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Abstract

Several experimental and clinical studies have indicated a prominent role of vascular 
inflammation in the development of endothelial dysfunction. In endothelial dysfunction, 
the endothelium loses its physiological features, decrements nitric oxide bioavailability, 
and shifts towards a vasoconstrictor, pro-thrombotic and pro-inflammatory state. Within 
arterial wall, the interplay between the pro-inflammatory and pro-oxidant milieus pro-
motes vascular dysfunction, and perivascular adipose tissue seems to play an important 
role. Inflammation is now considered a key event in vascular dysfunction and the devel-
opment of vascular disease associated with obesity and type 2 diabetes. This concept 
is supported by the fact that anti-inflammatory adipokines such as adiponectin protect 
endothelial function, and interventions resulting in reduced inflammation such as the 
administration of salicylates prevent vascular dysfunction and cardiovascular events. 
Thus, the aim of this review is to address the role of inflammation and its mechanisms in 
endothelial dysfunction associated with diabetes, describing the impact of these condi-
tions on vascular function.

Keywords: type 2 diabetes, endothelial dysfunction, oxidative stress, inflammation, 
adipokines

1. Introduction

Endothelial dysfunction is one of the major causes for vascular complications, accompanied by 
oxidative stress and inflammation. In diabetic and obesity/insulin resistance states, the endothelial 
dysfunction is incremented promoting the development and progression of vascular diseases [1].
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Endothelial dysfunction involves reduced endothelium-dependent vasodilatation and a pro-
thrombotic, pro-inflammatory and oxidant milieu [2]. The endothelial nitric oxide (NO) syn-
thase (eNOS), renin-angiotensin-aldosterone and kallikrein-kinin response systems all fail to 
maintain normal vascular homeostasis in conditions of hyperglycemia, reactive oxidative spe-
cies (ROS), free fatty acid (FFA) stress, and pro-inflammatory signaling [3, 4].

The aim of this review is to address the role of inflammation and its mechanisms in endothelial 
dysfunction associated with diabetes, describing the impact of these conditions on vascular 
function. We searched PubMed and Google Scholar primarily for original research articles pub-
lished up to 2017 that were focused on the pathophysiology of endothelial dysfunction associ-
ated with type 2 diabetes. The main search terms used were “type 2 diabetes,” “inflammation 
and endothelial dysfunction,” “insulin resistance,” and “therapies”. We identified primarily 
full-text manuscripts written in English. We also searched Clinicaltrials.gov for information on 

ongoing clinical trials in endothelial dysfunction associated with type 2 diabetes.

2. Endothelial cell function

Vascular endothelium is crucial for the regulation of vascular homeostasis. It is metaboli-
cally active through the secretion of vasodilators and vasoconstrictors and acts as an active 
signal transducer for circulating factors that modify the vessel wall phenotype. The normal 
paracrine and autocrine functions of endothelial cells include the synthesis of a series of 
substances that moderate vascular tone, decrease leucocyte migration, control permeability, 
regulate proliferation and migration of smooth muscle cells, and regulate platelet adhesion 
and aggregation (Figure 1). Endothelium also regulates cellular adhesion, vessel wall inflam-
mation, and angiogenesis.

The mechanisms implicated in the genesis of endothelial dysfunction are of extreme impor-
tance in developing adequate strategies to prevent or retard the clinical manifestations of 
cardiovascular diseases.

2.1. Endothelial dysfunction in diabetes

Dysfunction of vascular endothelium is considered not only as an important factor in the initia-
tion of vascular complications, but also in its progression and clinical sequelae [5]. Endothelial 
dysfunction is the loss of endothelium physiological properties with a shift toward a vasocon-
strictor, prothrombotic, and pro-inflammatory state [2].

The mechanisms underlying the development of endothelial dysfunction in type 2 diabe-
tes are complex and include oxidative stress, inflammation, and chronic alterations in the 
hemodynamic balance. Several contributors to endothelial activation and dysregulation have 
been described: decreased tetrahydrobiopterin (BH

4
) bioavailability and eNOS uncoupling, 

increased arginase, increased ROS production, decreased NO bioavailability, increased asym-
metric dimethyl arginine, increased glycation and expression of receptor for advanced glyca-
tion end products (RAGE), nuclear factor κB (NFκB) activation, suppression of Kruppel-like 
Factor 2 [6], and phenotypic changes in perivascular adipose tissue leading to low grade 
inflammation and reduced adiponectin secretion [7, 8].
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2.2. Inflammation

A state of subclinical systemic inflammation is characteristically present in obesity/insulin 
resistance and type 2 diabetes. The inflammation can be monitored by inflammatory markers 
such as high sensitivity C-reactive protein (hsCRP) and the inflammatory score derived from 
the pro-inflammatory plasma cytokines, interleukin (IL)-6, tumor necrosis factor α (TNFα), 
osteopontin, fractalkine, chemokine (C-C motif) ligand 2 (CCL2) and anti-inflammatory adi-
ponectin, that inversely relate to insulin sensitivity (Table 1). The inflammatory score inde-
pendently predicted fasting plasma glucose and insulin resistance in type 2 diabetic patients 
with high sensibility and specificity [9–12]. Moreover, other inflammatory biomarkers [i.e., 
growth differentiation factor-15 (GDF15), myeloid-related protein 8/14, pentraxin 3, lectin-
like oxidized low-density lipoprotein receptor-1 (LOX-1)] have been considered surrogate 
markers of cardiovascular disease and atherosclerosis in type 2 diabetes patients [13–16].

GDF15 is a member of the transforming growth factor beta family, secreted from cells such as 
adipocytes and myocytes in response to cellular ischemia and oxidative stress both present in 
diabetes. GDF15 is a marker of oxidative stress and inflammation and provides independent 
prognostic information on cardiovascular events [17].

Figure 1. Major functions of endothelial cells: regulation of vascular tone, control of VSMC proliferation, inflammation, 
permeability, angiogenesis, metabolism and hemostasis. Ang II, angiotensin II; CAMs, cell adhesion molecules; 
CCL; chemokine (C-C motif) ligand; EC, endothelial cell; EDHF, endothelium derived hyperbolizing factor; EGF, 
epidermal growth factor; ET1, endothelin-1; FGF, fibroblast growth factor; H2S; hydrogen sulfide; HSPG, heparan 
sulfate proteoglycans; ICAM, intercellular adhesion molecule; NO, nitric oxide; PAF, platelet-activating factor; PAI-1, 
Plasminogen activator inhibitor-1; PDGF, platelet-derived growth factor; PGH2, prostaglandin H2; PGI2, prostacyclin; 
ROS, reactive oxygen species; TF, tissue factor; TFPI, tissue factor pathway inhibitor; TGF-β, transforming growth 
factor-β; t-PA, tissue plasminogen activator; TXA2; thromboxane A2; VCAM, vascular cell adhesion molecule; VEGF, 
vascular endothelial growth factor; VSMC, vascular smooth muscle cells; vWF, von Willebrand factor.
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Myeloid-related protein 8/14 is a heterodimer consisting of two proteins that bind calcium 
and calgranulin A and B, which play an important role in the signaling pathways of cal-
cium and in the interaction between the cytoskeleton and the membrane [18]. Myeloid-related 
protein 8/14 is synthesized by activated monocytes and neutrophils and is a pro-inflamma-
tory protein expressed in atherosclerotic plaques associated with atherosclerosis in diabetic 
patients [19].

Pentraxin 3 is an acute-phase reactant produced by the peripheral tissues at sites of local 
inflammation and reflects impaired vascular endothelial function [20].

LOX-1 is a lectin-like receptor for oxidized low-density lipoproteins (ox-LDL), mainly expressed 
in endothelial cells, macrophages, smooth muscle cells, and monocytes. This receptor is 
upregulated by ox-LDL itself and by angiotensin II, endothelin, cytokines, and shear stress. 
The LOX-1 expressed on the cell surface can be proteolytically cleaved and released in a sol-
uble form (sLOX-1) in the circulation under pathological conditions such as hyperlipidemia 
and type 2 diabetes [21, 22].

Additionally, galectin-3 might also be an independent marker of vascular remodeling and 
endothelial dysfunction accompanied by inflammation, proliferation, and atherosclerosis in 
both normal and diabetic individuals [23, 24]. Galectin-3 is a multifunctional protein that 
belongs to a family of β-galactoside binding proteins and widely distributes in the heart, 
brain, visceral adipose tissue, and blood vessels. Galectin-3 is able to bind the advanced 
glycation end products (AGEs) and advanced lipoxidation end products that accumulate in 
target organs and exert their toxic effects by triggering pro-inflammatory and pro-oxidant 
pathways [25]. Galectin-3 levels are increased in subjects with obesity and type 2 diabetes 
[26], and animal studies have suggested that galectin-3 may be involved in the onset and 
progression of these metabolic disorders by acting primarily at the adipose tissue level. A 
recent study by Olefsky and co-workers has shown that galectin-3 provides a crucial mecha-
nistic link between inflammation and insulin resistance and that pharmacological inhibition 
of galectin-3 can increase insulin sensitivity [27].

Inflammation plays a crucial role in the etiology of vascular disease in diabetic states (Figure 2).  
The causes that trigger inflammation are pleiotropic and include most of the features that 
characterize type 2 diabetes. Arterial hypertension is also a low-grade inflammatory disease 
[28, 29] often present in diabetes along with hyperinsulinemia, insulin resistance, dyslipid-
emia, and obesity (Figure 2). Chronic exposure to glucotoxicity and lipotoxicity in diabetes 
induces a pro-inflammatory phenotype in macrophages residing or invading the adipose 
tissue and the vasculature [30, 31]. The dysfunctional endothelium may enhance leukocyte 
adhesion and the recruitment of inflammatory cells to the arterial wall, primarily through 
CCL2, a chemokine that promotes the attraction of immune cells to the sites of inflamma-
tion, thereby promoting lipid deposition and facilitating the atherosclerotic plaque formation 
[28, 32]. In addition, it is well known that the pro-inflammatory transcription factors NFκB 
and activator protein-1 and kinases such as c-Jun N-terminal kinase, p38 mitogen-activated 
protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) are regulated by the 
cellular redox state [33, 34]. Proatherogenic factors in obesity and diabetes such as oxidized 
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lipids,  angiotensin II, and hyperglycemia increase the activity of NF-κB and MAPKs in endo-
thelial cells and promote the activation of pro-inflammatory cytokines (e.g., IL-6), chemo-
kines (e.g., CCL2, IL-8) [35], the expression of adhesion molecules [intercellular adhesion 
molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1)] [36] and activation of 

inducible nitric oxide synthase (iNOS) [37], growth factors, and enzymes [38–40]. The subse-
quent increment in intracellular ROS production and the activation of the pro-inflammatory 
signaling complexes—the inflammasomes (including nucleotide binding and oligomerization 
domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome) is respon-
sible for the activation of interleukins such as IL-1β and IL-18, triggering inflammation [41]. 
The NLRP3 inflammasomes of the innate immune system induce a microinflammatory state 
stimulating various pro-inflammatory cytokines involved in the pathogenesis of diabetes and 
its complications.

Pro-inflammatory cytokines

TNF-α; Interleukins IL-1, IL-6, IL-8, IL-22

Local inflammation

iNOS

Cyclooxygenases—COX

Transcription factors as NFκB

Adhesion molecules

Intercellular adhesion molecule-1—ICAM-1

Vascular cellular adhesion molecule-1—VCAM-1

E-selectin

Chemokines

CCL2 (MCP-1)

CX3CL1 (fractalkine)

CCL5 (RANTES)

Toll-like receptors

Toll like receptor—TLR2

Toll like receptor—TLR4

Pro-fibrotic factors

Transforming growth factor—TGFβ

Connective tissue growth factor—CTGF

CCL2, chemokine (C-C motif) ligand 2; CCL5, chemokine (C-C motif) ligand 5; COX, cyclooxygenases; CTGF, connective 
tissue growth factor; CX3CL1, fractalkine; IL- Interleukin; iNOS, inducible nitric oxide synthase; ICAM-1, intercellular 
adhesion molecule-1; NFκB, nuclear factor κB; TGFβ, transforming growth factor β; TLR, toll like receptor; TNF-α; tumor 
necrosis factor α; VCAM-1, vascular cellular adhesion molecule-1.

Table 1. Inflammatory components of diabetic complications.
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2.2.1. Hyperglycemia-induced inflammation

In diabetes, hyperglycemia can induce inflammation via different mechanisms [42]. The meta-
bolic defects underlying diabetes cause mitochondrial superoxide overproduction in endo-
thelial cells of blood vessels. This increased superoxide production leads to the activation 
of five major pathways involved in the pathogenesis of complications: polyol pathway flux, 
increased formation of advanced glycation end products (AGEs), increased expression of the 
receptor for AGEs and its activating ligands, activation of protein kinase C (PKC) isoforms 
and overactivity of the hexosamine pathway [43].

Hyperglycemia leads to increased reduction of glucose to sorbitol by aldose reductase with 
nicotinamide adenine dinucleotide phosphate (NADPH) consumption [44]. The cellular anti-
oxidant capacity relies on the energy provided by NADPH to the glutathione and thioredoxin 
antioxidant systems. Thus, NADPH decrement will result in reduced antioxidant capacity 
and increased oxidative stress [44].

Figure 2. Risk factors for endothelial dysfunction associated with type 2 diabetes. Major role for oxidative stress and 
inflammation. AGEs, advanced glycation end products; FFAs, free fatty acids.
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In endothelial cells, vascular smooth muscle cells, monocytes and macrophages, the intracel-
lular synthesis of diacylglycerol is increased in hyperglycemia, leading to the activation of 
the PKC pathway [45, 46]. In monocytes, there is a subsequent release of the integrins CD11b, 
CD11c, and CD14 [47, 48]. CD11b or CD11c receptor occupation on the surface of human 
monocytes stimulates cell-specific pro-inflammatory pathways such as secretion of IL-8, mac-
rophage inflammatory protein (MIP)1α and MIP1β [49]. CD14 + CD16+ monocytes are also 
linked with pro-inflammatory conditions [50].

Hyperglycemia also upregulates toll-like receptor (TLR) activity through an increment in ROS 
augmenting inflammation. In human monocytes, Dasu and colleagues [51] reported that high 
glucose induces TLR2 and TLR4 expression through PKC activation, by stimulating NADPH 
oxidase (NOX). Several other studies have demonstrated that under hyperglycemic conditions, 
reducing ROS and specifically NOX activity reduced TLR expression and activity [52, 53].

AGEs are generated in vivo as a normal consequence of metabolism, but their formation is 
accelerated under conditions of hyperglycemia, hyperlipidemia, and increased oxidative 
stress [54–57]. AGEs are highly reactive and can trigger inflammation by generating particu-
larly TNF-α and IL-6 [58]. In addition, AGEs activate their receptors/binding sites (RAGE 
and lactoferrin-like polypeptide complex) in endothelial cells, monocytes, and macrophages 
leading to the activation of MAPK and NF-κB. AGEs also enhance the formation of oxidized 
low-density lipoprotein (oxLDL) and during hyperglycemia the expression of LOX-1 on 
monocytes and macrophages increases. These processes further facilitate the uptake of oxLDL 
by macrophages, thus increasing inflammation [59, 60].

Another important mechanism to cause hyperglycemia-induced endothelial dysfunction is the 
redox-dependent activation of endothelial NLRP3 inflammasomes [61]. Endothelial tight junc-
tion disruption in diabetes requires NLRP3 inflammasomes. High glucose activates NLRP3 
inflammasome in endothelial cells via ROS production. Reducing ROS production abolished 
high glucose-induced inflammasome activation, tight junction disruption, and endothelial 
hyperpermeability in endothelial cells. The clinical potential of targeting inflammasome sig-
naling axis for prevention of the early onset of diabetic vasculopathy is evident [61].

2.2.2. Lipids-induced inflammation

Lipids also induce a state of inflammation. In diabetes, lipids increment the inflammatory 
process by promoting oxidative stress and leukocyte activation and ultimately foster endo-
thelial dysfunction and atherosclerosis progression. The ingestion of high fat diets results 
in increased leukocyte activation, which is reflected by an increase of surface expression of 
CD11b, CD11c and CD14 on monocytes and CD11b, CD66b and CD62L on neutrophils [47, 
62, 63]. These results suggest a pro-inflammatory effect of dietary lipids on circulating inflam-
matory cells with detrimental effects on the vessel wall. After a meal, the remnants of tri-
glyceride-rich lipoproteins and oxLDL are taken up by circulating leukocytes, macrophages, 
endothelial cells, and smooth muscle cells, activating the PKC pathway and resulting in NF-κB 

activation [64–66]. NF-κB promotes the transcription of various inflammatory genes, includ-
ing genes encoding for cytokines, chemokines, and adhesion molecules [59]. In addition, 
FFA and cholesterol induce inflammation by activating TLR pathways and, subsequently,  
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NF-κB-mediated release of a broad range of cytokines and chemokines in different tissues  
[30, 31]. Cytokines released are involved in initiating and promoting a pro-inflammatory sta-
tus, contributing to insulin resistance [67].

However, the use of anti-inflammatory therapies to treat these conditions is still controversial 
and often the results are inferior to the expected. On the other hand, indirect approaches regu-
lating adipokines secretion or signaling seem to be promising [68].

2.2.3. Macrophage polarization

Macrophages are essential factors that contribute to the expression of inflammatory mediators 
and altered metabolism playing a critical role during the pathogenesis of atherosclerosis [69].  
Polarized macrophages toward M1 phenotype aggravate atherosclerosis. The polarized mac-
rophages not only exhibit increased inflammatory profile as observed in the expression of 
CCL2 and CCL5 but also change cholesterol homeostasis. The scavenger receptor class B type 
I (SR-B1) plays an important role in mediating the uptake of high-density lipoproteins (HDL)-
derived cholesterol and cholesteryl ester in the liver and steroidogenic tissues, and its expres-
sion is reduced by M1 macrophages [70]. In addition, HDL prevents the induction of human 
macrophages into an M1 phenotype by preventing the accumulation of caveolin-1 to the cell 
membrane [71].

Adipokines play an important role particularly in the context of obesity and diabetes. Some 
have a direct vascular effect such as leptin and adiponectin [8, 72]. Increasing attention has 
been paid to the direct vascular effects of adipokines, especially adiponectin. Adiponectin is 
the most abundant adipokine secreted by adipose cells, which may couple the regulation of 
insulin sensitivity with energy metabolism as well as regulation of vascular function [8]. We 
have recently shown that adiponectin normalized endothelial cell function by a mechanism 
that involved increased eNOS phosphorylation and decreased perivascular adipose tissue 
inflammation [8]. In addition, hypoadiponectinemia-induced NLRP3 inflammasome was 
recently suggested as a novel mechanism of diabetic vascular endothelial dysfunction [73].

Some adipokines mediate the polarization of pro-inflammatory M1 and anti-inflammatory 
M2 macrophages and the influence of inflammation in the diabetic milieu. For instance, adi-
ponectin and secreted frizzled-related protein 5 are both adipokines that have anti-inflamma-
tory properties and that can stimulate M2 polarization [74, 75]. Both M1 and M2 macrophage 
phenotypes interchange dynamically depending on the environment. Depending on the 
 stimulus, macrophages become polarized, which allows macrophages to critically contribute 
to tissue homeostasis, as they promote initiation and resolution of inflammatory responses. 
As a consequence, deregulation of the tissue macrophage polarization balance is an etiologi-
cal agent of chronic inflammation present in obesity and insulin resistance [76].

In addition, it was previously reported that vitamin D promotes an antiatherogenic mono-
cyte/macrophage phenotype in patients with diabetes [77]. Higher serum 25(OH)D levels cor-
related positively with a beneficial M2/M1 ratio, suggesting antiatherogenic properties [78]. 
Moreover, reversibility of the proatherogenic macrophage phenotype by vitamin D supple-
mentation highlights vitamin D sufficiency as a potential therapeutic target to reduce inflam-
mation and diabetic complications [77].
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2.3. Therapeutic approaches

Human and animal studies have shown a correlation between inflammatory conditions and 
endothelial dysfunction [79, 80]. In clinical situations, none of the approaches to specifically 
and directly treat inflammation to prevent cardiovascular events or reduce atherosclerosis in 
human individuals were successful, although high-sensitivity C-reactive protein is shown to 
have a strong relationship with recurrent events of cardiovascular diseases in several clinical 
trials. Randomized placebo-controlled clinical trials evaluating anti-inflammatory agents are 
being conducted to clarify whether targeting the inflammation itself will reduce cardiovascu-
lar events and risks [81].

Diet-induced weight loss reduced the levels of biomarkers of endothelial dysfunction and 
inflammation in overweight and obese patients with type 2 diabetes independent of medica-
tion use and duration [82]. In addition, anti-inflammatory drugs, such as salicylates, have been 
shown to reverse insulin resistance and other related conditions that result from circulating cyto-
kines which cause and maintain insulin resistance [83–87]. Fibrates seem to inhibit NFκB [88].  
In two randomized, placebo-controlled trials, fenofibrate treatment reduced the postprandial 
production of TNF-α, IL-1β, IL-6, CCL2, and macrophage inflammatory protein-1α [88, 89].  
Larger and longer trials are necessary to understand the effects of fibrates. In addition, expres-
sion of paraoxonase genes (PON 1, 2, 3) negatively correlates with a number of inflamma-
tory diseases including atherosclerosis [90]. In contrast to PON1, mainly in the circulation, 
PON2 and PON3 are predominantly localized to intracellular compartments (although small 
amounts of hPON3 is also associated with HDL) and modulate cellular oxidative stress gen-
erated both by intracellular mechanisms and in response to extracellular stimuli [91]. PON1 
protects LDL against oxidation and preserves function of HDL [91]. Recent evidence suggests 
that paraoxonase-1 may exert its anti-inflammatory, anti-oxidative functions leading to HDL-
mediated eNOS activation in endothelial cells via inhibition of myeloperoxidase activity of 
inflammatory HDL [92]. There are several studies suggesting that paraoxonases have been 
and continue to be target/candidates for developing therapeutic interventions for inflamma-
tory diseases [93].

Emerging anti-inflammatory approaches to vascular protection could be for instance: 5-lipox-
ygenase inhibitors, 5-lipoxygenase activating protein inhibitors, anti-cell adhesion molecules, 
SIRT activators, CCR2 and CCR5 antagonists [94], antibodies against TNF-α, and low doses 
of methotrexate [81].

Large-scale clinical trials are underway to investigate whether anti-inflammatory treatment 
improves cardiovascular outcomes, for example, methotrexate therapy (TETHYS trial and 
CIRT trial) [95, 96] and blockade of the cytokine IL-1β with canakinumab for the management 
of cardiovascular disease (CANTOS trial) [97, 98]. Additionally, randomized, placebo-con-
trolled, double-masked clinical trials of salsalate [99, 100], IL1Ra [101, 102] and anti-TNF-α [103]  

are being used to determine whether these anti-inflammatory approaches modify disease risk 
in type 2 diabetes and atherosclerotic cardiovascular disease.

Another novel anti-inflammatory therapy could be based on the normalization of the glyco-
calyx function [104–106]. The endothelial glycocalyx is now recognized to be a gatekeeper of 
the vascular wall regulating many aspects of endothelial function including its permeability 
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and integrity. A disturbed glycocalyx is associated with higher susceptibility to triggers of 
atherosclerosis and leukocyte/platelet adhesion [105–107].

In addition, it was recently described that inhibition of NLRP3 inflammasome with MCC950 
has potential benefits reducing infarct size and preserving cardiac function in a pig model of 
myocardial infarction [108].

Understanding mediators of the resolution of inflammation deserves further development in 
order to reduce the progression of vascular complications associated with diabetes [32].

3. Conclusions

Inflammation is suggested to play a crucial role in the interaction between metabolic abnor-
malities and vascular dysfunction, which occur in diabetes. Indeed, elevated levels of circu-
lating inflammatory markers are observed in patients with diabetes and obesity, promoting 
endothelial dysfunction. In the diabetic milieu, hyperglycemia and hyperlipidemia promote 
various intracellular and extracellular events and affect different cells in the vascular wall, 
leading to endothelial dysfunction. Obesity and type 2 diabetes also promote alterations in 
several pro-inflammatory cytokines, chemokines, and adipokines that will have an impact on 
vascular function. Knowing these mechanisms in detail will enable us to find new therapeutic 
targets for preventing or ameliorating the inflammation and subsequent vascular complica-
tions in diabetes.
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