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Abstract

Additive manufacturing techniques have recently seen an explosive growth across a 
myriad of fields, partly galvanised by their advantages over traditional fabrication tech-
niques. As with most fabrication processes, maximising efficiency is a requisite, par-
ticularly if commercialisation is sought-after. Understanding how the material behaves 
during additive manufacturing is necessary to accomplishing said task. Accordingly, the 
chapter herein collates examples of where rheology is applicable in polymer-based addi-
tive manufacturing techniques, thereby demonstrating the necessity and utility thereto. 
The main focus herein will be fused deposition modelling and stereolithography additive 
manufacturing techniques, with examples of how both capillary and rotational rheom-
eters can be utilised.

Keywords: additive manufacturing, 3D printing, fused deposition modelling, 
stereolithography, rheology

1. Introduction

Additive manufacturing (AM), also referred to as solid freeform fabrication, rapid proto-

typing and three-dimensional (3D) printing, is ostensibly a transformative manufacturing 
technique that will play a vital role in the next Industrial Revolution. AM entails the fabrica-

tion of 3D structures with both geometrical complexities and spatial resolution beyond the 
capacity of traditional fabrication techniques. The ubiquity of AM, from the automotive and 
aerospace industry, to tissue engineering and drug delivery, unequivocally demonstrates the 
rising appeal of the technology. From a research perspective, AM allows for rapid prototyp-

ing and integration with other technologies, that again, seldom observed in traditional routes. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Furthermore, there are several polymeric AM technologies available for purchase by consum-

ers that will allow manufacturing of goods to be achieved at home. However, despite the vast 
progression made, the technology is still in its infancy. Therefore, to make AM an essential 
instrument, further research is needed, including new material formulations.

Rheology is a necessity for all polymer fabrication techniques. The characterisation can deliver 
extensive and reliable material information. The data is subsequently correlated to the process 
to maximise productivity. Rheology will further be a key component as new materials are 
formulated to advance the versatility of AM. In spite of this, rheology remains an underuti-
lised tool. Thus, a chapter into how rheology can be utilised to help maximise AM efficiency 
is warranted. The chapter presents two of the commonly-used AM techniques in the field of 
polymers: fused deposition modelling (FDM) and stereolithography (SLA); and demonstrates 
the necessity of rheology thereto. As detailed herein, both technologies form 3D structures 
through disparate means, and albeit different, rheology is still an indispensable tool for both 
technologies. The chapter will conclude with a brief description of other AM techniques and 
how rheology is still relevant.

2. Fused deposition modelling

Fused deposition modelling (FDM) is one of the most common polymer additive manufac-

turing techniques. FDM is an extension of hot melt extrusion (HME), which is an already 
established technique in the field, whereby thermoplastics are heated to their semi-molten 
state and extruded through a given orifice. However, HME can only be used to fabricate basic 
geometries, whereas FDM utilises a gantry system that allows a nozzle to move and extrude 
the semi-molten polymer in three-dimensions until a 3D print is fabricated.

The similarities between FDM and HME are that both use high heat to achieve a semi-molten 
thermoplastic polymer, and that it is then forced through an orifice1. Hence, high temperature 
rheology and the shearing effect at the orifice, respectively, are of interest to both. Upon exit-
ing the orifice, the thermoplastic is cooled until solidification, which again, is rheologically 
relevant. The rheological events of FDM are delineated in Figure 1.

2.1. Nozzle flow and viscosity

2.1.1. Determining the shear rate from FDM parameters

Knowing the ideal viscosity range can help in predicting whether the new melt formulation is 

extrudable. Said knowledge will prevent time-consuming and costly empirical trials, as well as 
mitigating nozzle blockage and consequently machine downtime. A straightforward approach 
is to compare the viscosity of the new formulation to that of a successfully extruded formula-

tion (e.g. a commercial filament) using a rheometer. A dissimilar viscosity profile may not nec-

essarily equate to an unextrudable melt, provided that they possess comparable viscosity at the 
operating shear rate; hence the shear rate of interest will need to be identified. Unlike HMEs, 

1For HME, the orifice is typically called a die; for FDM it is the nozzle.
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however, most FDMs are not equipped with a transducer, and thus the shear rate will need to 
be determined semi-empirically. This can be achieved by: (i) performing an initial shear-rate 
viscosity measurement of the melt to obtain the power law index; (ii) knowing the speed of 
printing and nozzle diameter; and (iii) applying the rheological equations (Eqs. (1)–(4)).

The apparent shear rate γ ̇
app

 of the nozzle can be semi-empirically determined using the fol-
lowing equation [1]:

    𝛄   ̇    
app

   =   
4Q

 ___ 
𝛑  r   3 

    (1)

where Q is the volume flow rate, determined from the exit nozzle radius r and the speed of 

extrusion v (i.e. printing speed) [1]:

  Q = 𝝅  r   2  v  (2)

For example, a printing speed of 50 mm/s and a nozzle diameter of 0.2 mm equates to a flow 
rate of 6.3 mm3/s and consequently an apparent shear rate of ~1000 s−1. The apparent shear 

rate γ ̇
app

 provides a relatable shear rate that is then examined using the rheometer, which is 
typically in the order of 102 to 103 s−1 [2]. Thus, a capillary rheometer is best suited for such 
analysis, as 103 s−1 is above the attainable shear rate performed by a rotational rheometer [3]. 

For the true shear rate γ ̇, the following equation should be used [4–6]:

   𝜸   ̇  =   𝜸   ̇   
app

   (  
 (3n + 1) 

 _____ 
4n  )   (3)

Figure 1. Schematic of fused deposition modelling. The figure lists the components involved in the fabrication process, 
as well as the rheological facets of interest measurable by rheometers.
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whereby n is the power law index obtained using the power law model from a viscosity-shear 
rate test:

  𝜼 = k   𝜸   ̇    n−1   (4)

The best fit2 to the data gives the power law index n, which is a dimensionless value between 
0 and 13. From the above equations, the true shear rate at the nozzle wall can be obtained, and 
therefore, viscosity-shear rate tests can be performed at the relatable shear rate range.

Although a capillary rheometer covers the ideal shear rate found in FDM, and exhibits the same 
flow behaviour to that found within the nozzle (i.e. Poiseuille flow), a rotational rheometer can 
be used if a capillary rheometer is not accessible. A shear rate test can be performed up to the 
instrument’s shear rate limit, and the experimental data can then be fitted with a rheological 
model to predict the viscosity at higher shear rates. Examples of curve fitting models include the 
power law model, Williamson model, Cross model and Carreau-Yasuda model. Note that the 
oscillatory mode extends the shear rate limit of the rotational mode, however, the former pro-

vides the complex viscosity. If the Cox-Merz rule [7] is upheld for the melt formulation, then the 
complex viscosity can be converted into the steady-state viscosity, and subsequently curve fitted.

In addition to the above rotational rheometer analysis, large amplitude oscillatory shear 
(LAOS) measurements can be conducted to investigate the performance of the formulation. 
LOAS is regarded as a more complex analysis, however, it can be more revealing than its 
counterparts: small amplitude oscillatory shear (SAOS) and medium amplitude oscillatory 
shear (MAOS). In the former, the sample measured is subjected to large deformations, which 
is more reflective of the deformation polymers sustain during most polymer processing tech-

niques; and the analysis is more sensitive to polymer architecture and consequently deforma-

tion. LAOS has been used to predict wall slip [8, 9] and polymer morphology, with regards to 
orientation, during extrusion [10]. Such an approach is a subject of interest for the author, and 
is currently under investigation.

2.1.2. Filament buckling

An additional consideration with too high a viscosity is filament buckling. The filament acts 
as the piston that drives the extrusion process. If the filament is not extruded at the desired 
rate it can apply backpressure to the ensuing filament, and in turn causes it to buckle. A criti-
cal stress limit σ

c
 exists that the filament can be subjected to, of which above this value the 

filament will buckle, and consequently rendered inadequate. Hence, the critical stress must be 
greater than the pressure P imparted thereupon to drive the extrusion process.

The pressure required to drive the filament through the nozzle needs to be greater than the 
filament critical stress by a factor of 1.1 [11], as depicted in Figure 2.

The factor of 1.1 accounts for the difference between the nozzle and the filament diameter. 
The dependence of pressure on viscosity is given in the following equation for an ideal flow:

2Typically performed by taking the slope from a double-log plot (i.e. log Viscosity vs log Shear Rate).
3Note that since n is between 0 and 1, the true shear rate is greater than the apparent shear rate.
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  P =   
2l𝜼   𝜸   ̇   

w
  
 _____ r    (5)

where l is the length of the tube flown through, r is the filament radius, and γ
w
 is the wall 

shear rate. Thus, as the pressure is proportional to viscosity and shear rate, reducing the two 
rheological factors can help mitigate filament buckling; and thereby demonstrating the neces-

sity of rheology once-more.

2.1.3. Further considerations

Prior to extruding, the nozzle is heated to the desired printing temperature, wherein a portion 
of the filament is housed. The filament should exhibit an appreciable yield strength, whereby 
flow is resisted at high temperatures until the designated pressure is applied; and thereby 
preventing ‘premature extrusion’. For this reason, the melt should exhibit shear-thinning 
characteristics at elevated temperatures, whereby the viscosity is high at low shear rates and 
resists, for example, gravity; but decreases with increasing shear rate. Conversely, a melt with 
Newtonian flow characteristics possesses no yield strength, and consequently will prema-

turely extrude, which can result in print failure if not addressed promptly. Therefore, it is 
necessary to perform viscosity-shear rate measurements and confirm whether the new for-

mulation is shear-thinning in order to avoid premature extrusion.

2.2. Extrudate swelling and viscoelasticity

Extrudate swelling is a frequently encountered phenomenon, and of great interest in polymer 
processing. The phenomenon occurs in contemporary processes such as hot melt extrusion 

[12], injection moulding [13] and electrospinning [14], and also reported for fused deposition 
modelling [15]. Extrudate swell, or die swell, occurs when polymers pass through an orifice 
with a smaller diameter. The polymer is constrained with energy that is elastically stored as 

it enters the nozzle, whereafter the energy is released upon exiting the nozzle, leading to a 

Figure 2. Illustration depicting buckling and no buckling conditions.
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Figure 3. Cross-sectional view of the nozzle portraying extrudate swelling. The schematic illustrates that the extrudate 
diameter (D

ext
) is greater than the diameter of the die (or nozzle) (D

die
) once the melt exits the orifice.

radial expansion of the melt that consequently results in an extrudate diameter greater than 

that of the nozzle (Figure 3). This event is significant to FDM as it affects print resolution 
[16]. In addition, it affects print surface topography, which in the case of tissue engineering 
may influence biological properties. Thus, predicting the degree of extrudate swelling can 
help to avoid undesirable prints. The size of extrudate swelling is positively affected by shear 
rate and pressure, and exhibits a negative correlation to temperature and nozzle length. As 
these are FDM parameters that can be controlled, they can be exploited to minimise extrudate 
swelling once their effects thereto have been elucidated.

A capillary rheometer is the simplest method of predicting the degree of swelling. The mate-

rial is extrudate through a capillary die with a similar configuration to that of the FDM nozzle, 
and the swell ratio B is defined as the ration between extrudate diameter D

ext
 and die diameter 

D
die

 [17]:

  B =   
 D  
ext

  
 ___ 

 D  
die

  
    (6)

The swelling phenomenon can also be predicted using a rotational rheometer. Tanner et al. 
demonstrated that the above equation is correlated to both the wall shear stress and zero-
shear viscosity [18]:

    
 D  
ext

  
 ___ 

 D  
die

  
   =   [1 +   

 𝝉  
w
  2  
 ___ 

2  G  
0
  2 
  ]    

 1 ⁄ 6 

   (7)
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where τ
w
 is the wall shear stress; and G

0
 = η0/λ, where λ is the relaxation time and η0 is the 

zero-shear viscosity. The zero-shear viscosity can be determined by a rheological mathemati-
cal model (for example the Williamson or Cross Model) following a viscosity-shear rate test. 
In a modified FDM, the wall shear stress was acknowledged to induce swelling, and accord-

ingly a lower extrusion speed was opted for to limit extrudate swell [19]. This corresponded 

with another study that found increasing the extrusion speed increased the filament diameter, 
again due to extrudate swelling, but also due to time-dependent deformation [20]. Similarly, 
a slower hot melt extrusion rate is once-more favoured for fabricating filaments suitable for 
FDM [21], given the latter’s low diameter tolerance.

The relaxation time λ is another rheologically-derived parameter that has been proven to 
correlate well to extrudate swelling. The relaxation time can be obtained through various 
rheological tests, including from a steady shear rate measurement and curve fitting the data to 
the Carreau model; or by performing an oscillatory frequency sweep [22, 23]. The relaxation 

time is directly proportional to the ratio of extrudate swell, therefore, a shorter relaxation time 
is indicative of improved melt stability and of a polymer that is less susceptible to extrudate 
swelling [24–27]. Furthermore, the lower the relaxation time in contrast to the deformation 
time (e.g. time spent deformed in the die or nozzle) then extrudate swelling will be of less 
concern [13].

2.2.1. Analysing extrudate swelling through creep recovery

Creep and creep recovery experiments are two-halves of an experiment. First, a constant 
stress σ0 is applied to the sample and the shear deformation is measured. The stress is then 

removed at t
1
 and the recovery of the deformation is observed in creep recovery. In an elastic 

material, the strain generated, and the strain recovery is instantaneous to the application and 
removal of the stress, respectively. However, polymeric materials, which display viscoelas-

tic deformation, convey a different response. Under the constant stress, part of the polymer 
strains instantly, whereas another part of the polymer deforms at a slower rate under the 
action of the stress; hence the term ‘creep’. Similarly, in the recovery phase, a part of the mate-

rial recovers instantly, another slowly recovers, and a final part does not recover completely, 
and hence, the polymer remains permanently deformed [28] (Figure 4).

Figure 4. Schematic delineating the possible material responses to a creep test. (t- time; t0- onset of stress; t1 – Endpoint of 
stress; σ - stress; γ- strain; γ

r
 recoverable strain).
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Figure 5. Schematic delineating the stress response to a stress-relaxation test.

In the context of extrudate swelling, a creep and creep recovery experiment is analogous to 
the events that result therein, hence, the test is more closely related to extrudate swell than 
any other test measurable in a standard rheometer [29]. From a qualitative perspective, a 
polymer that displays a larger recovery following removal of the stress will indicate a ten-

dency to exhibit a larger extrudate swelling. Conversely, little or no strain recovery is attrib-

uted to damping of the applied load [30].

For an experimental quantification in predicting extrudate swelling using a creep recovery 
test: typically the recoverable compliance J

r
 is determined, which is positively correlated 

to extrudate swelling [29, 31, 32]. After the stress is removed, the ratio between recover-

able strain γ
r
 as a function of recovery time t

r
, and stress applied σ0 gives the recoverable 

compliance [33]:

   J  
r
   ( 𝝈  

0
  ,  t  

0
  ,  t  
r
  )  =  𝜸  

r
   ( 𝝈  

0
  ,  t  

0
  ,  t  
r
  )  /  𝝈  

0
    (8)

2.2.2. Analysing extrudate swelling through stress relaxation

Stress relaxation is another rheological test that can be employed to understand melt visco-

elasticity, and verily the effects of stress relaxation characteristics on extrudate swell have 
been investigated [34–37]. A stress relaxation experiment entails applying a strain to a previ-

ously stress-free material and measuring the stress decay at this fixed strain (Figure 5). This 

test is used to determine whether the stress will dissipate within the processing technique 

time scale. In addition to extrudate swelling, stress relaxation may also help to explain flow 
warpage4 [38], and other flow distortions.

Stress relaxation measurements can be made using step-strain rheology. Here, the molten 
polymer is subjected to an abrupt strain γ at time t0, typically in the order of 20 ms, and the 
stress σ needed to keep this deformation is recorded as a function of time [39] (Figure 5). The 

strain applied should be in the linear-viscoelastic region. The relaxation modulus G can be 
simply determined from this measurement:

4This is referred to as ‘flow warpage’ to differentiate it from ‘drying warpage’, where the former results in warped (i.e. 
bent) extrudates; whereas the latter results in a warped print due to inhomogeneous cooling.
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  G  (t)  = 𝝈 (t)  / 𝜸  (9)

Computational studies experimentally determine the relaxation modulus G(t) to obtain 
the damping function [40–42] for their numerical swell predictions. The damping function 

has been found to correspond well with swell results empirically determined by a capil-
lary rheometer [34, 43]. Transferring these computational studies, from extrusion dies to 
FDM nozzles, will indeed enhance FDM productivity. Additionally, determining damp-

ing behaviour of polymers is of general interest as it provides insight into the molecular 
structure thereof [44, 45]; which is not only helpful in understanding polymer behaviour 
under deformation, and thereby relevant to many fabrication techniques, but also can help 
in understanding, for example, polymer disintegration in a solvent medium. Therefore, 
rheological analysis delivers information that will be of interest beyond the FDM process-

ing stage.

2.3. Filament deposition: layer bonding and cooling

The final stage of the FDM process is the layer-by-layer deposition of the filament. In this 
stage, the first layer is deposited and adheres onto the build platform. Subsequent layers 
are deposited thereupon, whereby adjacent layers adhere together until the 3D print is com-

pleted. The bonding quality determines the final properties of the 3D print; for example, 
poorly adhered layers exhibit weak mechanical properties. The layer bonding is referred to 
as sintering, which in polymers is driven by viscous sintering. Hence, viscosity plays another 
key role at this stage. There are numerical models used for predicting filament coalescence 
between two layers using viscosity measurements [46, 47], however, depending on the mate-

rial used or printing parameters, the theoretical model may underestimate the neck growth 
achieved between adjacent models [48] (Figure 6).

Most FDM printers have the option of controlling the temperature of the build platform. 
Ideally, the temperature should be high enough to ensure that viscous sintering can be 
achieved, and thereby adhesion. Below a critical sintering temperature sintering is negligible 
[46]. Equally, the build plate temperature should also ensure that the material possesses suf-
ficient strength to maintain its structural integrity, particularly as layers are deposited above. 
Thus, a dynamic cooling ramp, via a rotational rheometer, can be utilised to examine the 
cooling evolution of the newly formulated material, and compared to that of an already suc-

cessfully printed melt. Such a test can be incorporated to directly follow either a steady- or 
dynamic-shear test to determine whether shearing influences the solidification process, due 
to polymer chain dis-entanglement.

Finally, as adherence plays a vital role in FDM, and the printing parameters can affect poly-

mer adhesive properties [49], this presents a potential to perform a tack test. Although not 
strictly rheology, a tack test allows one to determine the tack, or ‘stickiness’, properties of a 
material, which can be performed at elevated temperatures on some rotational rheometers. 
Information such as pull-off force, and mode of failure (i.e. cohesive failure, adhesive failure, 
or both) can be obtained. Furthermore, a tack test can be preceded by a shearing test, where 
the effects of shearing on tack properties can be measured [50].

Polymeric Additive Manufacturing: The Necessity and Utility of Rheology
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3. Stereolithography

Stereolithography (SLA) is a widely used additive manufacturing technique in the field of 
polymers, as well as ceramics (Figure 7). Here, a monomer resin is polymerised by a laser, 
layer-by-layer, until a 3D print is fabricated. Hence it differs from fused deposition model-
ling and other additive manufacturing techniques as it does not involve the use of a nozzle. 
Such light-curable resins are referred to as photopolymers. In its simplest form, the resin 
will include the photopolymer and a photoinitiator: the compounds needed to initiate cross-

linking of the monomers. However, other additives can be incorporated to modify the proper-

ties, such as modifying the mechanical properties of the final product, or the viscosity of the 
pre-cured resin [51]. Additionally, the resin is a suitable binder for fashioning metal, ceramic 
and glass materials; and in conjunction with the spatial resolution obtainable, makes SLA an 
attractive technique for fabricating complex three-dimensional structures.

SLA has been used in the field of structural, tissue engineering, electronics and pneumati-
cally-actuated soft robots [52, 53], and ergo, demonstrating its wide applicability. There are 
many advantages to this technique over FDM, including printing can be achieved without 
high temperatures, higher spatial resolution, and nozzle clogging is not of concern. SLA is 
predominantly Couette flow, thus only rotational rheometry is pertinent here. Furthermore, 
the dynamic aspect of rotational rheometers can be used for photorheology, which will be 
described in Section 3.2.

3.1. Viscosity measurements

In comparison to FDM, both the operating viscosity and shear rates are considerably smaller. 
The viscosity of the photopolymer should be under 5 Pa.s at 30 s−1 [54, 55], which ensures that 
the photopolymer is free-flowing, and capable of forming a new layer (i.e. recoating) ready 
for polymerisation. However, this value depends on the SLA printer, as others require, for 
example, a viscosity below 10 Pa.s at 100 s−1 [56]. This will ultimately depend on the settings 
of the SLA printer, but nonetheless, one should consider the maximum operable viscosity 
prior to printing.

Figure 6. Schematic depicting the evolution of neck size during polymer sintering. The larger the sintering neck size 
formed the better the adhesion between adjacent layers.
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The viscosity measurement is achieved by performing a steady-shear rate test on the resin free 
from curable light source(s). The test can be performed at the SLA’s functioning shear rate, 
whether it be 30 s−1, 100 s−1 or any other value, and ensuring the viscosity is below the effec-

tive threshold5; but the test is more commonly performed at a wider shear rate range as more 
information can be attained. Alternatively, a repeated cycle of LAOS and SAOS can be used; 
whereby LAOS for reflecting the deformation imparted during the submergence and with-

drawal (Figure 8); and SAOS to investigate the viscoelastic recovery [57]. At the initial posi-

tion during SLA printing, the build platform is lowered until submersion thereof is achieved. 
The platform is thereafter withdrawn, before being submerged again. During withdrawal, 
the resin should possess a low viscosity to attain complete recoating. Otherwise, a resin with 
high viscosity, the platform will be lowered with an incomplete recoating. A repeated cycle of 
LAOS and SAOS can be informative as to whether the structure can recover following defor-

mation by the submersion of the build platform.

Measuring the viscosity over a range of shear rates rather than at a single point would be of par-

ticular interest to those formulating a UV-curable suspension, as parameters such as degree of 
shear-thinning and yield stress are of importance. The yield stress is correlated to the stability 

5If working with a commercial printer whose supplier produces their own photopolymer resin, then one can measure the 
viscosity thereof, and attempt to closely match it.

Figure 7. Representative schematic of a stereolithography printer. The figure includes the components that comprise the 
printer, and the rheological facet of interest.
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of the suspension, which would provide insight into the stability of the suspension over time, 
and the tendency of the particles to sediment. Particle sedimentation is indeed undesirable as 
it results in an inhomogeneous print. Other rheological analysis performed to elucidate the 
degree of sedimentation in suspensions include determining the tan δ from oscillatory tests, 
creep-recovery tests and stress relaxation tests [58]. Note that if suspensions are to be measured 
using a rotational rheometer, then one has to use a plate-plate geometry configuration as a 
cone-plate configuration is susceptible to erroneous measurement due to the particles.

If a UV-curable emulsion has been formulated, and syneresis (i.e. phase separation between 
the two solvents) is of concern, then a frequency sweep is advisable. Using this test, a storage 
modulus G’ of comparable magnitude, or superior, to the loss modulus G”, at the low fre-

quency (i.e. longer periods) suggests the emulsion is less likely to exhibit syneresis. In other 
words, a high tan δ indicates a higher tendency to exhibit syneresis [59].

A minimum viscosity limit on the other hand appears to be less discussed, as this is less prob-

lematic for most researchers. One author inferred a minimum of 2 Pa.s [55], albeit successful 
SLA prints were achieved with a viscosity between 0.1 and 1 Pa.s [53, 60].

The low viscosities make SLA desirable as a binder for powder metallurgy, as more of the 
inorganic powder can be suspended therein. Both metal and ceramic structures have been 
fabricated using SLA, wherein the inorganic particles are suspended therein; cured into the 
desirable 3D structure, and subsequently thermally de-bound, leaving behind only the inor-

ganic material [61] elbadawi et al. The material is then sintered to achieve permanence. To 

achieve a green body that is mechanically sound, at least 40 vol% solids loading is needed, 
and as expected, this produces a substantial increase in viscosity, above the operating range. 
However, through the incorporation of dispersants and diluents, the viscosity can be lowered, 
and hence rheological analysis is key to identifying the minimum dispersant concentration 

needed to produce a suitable resin.

If working with a photopolymer resin that is not liquid at room temperature, then a viscos-

ity test of importance will be to perform a temperature ramp. Elomaa et al. (2011) opted to 

Figure 8. Illustration depicting SLA sequence of events.
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formulate a solvent-free photopolymer comprising of polycaprolactone, in which heating was 
needed to achieve the operable viscosity [62]. If such an approach is pursued, then performing 
a temperature ramp will help to identify the minimum temperature without needing to use 

an unnecessarily high value.

3.2. Photorheology: dynamic mechanical analysis

Aside from viscosity measurement, a rheometer is an indispensable tool for SLA as it can 
be used to measure the cross-linking characteristic of the resin. As mentioned, the monomer 
transforms from a liquid to a solid upon UV contact, which can be measured by a rotational 
rheometer. The transition from resin to solid manifest itself in a tremendous increase to 

both the storage and loss modulus, with values such as a curing time and material stiffness 
extracted. This entails the use of an oscillatory time ramp, whereby both the storage and 
loss modulus are recorded over time (Figure 9). The test is allowed to run until a baseline 
value for the resin is obtained, whereafter a UV source is activated, and the solidification 
behaviour is observed. Both the time to achieving solidification and the shear modulus of 
the solid can be quantified. The former is necessary to predict the scanning speed of the UV 
laser needed to achieve a solid structure; whereas the latter provides a strong correlation to 
the mechanical properties of the 3D print, namely Young’s Modulus [63]. Such a test saves 
both time and cost.

Figure 9. Representative dynamic mechanical analysis curve for measuring the crosslinking characteristics of a 

UV-curable formulation.
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Figure 10. Schematic illustrating the events occurring when measuring shrinkage due to UV-curing. (a) at first the 
rheometer plate establishes a baseline by applying a prescribed axial force (0.1 N). As the sample is cured it shrinks (b) 
causing a decrease in the force, and subsequently the rheometer moves axially until the prescribed force is re-established 
(c). Such movements allow the simultaneous measurement of the gap decrease(Δh).

The shrinkage of the material can also be measured by exploiting the rheometer’s6 axial 

movement, and the upper plate geometry can be adjusted to move in-line with the shrinkage 
that occurs with cross-linking. As Figure 10 demonstrates, a minimum compressive force is 

6For Example TA Instruments Discovery Hybrid Series rheometers, which can measure both tensile and compressive 
forces up to 50 N.
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applied to the sample during oscillatory measurements, which if not registered will cause the 
upper plate to move until the compressive force is re-established. Therefore, in addition to 
measuring the crosslinking properties of the photopolymers, a rotational rheometer can be 
incorporated to offer insight into the material’s shrinkage characteristics.

4. Other techniques

Given the success and ubiquity of FDM, similar extrusion-based additive manufacturing 
techniques exists. Examples include bioprinters, where hydrogels and cells are extruded; 
robocasting, where a ceramic, metallic, or glass powder enveloped by a polymeric binder 
is extruded; and inkjet printing, where polymeric inks are ejected. Said techniques differ to 
FDM with respect to their printing conditions. For example, bioprinters and robocasting can 
be performed at room temperature, and hence high-temperature rheology is of less interest. 
Another example is the solidification process post-extrusion: where FDM relies in cooling 
for the material post-extrusion to maintain its structural integrity, cold-extrusion techniques 
require shear-thinning materials that can rapidly restore their structural integrity following 

shearing [63]. Moreover, each of the aforementioned techniques have their unique desirable 
rheological properties, with respect to viscosity ranges, flow characteristics and dynamic 
mechanical properties. These are just a few of the common extrusion-based AM techniques, 
and as the field progresses, alternative derivatives are anticipated. Hence, the desirable rheo-

logical properties will evolve accordingly, and it is for this reason, that rheology will need to 
be a habitual characterisation technique in polymer AM fabrication.

A brief mention of selective laser sintering (SLS) is merited. Distinctly different from other 
techniques, SLS utilises a laser to sinter adjacent polymer powders laterally, such as nylon, 
and subsequently layer-by-layer to fashion a 3D print. After each layer is fully sintered, a new 
powder layer is deposited, prior to sintering. The ability of the powder to flow, as well as its 
packing performance and distribution behaviour, are of interest; and where powder rheology 
can be employed for elucidation thereof. Measurements performed using a powder rheometer 
include powder flow, particle-particle interaction during flow, compressibility, and adhesiv-

ity. Furthermore, the sintering behaviour discussed in Section 2.3 are applicable herein. Thus, 
despite SLS possessing a dissimilar mode of operation, rheology is still a relevant technique.

5. Concluding remarks

The chapter has demonstrated the necessity and utility of rheological characterisation tech-

niques for polymer-based additive manufacturing, irrespective of the technique. For fused 
deposition modelling, rheologically characterisation are performed to obtain the true shear 
rate at the nozzle wall, the ideal viscosity for material flow, the critical buckling stress, extru-

date swelling and sintering characteristics. For stereolithography, a contrasting AM technique, 
rheology is a requisite for ensuring the resin possesses the ideal viscosity, as well as attaining 
information regarding the curing characteristics and mechanical properties of the cured resin.

Polymeric Additive Manufacturing: The Necessity and Utility of Rheology
http://dx.doi.org/10.5772/intechopen.77074

57



Author details

Mohammed Elbadawi

Address all correspondence to: elbadawi.moe@gmail.com

Pharmaceutical Science and Biomaterials Research Group, Division of Medical Sciences, 
Department of Health Sciences, Luleå University of Technology, Luleå, Sweden

References

[1] Son Y. Determination of shear viscosity and shear rate from pressure drop and flow rate 
relationship in a rectangular channel. Polymer (Guildf) [Internet]. 2007;48(2):632-637. 
DOI: 10.1016/j.polymer.2006.11.048

[2] Boetker J, Water JJ, Aho J, Arnfast L, Bohr A, Rantanen J. Modifying release charac-

teristics from 3D printed drug-eluting products. European Journal of Pharmaceutical 
Sciences. 2016;90:47-52. DOI: 10.1016/j.ejps.2016.03.013

[3] Aho J, Boetker JP, Baldursdottir S, Rantanen J. Rheology as a tool for evaluation of 
melt processability of innovative dosage forms. International Journal of Pharmaceutics 
[Internet]. 2015;494(2):623-642. DOI: 10.1016/j.ijpharm.2015.02.009

[4] Ren X, Shao H, Lin T, Zheng H. 3D gel-printing—An additive manufacturing method 
for producing complex shape parts. Material Design [Internet]. 2016;101:80-87. DOI: 
10.1016/j.matdes.2016.03.152

[5] Giovanni P, Gabriele N, Gianmarco G, Marinella L, Stefano T. UV-assisted three-
dimensional printing of polymer nanocomposites based on inorganic fillers. Polymer 
Composition [Internet]. 2017 Aug 8;38(8):1662-1670. DOI: 10.1002/pc.23735

[6] Lobe VM, White JL. An experimental study of the influence of carbon black on the rheo-

logical properties of a polystyrene melt. Polymer Engineering and Science [Internet]. 
2004 Aug 25;19(9):617-624. DOI: 10.1002/pen.760190905

[7] Cox WP, Merz EH. Correlation of dynamic and steady flow viscosities. Journal of Polymer 
Science [Internet]. 1958 Apr 1;28(118):619-622. DOI: 10.1002/pol.1958.1202811812

[8] Coblas D, Broboana D, Balan C. Correlation between large amplitude oscillatory shear 
(LAOS) and steady shear of soft solids at the onset of the fluid rheological behavior. 
Polymer (Guildf) [Internet]. 2016;104:215-226. DOI: 10.1016/j.polymer.2016.06.003

[9] Graham MD. Wall slip and the nonlinear dynamics of large amplitude oscillatory shear 
flows. Journal of Rheology (N Y N Y) [Internet]. 1995;39(4):697-712. DOI: 10.1122/1.550652

[10] Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, et al. A review of nonlin-

ear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear 

Polymer Rheology58



(LAOS). Progress in Polymer Science [Internet]. 2011;36(12):1697-1753. DOI: 10.1016/j.
progpolymsci.2011.02.002

[11] Sriram R, Gang Q, Natesan V, Ahmad S, DS C. Powder processing, rheology, and 
mechanical properties of feedstock for fused deposition of Si3N4 ceramics. Journal of 
American Ceramic Society [Internet]. 2004 Dec 20;83(7):1663-1669. DOI: 10.1111/j.1151-
2916.2000.tb01446.x

[12] Zhang F, McGinity JW. Properties of sustained-release tablets prepared by hot-melt 
extrusion. Pharmaceutical Development and Technology [Internet]. 1999 Jan 1;4(2):241-
250. DOI: 10.1081/PDT-100101358

[13] Smallman RE, Bishop RJ. Chapter 11 - Plastics and Composites BT - Modern Physical 
Metallurgy and Materials Engineering. 6th ed. Oxford: Butterworth-Heinemann; 1999. 
pp. 351-375. DOI: 10.1016/B978-075064564-5/50011-2

[14] Diban N, Haimi S, Bolhuis-Versteeg L, Teixeira S, Miettinen S, Poot A, et al. Development 
and characterization of poly(ε-caprolactone) hollow fiber membranes for vascular tis-

sue engineering. Journal of Membrane Science [Internet]. 2013;438:29-37. DOI: 10.1016/j.
memsci.2013.03.024

[15] Monzón MD, Gibson I, Benítez AN, Lorenzo L, Hernández PM, Marrero MD. Process 
and material behavior modeling for a new design of micro-additive fused deposition.  
International Journal of Advanced Manufacture Technology [Internet]. 2013 Aug;67 
(9):2717-2726. DOI: 10.1007/s00170-012-4686-y

[16] Rimington RP, Capel AJ, Christie SDR, Lewis MP. Biocompatible 3D printed polymers 
via fused deposition modelling direct C2C12 cellular phenotype in vitro. Lab Chip 
[Internet]. 2017;17(17):2982-2993. DOI: 10.1039/C7LC00577F

[17] Gomes ACO, Soares BG, Oliveira MG, Pessan LA, Paranhos CM. Influence of compati-
bilizer content on PA/NBR blends properties: Unusual characterization and evaluation 
methods. Journal of Applied Polymer Science [Internet]. 2013 Feb 5;127(3):2192-2200. 
DOI: 10.1002/app.37792

[18] Tanner RI. A theory of die-swell. Journal of Polymer Science Part A-2 Polymer Physics 
[Internet]. 1970 Dec 1;8(12):2067-2078. DOI: 10.1002/pol.1970.160081203

[19] Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG. Fine lattice structures fabricated 
by extrusion freeforming: Process variables. Journal of Material Processing Technology 
[Internet]. 2009;209(10):4654-4661. DOI: 10.1016/j.jmatprotec.2008.11.039

[20] Lu X, Lee Y, Yang S, Hao Y, Evans J, Parini C. Extrusion freeforming of millimeter wave 
electromagnetic bandgap (EBG) structures. Rapid Prototype Journal [Internet]. 2009 Jan 
16;15(1):42-51. DOI: 0.1108/13552540910925054

[21] Murphy CA, Collins MN. Microcrystalline cellulose reinforced polylactic acid biocom-

posite filaments for 3D printing. Polymer Composite [Internet]. 2016 May 1;n(a-n):a. 

DOI: 10.1002/pc.24069

Polymeric Additive Manufacturing: The Necessity and Utility of Rheology
http://dx.doi.org/10.5772/intechopen.77074

59



[22] Mackley MR, Marshall RTJ, Smeulders JBAF, Zhao FD. The rheological characterization 
of polymeric and colloidal fluids. Chemical Engineering Science [Internet]. 1994;49(16): 

2551-2565. DOI: 10.1016/0009-2509(94)E0082-2

[23] Banerjee SS, Kumar KD, Bhowmick AK. Distinct melt Viscoelastic properties of novel 
nanostructured and microstructured thermoplastic elastomeric blends from polyamide 
6 and fluoroelastomer. Macromolecular Material Engineering [Internet]. 300(3):283-290. 
DOI: 10.1002/mame.201400264

[24] Threepopnatkul P, Teppinta W, Sombatsompop N. Effect of co-monomer content on rhe-

ological property of sawdust/ABS composites. Advanced Material Research [Internet]. 
2010;93-94:611-614. DOI: 10.4028/www.scientific.net/AMR.93-94.611

[25] Yang Q, Chung T-S, Weber M, Wollny K. Rheological investigations of linear and hyper-

branched polyethersulfone towards their as-spun phase inversion membranes’ differ-

ences. Polymer (Guildf) [Internet]. 2009;50(2):524-533. DOI: 10.1016/j.polymer.2008.11.039

[26] Koopmans RJ. Extrudate swell of high density polyethylene. Part II: Time dependency 
and effects of cooling and sagging. Polymer Engineering Science [Internet]. 1992 Dec 
1;32(23):1750-1754. DOI: 10.1002/pen.760322303

[27] Aho J, Boetker J, Baldursdottir S. Rheology as a tool for evaluation of melt processability 
of innovative dosage forms. International Journal of Pharmaceutics [Internet]. 2015 Oct 
30 [cited 2017 Oct 20];494(2):623-642. DOI: 10.1016/j.ijpharm.2015.02.009

[28] Münstedt H, Schwarzl FR. Linear viscoelastic deformation behavior in simple shear. In: 
Deformation and Flow of Polymeric Materials [Internet]. Berlin, Heidelberg: Springer 
Berlin Heidelberg; 2014. pp. 121-187. DOI: 10.1007/978-3-642-55409-4_5

[29] den Doelder CFJ, Koopmans RJ. The effect of molar mass distribution on extrudate swell 
of linear polymers. Journal of Nonnewtonian Fluid Mechanics [Internet]. 2008;152(1):195-
202. DOI: 10.1016/j.jnnfm.2007.04.005

[30] Zheng H, Wang G, Zhou C, Yu W, Zhang H. Computer-aided optimization of the 
extrusion process of automobile rubber seal. Journal of Macromolecular Science Part A 
[Internet]. 2007 Mar 1;44(5):509-516. DOI: 10.1080/10601320701235552

[31] Münstedt H, Schwarzl FR. Rheological properties and molecular structure. In: Defor-
mation and Flow of Polymeric Materials [Internet]. Berlin, Heidelberg: Springer Berlin 
Heidelberg; 2014. pp. 419-452. DOI: 10.1007/978-3-642-55409-4_13

[32] Handge UA, Zeiler R, Dijkstra DJ, Meyer H, Altstädt V. On the determination of elastic 
properties of composites of polycarbonate and multi-wall carbon nanotubes in the melt. 
Rheologica Acta [internet]. 2011 Jun;50(5):503. DOI: 10.1007/s00397-011-0558-x

[33] Münstedt H, Schwarzl FR. Shear rheology. In: Deformation and Flow of Polymeric 
Materials [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 363-386. 
ADOI: 10.1007/978-3-642-55409-4_11

Polymer Rheology60



[34] Huang SX, Lu CJ. Stress relaxation characteristics and extrudate swell of the IUPAC-
LDPE melt. Journal of Nonnewtonian Fluid Mechanics [Internet]. 2006;136(2):147-156. 
DOI: 10.1016/j.jnnfm.2006.03.013

[35] Konaganti VK, Ansari M, Mitsoulis E, Hatzikiriakos SG. The effect of damping function 
on extrudate swell. Journal of Nonnewtonian Fluid Mechanics [Internet]. 2016;236:73-82. 
DOI: 10.1016/j.jnnfm.2016.08.007

[36] Kiriakidis DG, Park HJ, Mitsoulis E, Vergnes B, Agassant J-F. A study of stress distribu-
tion in contraction flows of an LLDPE melt. Journal of Nonnewtonian Fluid Mechanics 
[Internet]. 1993;47:339-356. DOI: 10.1016/0377-0257(93)80057-I

[37] Guillet J, Seriai M. Quantitative evaluation of extrudate swell from viscoelastic properties 
of polystyrene. Rheologica Acta [Internet]. 1991;30(6):540-548. DOI: 10.1007/BF00444372

[38] Rosato D, Rosato D. 2 - Design Optimization BT - Plastics Engineered Product Design. In 
Amsterdam: Elsevier Science; 2003. pp. 46-160. DOI: 10.1016/B978-185617416-9/50003-X

[39] Kamath VM, Mackley MR. The determination of polymer relaxation moduli and mem-

ory functions using integral transforms. Journal of Nonnewtonian Fluid Mechanics 
[Internet]. 1989;32(2):119-144. DOI: 10.1016/0377-0257(89)85032-3

[40] Porter D. Combining molecular and continuum mechanics concepts for constitutive 
equations of polymer melt flow. Journal of Nonnewtonian Fluid Mechanics [Internet]. 
1997;68(2):141-152. DOI: 10.1016/S0377-0257(96)01516-9

[41] Garcia-Rejon A, DiRaddo RW, Ryan ME. Effect of die geometry and flow characteris-
tics on viscoelastic annular swell. Journal of Nonnewtonian Fluid Mechanics [Internet]. 
1995;60(2):107-128. DOI: 10.1016/0377-0257(95)01384-X

[42] Polacco G, Stastna J, Biondi D, Zanzotto L. Relation between polymer architecture and 
nonlinear viscoelastic behavior of modified asphalts. Current Opinion in Colloidal 
Interface Science [Internet]. 2006;11(4):230-245. DOI: 10.1016/j.cocis.2006.09.001

[43] Ganvir V, Gautham BP, Pol H, Bhamla MS, Sclesi L, Thaokar R, et al. Extrudate swell of 
linear and branched polyethylenes: ALE simulations and comparison with experiments. 
Journal of Nonnewtonian Fluid Mechanics [Internet]. 2011;166(1):12-24. DOI: 10.1016/j.
jnnfm.2010.10.001

[44] Tam KC, Ng WK, Jenkins RD. Non-linear shear deformation of hydrophobically modi-
fied polyelectrolyte systems. Polymer (Guildf) [Internet]. 2006;47(19):6731-6737. DOI: 
10.1016/j.polymer.2006.07.051

[45] Osaki K. On the damping function of shear relaxation modulus for entangled polymers. 
Rheologica Acta [Internet]. 1993 Sep;32(5):429-437. DOI: 10.1007/BF00396173

[46] Bellehumeur C, Li L, Sun Q, Gu P. Modeling of bond formation between polymer fila-
ments in the fused deposition modeling process. Journal of Manufacturing Processes 
[Internet]. 2004;6(2):170-178. DOI: 10.1016/S1526-6125(04)70071-7

Polymeric Additive Manufacturing: The Necessity and Utility of Rheology
http://dx.doi.org/10.5772/intechopen.77074

61



[47] Cole DP, Riddick JC, Iftekhar Jaim HM, Strawhecker, KE, Zander NW. Interfacial 

mechanical behavior of 3D printed ABS. Journal of Applied Polymer Science [Internet]. 
2016 Apr;133(30):20. DOI: 10.1002/app.43671

[48] Sun Q, Rizvi GM, Bellehumeur CT, Gu P. Effect of processing conditions on the bond-

ing quality of FDM polymer filaments. Rapid Prototype Journal [Internet]. 2008 Mar 
28;14(2):72-80. DOI: 10.1108/13552540810862028

[49] Hashemi Sanatgar R, Campagne C, Nierstrasz V. Investigation of the adhesion proper-

ties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM 
printing process parameters. Applied Surface Science [Internet]. 2017;403:551-563. DOI: 
10.1016/j.apsusc.2017.01.112

[50] Landa M, Fernandez M, Munoz ME, Santamaria A. The effect of flow on the physical 
properties of polyurethane/carbon nanotubes nanocomposites: Repercussions on their 
use as electrically conductive hot-melt adhesives. Polymer Composition [Internet]. 2014 
Mar 29;36(4):704-712. DOI: 10.1002/pc.22989

[51] Hinczewski C, Corbel S, Chartier T. Stereolithography for the fabrication of ceramic 
three- dimensional parts. Rapid Prototype Journal [Internet]. 1998 Sep 1;4(3):104-111. 
DOI: 10.1108/13552549810222867

[52] PD K, Hosein SA, Michael L, Biao Z, Qi G, Shlomo M. Highly stretchable and UV curable 
Elastomers for digital light processing based 3D printing. Advanced Material [Internet]. 
2017 Feb 7;29(15):1606000. DOI: 10.1002/adma.201606000

[53] Shepherd BNP, TJW, HZ, RF. 3D printing antagonistic systems of artificial muscle 
using projection stereolithography. Bioinspiration and Biomimetics [Internet]. 2015; 
10(5):55003. DOI: 10.1088/1748-3190/10/5/055003

[54] Wu H, Cheng Y, Liu W, He R, Zhou M, Wu S, et al. Effect of the particle size and the 
debinding process on the density of alumina ceramics fabricated by 3D printing based 
on stereolithography. Ceramics International [Internet]. 2016;42(15):17290-17294. DOI: 
10.1016/j.ceramint.2016.08.024

[55] Thavornyutikarn B, Tesavibul P, Sitthiseripratip K, Chatarapanich N, Feltis B, Wright 
PFA, et al. Porous 45S5 bioglass®-based scaffolds using stereolithography: Effect of par-

tial pre-sintering on structural and mechanical properties of scaffolds. Materials Science 
and Engineering: C. 2017;75:1281-1288. DOI: 10.1016/j.msec.2017.03.001

[56] Hsiao LC, Badruddoza AZM, Cheng L-C, Doyle PS. 3D printing of self-assembling ther-

moresponsive nanoemulsions into hierarchical mesostructured hydrogels. Soft Matter 
[Internet]. 2017;13(5):921-929. DOI: 10.1039/C6SM02208A

[57] Faers MA, Choudhury TH, Lau B, McAllister K, Luckham PF. Syneresis and rheology of 
weak colloidal particle gels. Colloids Surfaces A Physicochemical Engineering Aspects 
[Internet]. 2006;288(1):170-179. DOI: 10.1016/j.colsurfa.2006.03.031

[58] van Vliet T, van Dijk HJM, Zoon P, Walstra P. Relation between syneresis and rheological 
properties of particle gels. Colloidal Polymer Science [Internet]. 1991 Jun;269(6):620-627. 
DOI: 10.1007/BF00659917

Polymer Rheology62



[59] Esposito CC, Mariaenrica F, Domenico A. Rheological characterization of UV-curable 
epoxy systems: Effects of o-Boehmite nanofillers and a hyperbranched polymeric modi-
fier. Journal of Applied Polymer Science [Internet]. 2009 Jan 30;112(3):1302-1310. DOI: 
10.1002/app.29603

[60] Elbadawi M, Meredith J, Hopkins L, Reaney I. Progress in bioactive metal and, ceramic 
implants for load- bearing application. Advanced Techniques in Bone Regeneration 
[Internet]. Chapter 10. 2016 Aug 31:195-219. DOI: 10.5772/62598

[61] Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV. Preparation 
of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta 
Biomaterilia [Internet]. 2011;7(11):3850-3856. DOI: 10.1016/j.actbio.2011.06.039

[62] Killion JA, Geever LM, Devine DM, Kennedy JE, Higginbotham CL. Mechanical prop-

erties and thermal behaviour of PEGDMA hydrogels for potential bone regenera-

tion application. Journal of Mechanical Behavior of Biomedical Materials [Internet]. 
2011;4(7):1219-1227. DOI: 10.1016/j.jmbbm.2011.04.004

[63] Elbadawi M, Mosalagae M, Reaney IM, Meredith J. Guar gum: A novel binder for 
ceramic extrusion. Ceramics International. 2017;43:16727-16735. DOI: 10.1016/j.ceramint. 
2017.09.066

Polymeric Additive Manufacturing: The Necessity and Utility of Rheology
http://dx.doi.org/10.5772/intechopen.77074

63




