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Abstract

Abrasive grit, applied at high pressure and directed at plant base, can control weeds and 
increase yield. We evaluated fertilizer [pelletized turkey (Meleagris gallopavo) litter] and 
non-fertilizer [walnut (Juglans regia) shell] grits for maize and soybean in-row (IR) weed 
management.  Grits were applied at V1 and V5 of maize, and V1 and V3 of soybean.  
Between-row weed cultivation was done alone (BR), or in combination with grit (I/B), 
after grit application. Small weeds (<4 cm) were controlled after grit treatment, but, larger 
broadleaf weeds, grass weeds (treated when growing points were below ground), and 
later emerging weeds resulted in IR weed biomass similar between season-long weedy 
(SLW) and IR treatments by August. In maize, fertilizer and nonfertilizer I/B treatments 
averaged 44 and 14% greater yields, respectively, than SLW (p<0.01) but each was similar 
to BR which averaged 23% greater yield (p=0.63).  Maize grain had 16% higher N content 
in the fertilizer I/B treatment than SLW or nonfertilizer I/B (p<0.003).  In soybean, I/B 
increased yield by 17% (p=0.009) over SLW yield, but was similar to the BR increase of 
22% (p=0.13). Maize had a greater positive response to fertilizer than nonfertilizer grit, 
whereas soybean was less influenced by I/B treatment.

Keywords: maize (Zea mays), soybean (Glycine max), air-propelled grit, weed control

1. Introduction

The number and acreage of organic certified farms across the United States has increased 
[1] due to expanding organic foods sales [2], which has created premiums for organically 
grown commodities [3, 4] and alternative income streams for farmers. Crop fertility and weed 
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management, within the confines of the certified organic regulations [5], are major concerns 
in organic production systems, as methods other than synthetic chemicals must be utilized. 
Alternative organic-approved nutrient sources include manures [6–9] and seed meals [9–11], 
when derived from certified organic materials.

Weed control repeatedly has been ranked as very to extremely problematic [12–14] and as a 
top research priority [15] in organic producer surveys. Flexible systems that rely on cultural 
and mechanical methods are needed to prevent the creation of specialized weed communities 
[16, 17]. Cultural methods enhance the crop’s competitive ability [16], reducing weed impact. 
Methods include alternating crops that vary in seasonal growth, fertilizing differentially [18], 
or speeding canopy closure by planting in narrow rows or at high densities [19–24]. Dense 
cover crop mulches, such as those created by rye grass (Lolium sp.) or hairy vetch (Vicia vil-

losa), suppress weeds [25–29], although these may become major weed problems or immobi-
lize N, negatively impacting yield, if not carefully managed [26, 28].

The most important time for weed control is during the early growth stages of a crop, also known 
as the critical weed free period, so that yield is not reduced [30–39]. Careful timing of physical 
and mechanical weed control operations [40–42], including deeper tillage or seedbed preparation 
that disturbs newly emerging weed seedlings (i.e. stale seedbed) [43–45] can provide weed con-

trol and lower in-season weed density [46, 47]. Burying the weeds to at least 1 cm deep, through 
rotary hoeing or rod weeding, or mowing the weeds at the surface also provides control [48, 49].

Cultivation, or flaming at high temperatures [50], are effective methods to control between-
row weeds, however, in-row weed control is still a problem for organic growers [51]. In-row 
weeders, including harrows, finger and torsion weeders, and weed blowers, have been devel-
oped [52–55]. However, crop burial or injury [56] can result in yield reduction [57] so that accu-

rate steering and slow driving are needed to minimize crop damage [51]. Despite advances in 
physical weed management, organic growers are not satisfied with the tools available nor the 
amount of weed suppression achieved [58]. Additional methods would provide alternatives 
to support these ‘traditional’ weed control techniques [51, 59–61].

Air-propelled abrasive grit application for weed control by tissue abrasion was proposed by 

Nørremark et al. [62]. Numerous types of grits made from agricultural (e.g., maize cobs and 
walnut shells), non-agricultural (e.g., sand), and organic fertilizer (e.g., soybean meal and 
corn gluten meal) materials controlled weeds in greenhouse and field settings [63–70] when 
sprayed at high pressure (800 kPa). In the field, two or three in-row grit applications, applied 
from V1 to V5 growth stage of maize, could reduce weeds and increase grain or silage yields 
[65, 69, 70].

Although Forcella [66] demonstrated that soybean could tolerate grit applications after the 
cotyledon (VC) growth stage, the influence of in-row grit application on weed control has not 
been field tested in this crop. In addition, organic fertilizers, such as pelletized turkey litter 
[71], have not been tested as abrasive grits for weed control in maize or soybean field studies. 
The hypotheses of this study were that 1) grits derived from different sources would result in 
similar weed control when applied at early crop/weed growth stages; and 2) crop yield would 
be increased by grits containing nitrogen [68, 72, 73].
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2. Air propelled abrasive grit influence on in-row weed control and 
crop yield

2.1. Materials and methods

2.1.1. Grits

Two grits, made from materials that are approved for organic production and that differ in 
fertilizer value, were used for in-row application and control of weeds. Sustane® (Sustane 

Corp., Cannon Falls, MN), is made from pelletized aerobically composted turkey litter [71], 
and had a fertilizer grade of 8-2-4 (N-P2O5-K2O). Agra Grit (AgraLife), made from walnut 
shells, which has a high C:N ratio with little immediate nitrogen availability, provided a low 
N content comparison. Sustane and Agra Grit products have a hardness value of 3 on the 
Mohs scale of mineral hardness and varied in size from 0.56 to 0.85 mm.

2.1.2. Field experiments

Maize and soybean were planted from 2015 to 2017 in organic certified production fields at 
the SDSU Southeast Research Farm (Beresford, SD), in a non-certified transition area at the 

SDSU Research Field Station at Aurora, SD; and in conventionally managed fields at the at 
the Swan Lake Research Farm (Morris, MN). Soil types were silt loam complexes (Morris and 
Beresford) and a silty clay loam at Aurora.

Varieties used, relative maturity (RM), planting and harvest dates varied by year and loca-

tion (Table 1). Swan Lake was the northernmost location and used shorter RM varieties. 
Southeast was the southernmost location and used longer RM varieties. Maize was seeded 
at 3.5-cm depth, when soil temperatures were 14°C. Soybean seeding rate varied by location 
and year (Table 1) and was planted at 2.4-cm depth when soil temperatures were 18°C. Row 
spacing was 0.76 m with four crop rows per treatment (~3-m width). Plot length varied from 
3 to 9 m.

Sustane 8-2-4 and Agra Grit were applied in all trials. In-row (IR) grits were applied twice, 

at the V1 and V5 maize growth stages, and the V1 and V3 soybean growth stages (Table 1). 

About 800 kg ha−1 of grit was used for each application, which was applied using a propelled 

abrasive grit applicator [PAGMan] that sprays four rows simultaneously, with a nozzle on 
each side of the row [69, 70]. Distance of the nozzle tip to the base of the maize plants was 
between 10 and 15 cm, at a 45° contact angle. Spray pressure was 690 kPa and tractor speed 
was 2.5 km hr.−1. After the final grit treatment each year, a single cultivation was used for 
between-row (BR) weed control using a John Deere® 866 spring tine cultivator at 5 km hr.−1. In 
addition, other treatments all years included a single between-row cultivation, as described 
previously, to determine yield potential with only cultivation, season-long weedy (SLW) to 
estimate yield in nontreated conditions, and weed-free (hand-weeded weekly until canopy 
closure) to estimate maximum yield potential under weed-free conditions.

Weed species and density were recorded in each plot prior to and about 1 week after final grit 
applications. In mid-July to early September depending on crop and year (Table 1), weeds, 
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in- and between-rows, were harvested from 1/10 m2 areas, separated by functional group  

(grass vs. broadleaf) and dried at 60°C until constant weight to quantify biomass by treatment. 
Relative greenness of the newest fully expanded maize leaf (SPAD meter, Konica Minolta, 
Japan) (10 to 20 plants per plot) was measured in 2016 and 2017 during this sampling time. At 
crop physiological maturity, the middle two rows of each treatment were harvested, and yield 
determined. Yield was corrected to 15.5% moisture for maize, and 13% moisture for soybean. 
Maize grain was tested for % N content, and soybean was analyzed for oil and protein contents.

2.1.3. Statistical analysis

Treatments [grit type followed by between-row treatment (I/B), between-row (BR) only, SLW, 
and hand-weeded] were replicated four times for each crop, year, and location in randomized 
complete block designs. Yields in hand-weeded and SLW treatments varied considerably among 
locations and years. To analyze main effect of grit treatments, the SLW treatment average yield by 
crop, location, and year was used as the ‘base’ yield, with grit type and BR treatment average yields 
for the crop, location, and year divided by the SLW value, providing a relative yield comparison 
with the SLW. This relative yield approach assisted in evaluating treatment comparisons among 
years and locations. The treatments by crop were the fixed effects, whereas location, blocks, and 
years were random effects. One-way ANOVAs (i.e., was the relative treatment yield greater than 
its SLW?) were calculated with significance of p = 0.1. In addition, a sign test for paired compari-
sons also was used as a non-parametric measure to determine if treatments differed.

Year Location Crop Relative 

maturity

Planting Grit application Weed biomass

Date Rate First Second Greenness Harvest date

(*1000)

2015 Aurora Soybean 1.4 June 9 395 June 30 July 8 September 8 October 22

Beresford Soybean 2.1 June 9 395 June 26 July 10 September 2 October 20

Morris Corn 93 d April 16 79 May 16 June 2 August 27 October 1

2016 Aurora Corn 99 d May 7 79 May 17 June 15 July 15 October 5

Aurora Soybean 1.4 May 19 395 June 8 June 23 July 20 October 14

Morris Soybean 1.1 May 4 431 June 1 June 17 July 19 September 9

2017 Aurora Corn 95 d May 5 79 June 2 June 23 August 1 November 5

Aurora Soybean 1.7 May 30 395 June 15 June 29 July 31 October 11

Beresford Soybean 1.9 May 24 420 June 16 June 27 July 28 October 17

Morris Corn 93 d May 11 86 June 6 June 26 July 25 October 31

Table 1. Locations, crops, relative crop maturity rating, planting dates and rates, dates of weed control applications, and 
measurements.
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2.2. Results

2.2.1. Influence of treatments on in-row (IR) and between-row (BR) weed control

Broadleaf weeds observed in plots during the time of grit applications included common lambs-

quarters (Chenopodium album), redroot pigweed (Amaranthus retroflexus), common purslane  
(Portulaca oleracea); and grass weeds included green and yellow foxtail (Setaria viridis and S. 

pumila, respectively). Weed size ranged from <1 cm (V1 maize application), 2- to 6-cm tall (V1 
soybean), and >10 cm tall (V3 soybean or V5 maize). Broadleaf weeds were greater in number, 
making up >60% (and at times, nearly 100%) of the weed profile.

In general at all locations, grit treatments tended to control all weeds in maize after the first 
(V1) application (data not shown) as weed densities were low, and most were small (<3 cm). 
When grit was applied in soybean, plots at Aurora and Beresford already had high weed den-

sities (~700 plants m−2) and weed height ranged from 2- to 6-cm at V1 and, while grits abraded 
leaf tissue, control ranged from 0- to 50%. Plots at Morris were rotary hoed prior to grit appli-
cation and no weeds were present. Examining weeds before and after the second application 
indicated that emerged broadleaf weeds again were injured by abrasion, but if >4-cm tall, 
they were not controlled. Grass weeds, if emerged, were injured, but growing points were still 
below the soil surface, so that although defoliated, they were not controlled well.

Grit application, generally, did not influence IR weed biomass measured at R4, with weights 
similar to those recorded in SLW plots. At Aurora IR weed biomass was found to be nearly 
100% grass in 2016 and averaged 300 kg ha−1 (SLW averaged 400 kg ha−1), and in 2017, was 
about 60% grass and averaged about 4500 kg ha−1 (SLW averaged 4300 kg ha−1). In Morris maize 
plots, nearly 100% of biomass was attributed to broadleaf species and averaged 100 kg ha−1 

(SLW averaged 140 kg ha−1) in 2015, and 2200 kg ha−1 (SLW averaged 2600 kg ha−1) in 2017.

Total IR weed biomass in soybean treated with grit did not differ from the location/year 
SLW treatment except at Aurora in 2016, where grit treatments had reduced broadleaf bio-

mass that ranged from 20 to 80% less (220 kg ha−1 in SLW) and about 50% less grass biomass 
(1100 kg ha−1 in SLW).

The BR cultivation in maize and four of six soybean site-years had few if any weeds remaining 
between rows and remained nearly weed-free through harvest. The exceptions were the 2015 
soybean plots in Aurora where the BR treatment had 11,000 kg ha −1 between row weed bio-

mass with grass weeds contributing about 80% of the total biomass, and 2015 soybean plots 
in Beresford, where BR weed biomass was 105 kg ha−1 with grass weeds accounting for all the 

biomass.

2.2.2. Crop yield

Maize yields in weed-free areas differed by location and year and ranged from 7588 (Aurora, 
2017) to 12,690 (Morris, 2015) kg ha−1 in weed-free treatments. Yield losses in SLW compared 
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to the weed-free check ranged from 5% to nearly 100%. Maize yields in the SLW, I/B, and BR 
treatments were almost all lower than the weed-free check. In the SLW vs. weed-free treat-

ments, the percent yield loss was positively correlated with total weed biomass (in-row plus 
between-row weeds) when examined across all studies (r = 0.93; p = 0.008) (Figure 1). Because 

the I/B and BR treatments had few between row weeds, the yield losses in these treatments 
were positively correlated with in row weed biomass (r = 0.71; p = 0.001). The slopes of each 
regression line were similar (m ~ 0.01), which indicated that percent yield loss was about 1% 
for each 100 kg ha−1 of weed biomass present at R4.

Although weeds were present in the row after I/B treatments, maize yields across years and 
locations were greater than the SLW, except in one case. On average, there was a 30% yield 
increase in grit application treatments compared within a year and location to its companion 
SLW treatment. Sustane treatments averaged 44% greater yield than SLW, whereas Agra Grit 
averaged 14% greater yield (p = 0.1). In addition, maize grain had 16% higher N content than 
grain from either the SLW or Agra Grit treatments (p<0.003). Sustane appeared to provide 

some nitrogen to the crop [74], as relative greenness, measured at R4 of maize, was similar to 
the weed-free check, and averaged 44% (p < 0.01) higher than greenness of plants in the SLW 
treatment. Agra Grit has a high C/N ratio, and actually slowed soil nitrogen mineralization 
in laboratory studies [74], although greenness values at R4 were about 30% greater than SLW 

plants. The BR treatment and I/B treatments averaged over all grits, however, had similar 
maize yield increases (23% vs. 30%, respectively; p = 0.63) compared to the SLW.

Soybean yield in weed-free treatments ranged from 1626 (Aurora, 2015) to 4856 (Aurora, 
2016) kg ha−1. Yield losses compared to weed-free treatments within location and year ranged 
from 2 to 43%. However, unlike maize yield losses, which were linearly related to total weed 

Figure 1. Maize yield loss (% of weed-free control) by total weed biomass at all locations and treatments. Triangles 
represent the season-long weedy treatments and the regression is shown by the solid black line (r = 0.95; p < 0.01). Circles 
represent yield loss based on weed biomass compared with the weed-free control plots of the I/B and BR treatments with 
the regression shown in the dotted line (r = 0.71; p < 0.01).
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biomass, soybean yield loss in SLW compared with weed-free was not correlated to total 
weed biomass (r = 0.16; p = 0.69), but was more correlated to in-row weed biomass (r = 0.58; 
p = 0.12). When examining relative yield compared with the SLW treatment, I/B treatments 
increased yield on average by about 16% (p = 0.004), which was similar to the BR treatment 
alone (p = 0.48). Soybean yield increases due to Agra Grit treatments compared with Sustane 
treatments were similar. Protein and oil content of soybean grain were similar among treat-
ments as well. These data indicate that grit applications applied at V1 and V5 of soybean had 
minimal impact on soybean yield and weed biomass. Indeterminate growth of soybean may 
have been partially responsible for the inconsistency between weed biomass and soybean 
yield loss.

3. Conclusion

Weed management using grits was more effect on small broadleaf weeds than larger broad-

leaf or grass weeds. While the larger weeds and grasses were defoliated with the grit treat-

ment, these regrew and by late season, biomass was similar in-row as the season-long weedy 
treatment. The in-row treatment, followed by cultivation between rows, tended to increase 
maize yield compared to no management, and grit with a higher N content tended to increase 
maize yield and nitrogen content more than a low N grit. Weed control in soybean was more 
challenging and, due to the size of the weeds even at V1 (one expanded trifoliate leaf), did 
not control weeds well, and by the second application (V5), weeds were likely too large for 
meaningful injury. Soybean yield loss was more related to in-row weed biomass than between 
row weed biomass. Thus, more research is needed to better control in-row weeds in soybean 
to limit yield loss.
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