¼
X

n�1

i¼1

∣β
i
∣ sup

:½ �

∣δi :ð Þ∣

ξ :ð Þ ¼
X

n�1

i¼1

∣γ
i
:ð Þ þ δi :ð Þkβi∣

αi

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

which completes the proof.

Remark 2.1. If the couple pA s; :ð Þ þ pB s; :ð Þ;Q sð Þ
� �

forms a positive pair, then there exist

distinct negative parameters αi, i ¼ 1,…,n-1, verifying the condition γi :ð Þ þ δi :ð Þ
� �

βi > 0 for

i ¼ 1,…,n-1.

Using Theorem 2.1 and Remark 2.1, the obtained supremum of time delay is a function of αi

values, i ¼ 1,…,n-1. As a result, a sufficient condition for asymptotic stability of our system is

when values of the time delay are less than this supremum.
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Corollary 2.1. If the couple D s; :ð Þ þN s; :ð Þ;Q sð Þð Þ forms a positive pair and there exist distinct

negative parameters αi, i ¼ 1,…,n-1, such that:

2τ γn :ð Þ þ δn :ð Þ
� �

sup :½ � δn :ð Þj j-ν :ð Þ
� �

þ
D 0; :ð Þ þN 0; :ð Þ

Q 0ð Þ
> 0 (34)

then the system (Eq. (1)) is asymptotically stable.

Proof.

According to Remark 2.1, we find that

γn :ð Þ þ δn :ð Þ-
Xn-1

j¼1

γj :ð Þ þ δj :ð Þ
���

��� βj

���
���

αj
¼ γn :ð Þ þ δn :ð Þ-

Xn-1

j¼1

γj :ð Þ þ δj :ð Þ
� �

βj

αj

¼ -
D 0; :ð Þ þN 0; :ð Þ

Q 0ð Þ

The result of Theorem 2.1 becomes

2τ γn :ð Þ þ δn :ð Þ
� �

sup :½ � δn :ð Þj j-ν :ð Þ
� �

þ
D 0; :ð Þ þN 0; :ð Þ

Q 0ð Þ
> 0

This completes the proof of corollary.

Remark 2.2

• Theorem 2.1 depends on the new basis change, where parameters αi of the matrix P are

arbitrary chosen such that matrix T :ð Þ is the opposite of an M-matrix. The appropriate

choice of the set of free parameters αi makes the given stability conditions satisfied.

• The theorem takes into account the fact that delayed terms may stabilize our system.

Theorem 2.1 can hold even if pA s; :ð Þ is unstable. This is another advantage as the majority

of previously published results assume that pA s; :ð Þ is linear and stable.

4. Application to delayed nonlinear nth order all pole plant

Consider the complex system S given in Figure 1.

D sð Þ ¼ pA sð Þ defined by (Eq. (11)) and pB sð Þ ¼ 1, respectively. In this case ~f i :ð Þ are constants

and g is a function satisfying the finite sector condition.

Let bg be a function defined as follows
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bg e θð Þ; y θð Þð Þ ¼
g e θð Þ � y θð Þð Þ

e θð Þ � y θð Þ
, e θð Þ 6¼ y θð Þ ∀θ∈ �τþ ∞½½ (35)

sup
:½ �

∣bg e tð Þ; y tð Þð Þ∣ ¼ g∈R∗
þ:

The presence of delay in the system of Figure 1 makes stability study difficult. The following

steps show how to represent this system in the form of system (Eq. (1)). Then we can write

y nð Þ tð Þ þ
Xn�1

i¼0

ai
diy tð Þ

dti
¼ �bg e t� τð Þ; y t� τð Þð Þy t� τð Þ þ bg e t� τð Þ; y t� τð Þð Þe t� τð Þ:

Using the following notation bg :ð Þ ¼ bg e t� τð Þ; bx t� τð Þð Þ, therefore

y nð Þ tð Þ þ
Xn�1

i¼0

aiy
ið Þ tð Þ þ bg :ð Þy t� τð Þ ¼ bg :ð Þe t� τð Þ: (36)

It is clear that system (Eq. (36)) is equivalent to system (Eq. (1)) in the special cases e θð Þ ¼ 0 and

e θð Þ ¼ �Kx θð Þ, x tð Þ ¼ y tð Þ; _y tð Þ;…; y nð Þ tð Þ
� �0

, ∀ θ∈ �τþ ∞½½ . We will now consider each case

separately.

4.1. Case e tð Þ ¼ 0

In case, e tð Þ ¼ 0 ∀t∈ �τþ ∞½½ , the description of the system becomes

y nð Þ tð Þ þ
Xn�1

i¼0

aiy
ið Þ tð Þ þ bg :ð Þy t� τð Þ ¼ 0:

This is a special representation of system (Eq. (1)) where ~f i :ð Þ ¼ ai, ~g1 :ð Þ ¼ bg :ð Þ ~gi :ð Þ ¼ 0 ∀

i ¼ 2,…, n� 1, D s; :ð Þ ¼ D sð Þ, N s; :ð Þ ¼ bg :ð Þ, γn :ð Þ ¼ γn ¼ �an�1 �
Pn�1

i¼1

αi and δn :ð Þ ¼ 0.

Figure 1. Block diagram of studied system.
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A sufficient stability condition for this system is given in the following proposition.

Proposition 4.1. If there exist distinct αi < 0 i ¼ 1,…, n� 1, such that the following conditions

γn < 0

μ1 :ð Þ þ 2τν1 :ð Þ � ξ1 :ð Þ < 0

	
(37)

where

μ1 :ð Þ ¼ γn

ν1 :ð Þ ¼ g

ξ1 :ð Þ ¼
∣D α1ð Þ þ bg :ð Þkβ1∣

α1
þ
Xn�1

i¼2

∣D αið Þkβi∣

αi

8
>>>><

>>>>:

(38)

are satisfied. Then the system S is asymptotically stable.

Suppose that D sð Þ admits n distinct real roots pi, i ¼ 1,…, n among which there are n� 1

negative ones. By using the fact that an�1 ¼ �
Pn

i¼1

pi, then the choice αi ¼ pi, ∀i ¼ 1, ::, n� 2 and

αn�1 ¼ pn�1 þ ε permit us to write γn ¼ �an�1 �
Pn�1

i¼1

pi ¼ pn � ε. In this case the last proposition

becomes.

Proposition 4.2. If D sð Þ admits n� 1 distinct real negative roots such that the following

conditions

pn � ε < 0

μ2 :ð Þ þ 2τν2 :ð Þ � ξ2 :ð Þ < 0

	
(39)

are satisfied, where

μ2 :ð Þ ¼ pn � ε

ν2 :ð Þ ¼ g

ξ2 :ð Þ ¼
∣bg :ð Þkβ1∣

α1
þ
∣D αn�1ð Þkβn�1∣

αn�1

8
>>><

>>>:
(40)

then the system S is asymptotically stable.

4.2. Case e tð Þ ¼ �Kx tð Þ

In this case, take e tð Þ ¼ �Kx tð Þ with K ¼ k0; k1;…; kn�1ð Þ, then the obtained system has the

same form as (Eq. (1)), with bgK1 :ð Þ ¼ bgK :ð Þ k0 þ 1ð Þ and bgKi :ð Þ ¼ bgK :ð Þki�1, i ¼ 2,…, n.
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The stabilizing values of K can be obtained by making the following changes:

γn ¼ �an�1 �
Xn�1

i¼1

αi, δ
K
n :ð Þ ¼ �bgK :ð Þkn�1, ν

K
1 :ð Þ ¼ gK

Xn�1

i¼1

~N αið Þjwhere gK ¼ sup
:½ �

∣bgK :ð Þ∣

�����

and ~N αð Þ ¼ 1þ k0ð Þ þ
Xn�1

i¼1

bi þ kið Þαi
:

Proposition 4.3. If there exist distinct αi < 0, i ¼ 1,…, n� 1, such that the following conditions

γn � bgK :ð Þkn�1 < 0

τ <
1

2gK∣kn�1∣

μK
1 :ð Þ þ 2τνK1 :ð Þ � ξk1 :ð Þ < 0

8
>>>>><

>>>>>:

(41)

where

μK
1 :ð Þ ¼ 1� 2gKτjkn�1j

� �
γn þ δKn :ð Þ
� �

νK1 :ð Þ ¼ gK
Xn�1

i¼1

∣βik
~N αið Þ∣

ξK1 :ð Þ ¼
Xn�1

i¼1

∣D αið Þ þ bgK :ð Þ
~N αið Þkβi∣

αi

8
>>>>>>>>><

>>>>>>>>>:

(42)

are satisfied. Then the system S is asymptotically stable.

By a special choice of K the result of proposition 3.3 can be simplified. In fact, if the conditions

of this proposition are verified we can choose the vector K such that D pi
� �

¼ ~N pi
� �

. In this case

we obtain D pi
� �

¼ ~N pi
� �

¼ 0, ∀ i ¼ 1,…, n� 1 and ν1 :ð Þ ¼ ξ1 :ð Þ ¼ 0 which yields the following

new proposition.

Proposition 4.4. If D sð Þ admits n� 1 distinct real negative roots pi such that the following

conditions are satisfied.

γn � bgK :ð Þkn�1 < 0

τ <
1

2gK∣kn�1∣

μK
1 :ð Þ < 0

8
>>>>><

>>>>>:

(43)

Then the system S is asymptotically stable.
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5. Illustrative example

Let us study the same example in [34] defined by Figure 2 which refer to the dynamics of a

time-delayed DC motor speed control system with nonlinear gain, Block diagram of time-

delayed DC motor speed control system with nonlinear gain.

where:

• p1 ¼
1
Te
and p2 ¼

1
Tm

where Te and Tm are, respectively, electrical constant and mechanical

constant.

• τf presents the feedback delay between the output and the controller. This delay repre-

sents the measurement and communication delays (sensor-to-controller delay).

• τc the controller processing and communication delay (controller-to-actuator delay) is

placed in the feedforward part between the controller and the DC motor.

• g :ð Þ : R ! R is a function that represents a nonlinear gain.

The process of Figure 2 can also be modeled by Figure 1, where τ ¼ τf þ τc.

It is clear that model of Figure 2 is a particular form of delayed Lurie system in the case where

D sð Þ ¼ s sþ p1
� �

sþ p2
� �

¼ s3 þ p1 þ p2
� �

s2 þ p1p2s and N sð Þ ¼ 1. Thereafter, applying the

result of Theorem 2.1, a stability condition of the system is that the matrix T :ð Þ given by:

T :ð Þ ¼

α1 0 ∣ α1 � α2ð Þ�1
∣

0 α2 ∣ α2 � α1ð Þ�1
∣

t1 :ð Þ t2 :ð Þ t3 :ð Þ

0

B

@

1

C

A

where:

Figure 2. Delayed nonlinear model of DC motor speed control.
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t1 :ð Þ ¼ ∣γ1 þ bg :ð Þ∣þ τ∣α1∣g, t2 :ð Þ ¼ ∣γ2∣, t3 :ð Þ ¼ γ3 þ τ∣β1∣g

must be the opposite of an M-matrix. By choosing αi, i ¼ 1, 2, negative real and distinct, we get

the following stability condition:

γ3 þ 2τ∣β1∣g�
∣β1kγ1 þ bg :ð Þ∣

α1
�
∣β2kγ2∣

α2
< 0

For the particular choice of α1 ¼ �p1 and α2 ¼ �p2 þ ε, ε > 0.

yields ∣β1∣ ¼ ∣β2∣ ¼ ∣ εþ p1 � p2
� ��1

∣ and we obtain the new stability condition:

2τgþ p1
�� ���1

∣bg :ð Þ∣þ α2j j�1
∣D α2ð Þ∣ < ε∣εþ p1 � p2∣

Assume that we have this inequality g < ∣D α2ð Þ∣, we can find from \ref.{ops} the stabilizing

delay given by the following condition:

τ <
1

2

ε∣εþ p1 � p2∣

∣D α2ð Þ∣
� p1
�� ���1

j � α2j j�1

� �
(44)

By applying the control e tð Þ ¼ �Kx tð Þ with K ¼ k0; k1; k2ð Þ, we can determine the stabilizing

values of K can be obtained by making the following changes:

γ3 ¼ � p1 þ p2
� �

�
X2

i¼1

αi, δ
K
1 :ð Þ ¼ �bgK :ð Þ k0 þ 1ð Þ, δKi :ð Þ ¼ �bgK :ð Þki�1, i ¼ 2, 3

νK1 :ð Þ ¼ gK
X2

i¼1

∣βik
~N αið Þ∣ where gK ¼ sup

:½ �

∣bgK :ð Þ∣ and ~N αð Þ ¼ 1þ k0 þ
X2

i¼1

kiα
i

If we choose αi < 0, i ¼ 1, 2, such that the following conditions

D αið Þ ¼ ~N αið Þ ¼ 0, ∀, i ¼ 1, 2

we get

1þ k0
k2

¼ p1 þ p2,
k1
k2

¼ p1p2

and from proposition 3.3 the stabilizing gain values satisfying the following relations:

0� gK :ð Þk2 < 0

∣k2∣ <
1

2τgK

8
><

>:
(45)

Finally we find the domain of stabilizing k0, k1, k2 as follows:
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0 < k2 <
1

2τgK

k1 ¼ p1p2k2

and

k0 ¼ p1 þ p2
� �

k2 � 1

8

>

>

>

>

>

<

>

>

>

>

>

:

(46)

6. Conclusion

In this chapter, a joined and structured procedure for the analysis of delayed nonlinear systems

is proven. A complete structured analysis formulation based on the comparison principle and

vector norms for the asymptotic stability is presented. Based on the arrow form matrices, and

by taking into account for the system parameters, a new stability conditions are synthesized,

leading to a practical estimation of the stability domain. In order to highlight the feasibility and

the main capabilities of the proposed approach, the case of nonlinear nth order all pole plant

and delayed Lur’e Postnikov systems are presented and discussed. In addition, the simplicity

of the application of these criteria is demonstrated on model of time-delayed DC motor speed

control.
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