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Abstract

This chapter describes the history and development strategy of piezoelectric materials for
medical applications. It covers the piezoelectric properties of materials found inside the
human body including blood vessels, skin, and bones as well as how the piezoelectricity
innate in those materials aids in disease treatment. It also covers piezoelectric materials
and their use in medical implants by explaining how piezoelectric materials can be used as
sensors and can emulate natural materials. Finally, the possibility of using piezoelectric
materials to design medical equipment and how current models can be improved by
further research is explored. This review is intended to provide greater understanding of
how important piezoelectricity is to the medical industry by describing the challenges and
opportunities regarding its future development.

Keywords: piezoelectric materials, biotechnology, biomedical applications and devices,
vital signs, sensors, cell regeneration

1. Introduction

Piezoelectricity is a quality of material asymmetry that leads to the conversion of electric

signals into physical deformation and conversely physical deformation into electric signal. An

applied pressure causes movement of the dipole moment within the material, and a flow of

charges if crystals are aligned [1]. This makes piezoelectricity useful for a variety of industry

purposes, particularly those related to vibrational generation and actuation. Commercialized

applications for piezoelectricity include timekeeping using quartz resonance, microphones,

radio antenna oscillators, speakers, hydrophones, and fuel injection [2, 3]. More experimental

technology includes energy harvesting and electronic sensing [2]. The most commonly used

ceramic piezoelectric material is lead zirconium titanate (PZT), because its physical properties

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



can be tailored by composition, it has a high piezoelectric coefficient, and it is cheap to

manufacture [4]. The most common piezoelectric polymer, used for its large strain value, is

polyvinylidene fluoride (PVDF) and its copolymers, such as P(VDF-TrFE) [5–8]. A wide variety

of composites and nanostructure materials have also been developed and can be fabricated as

thin films, discs, or stacked sheets [2, 3, 9–13].

In the case of biomedical engineering, many conventional means of using piezoelectric devices

are not applicable because of the structure of biological systems. Issues such as size limitations,

biological compatibility, and flexibility have led to investigation into polymer, composite,

nanostructured, and lead-free piezoelectric materials. One way to develop biomedical devices

is to look at the piezoelectric structures inside the body and how they can be emulated to

develop piezoelectric medical technology. In the first section of this book, we discuss piezo-

electric materials present in the body. Then we describe how piezoelectric materials can be

used for diagnosing illnesses and providing medical treatment. Our purpose is to inform the

readers of challenges and different approaches applicable to developing a wide variety of

medical technology.

2. Biological piezoelectric materials

There are many reviews which cover subsections of biological piezoelectric materials; these

reviews explain topics such as piezoelectricity in bone [14] or biopolymers [15]. However, we

seek to present a broader overview of the topic and how it can be used to develop technology.

Much of the original work on discovering piezoelectricity in the body was done by Eiichi

Fukada [15–18]. His work showed the presence of piezoelectricity in bone, aorta, muscles,

tendons, and intestines [15–18]. Since that time, many further studies have contributed to the

overall knowledge of the body’s piezoelectric characteristics, their origins, and how they can

be applied in medical science.

The organic piezoelectric effects in the human body are attributed to the lack of symmetry in

most biological molecules, which may make piezoelectricity a fundamental biological prop-

erty [19]. In particular, proteins seem to drive the piezoelectric qualities of most organs. The

basic building blocks of proteins within the human body are amino acids. These make up

molecules such as collagen, keratin, and elastin which are highly prevalent in the organs

examined by Fukada and other researchers [15–18]. Amino acids in pure form have their

own piezoelectric properties due to the presence of dipoles derived from the polar side

groups seen in Figure 1. It is the reorientation and change in dipole moments in biological

macromolecules under stress that gives them piezoelectric properties [20, 21]. At least 15

amino acids, mostly the “L” form, exhibit piezoelectric properties; however, γ-glycine and

DL-alanine are the strongest amino acid piezoelectrics [22]. Most racemic, or DL mixtures of

amino acids do not show piezoelectric properties because their crystal forms are centrosym-

metric [23].
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Other biological piezoelectric materials include polymeric L-lactic acid, DNA, and the M13 bacte-

riophage [25–27]. Like amino acids, the piezoelectric properties of lactic acid come from the

carbon–oxygen double bond [25]. DNA’s piezoelectric properties originate from internal rotation

of the dipoles created by phosphate groups; however, they were primarily observed at lower

water content, which makes the bonds holding the DNA helix together weaker [27]. This demon-

strates the importance of bonding, structure, and experimental conditions when determining

piezoelectric properties. The M13 bacteriophage’s piezoelectric effect is caused by extruding pro-

teins and it can be fabricated into thin films that exhibit strengths of 7.8 pm/V [26].

Like the bacteriophage, many organs contain macromolecules which give them piezoelectric

properties. Organs with piezoelectric properties can be viewed as amorphous organic material

containing structured fibers which give them their piezoelectric properties [19, 28]. Often these

fibrils will grow in a helix shape, preventing them from having centrosymmetric symmetry

[29]. The overall strength of the piezoelectric effect will depend on the ordering, quantity or

composition of these fibers. Bones and tendons have hexagonal symmetry and contain the

following piezoelectric constant dij in the form of Eq. (1) [30]. In this tensor, the “i” subscript

represents direction of electric field displacement and the “j” subscript represents the mechan-

ical deformation associated with it [31].

dij ¼

0 0 0 d14 d15 0

0 0 0 d15 �d14 0

d31 d32 d33 0 0 0

0

B

@

1

C

A
(1)

Molecular structure within the organ changes the organ’s overall piezoelectric nature. For

example, examination of the epidermis, horny layer, and dermis of the skin revealed that each

layer had its own piezoelectric coefficient, the highest being the horny layer. The dermis had a

less ordered collagen layer; the horny layer had parallel keratin filaments, and the epidermis α

helical keratin tonofibrils [28]. The structure of the keratin horny layer simplified its ability to

produce piezoelectric tensors, giving them the form of Eq. (2). The values of piezoelectric

coefficients varied based on temperature; however, the highest were seen in the horny layer,

on the order of 0.1–0.2 pC/N. The lack of consistency in these measurements is due to the

variety in how the molecules were ordered in each sample [28].

Figure 1. The general structure of amino acids. Reprinted and altered from Ref. [24].
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dij ¼

0 0 0 d14 0 0

0 0 0 0 �d14 0

0 0 0 0 0 0

0

B

@

1

C

A
(2)

Similarly, piezoresponse force measurements (PFM) studies of collagen proved that collagen is

the main source of piezoelectricity in the bone and reveal different ordering of collagen fibers

results in different piezoresponses, as seen in Figure 2 [32]. In collagen, there are alternating

sections of overlap and gap regions. The collagen fibers are arranged in a staggered way that

result in the gap region having one less microfiber. In addition, the molecules in the gap region

have less uniform symmetry, and therefore that region does not have as high of a piezo-

response [32]. These two studies indicate the piezoelectric response is not merely dependent

on the molecular structure, but the structure of the entire organ. Table 1 gives a description of

organs with tested piezoelectric properties and their attributed molecule.

Despite many measurements, it is sometimes difficult for the scientific community to come to a

consensus on the exact nature and relevance of in situ piezoelectric characteristics. For exam-

ple, in the case of bone, two groups found contradicting results on the dependency of piezo-

electricity in terms of hydration [14, 37]. Some studies on the aorta indicate that it has

piezoelectric properties, though results were varied. Two studies, taken over forty years apart

showed different orders of magnitude for the studied properties [17, 38]. A lab attempting to

verify either of these studies found that there was no piezoelectric response from the aorta [39].

Figure 2. The images show (a) the topology of the collagen and (b) the piezoresponse force microscopy (PFM) image

where the collagen can be distinguished from the surrounding tissues and how the gap and overlap regions differ in

piezoelectric response. Reprinted from Minary-Jolandan and Yu [32] with permission from ACS Publications.
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Historically, piezoelectric potentials were thought to explain Wolff’s Law, the fact that bone is

strong in areas that are subject to greater amounts of stress [40]. However, later research proved

streaming potentials, fluid and ions driven by mechanical loading, may have a greater impact in

determining bone properties [41]. However, Ahn et al. suggest that piezoelectricity could gener-

ate charges that affect the screening potential and the two work in conjunction to promote bone

development, a concept which requires experimental testing to verify [40]. Furthermore, the

generation of electric fields has been shown to increase bone healing during fracture [42, 43].

Despite the variety of results concerning piezoelectric qualities of the body, they do help in

understanding the body’s mechanics and how we can develop solutions for human problems.

Even if the exact purpose for piezoelectric properties in the body is not known, they still can be

used for developing biomedical solutions on both microscopic and macroscopic levels. For

example, knowing that amino acids and macromolecules composed of them have piezoelectric

properties has inspired the use of biomaterials for human sensors [44]. Using peptides to build

piezoelectric sensors eliminates the need for developing other biocompatible materials. For

example, the knowledge of previously mentioned virus, M13, led to the alignment of its phages

into nanopillars for enhanced piezoelectric properties [45]. The outer hair cell is another structure

that piezoelectric properties can be attributed to. Disruption of the cell’s electrical potential alters

its length; conversely, compression of the cell alters its membrane potential [46]. The motions of

the outer hair cell alter how the organ of Corti vibrates, and changes how the inner hairs receive

stimulation [36]. Recently, the development of a piezoelectric cochlear implant to mimic the

conversion of sound vibration into an electrical signal has been undertaken and will be covered

in a later section of this review [47]. Biological structures can serve as examples for the develop-

ment of piezoelectric structures and biocompatible piezoelectric materials.

In addition, the knowledge of piezoelectric properties can help in disease detection or injury

analysis. With the knowledge that piezoelectric tissue properties are determined by proteins,

diseases that affect the amount or distribution of these proteins can be detected by piezo-

electric sensors. One group proposed that the electromechanical coupling factor, controlled

by collagen, could aid in detecting breast cancer [35]. A similar idea was presented for the

Organ Piezoelectric molecule

Muscle Actin and myosin [18]

Hair Keratin [16]

Bone Collagen [32]

Tendon Collagen [33]

Lung tissue Elastin [34]

Skin (dermis) Collagen [28]

Skin (horny layer and epidermis) Keratin [28]

Breast tissue Collagen [35]

Outer hair cell Prestin [36]

Table 1. Tissues with piezoelectric properties and driving source of piezoelectricity.
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detection of atherosclerosis in the aorta, however as mentioned in a prior paragraph the

validity of the aorta’s piezoelectric nature is still under debate [48]. In this paper, they

claimed the PFM amplitude increased as a function of advancing atherosclerosis and could

help with early detection of the disease.

Finally, once the effect of piezoelectricity on the body have been studied, piezoelectric mate-

rials can be used to promote disease healing. Though the exact reason for piezoelectric quali-

ties have not been fully discovered, studies into bone related injuries have revealed that

induced electrical fields can accelerate bone repair and promote the growth of neurons [49,

50]. Because of this, increasing the piezoelectric properties of a synthetic bone material has

potential to increase the speed of osteoconduction and subsequently bone repair [51]. Lead free

ceramics can be used in conjunction with synthetic bone; however, these materials have

problems with ion diffusion which can be controlled by embedding in a ceramic or polymer

matrix [50]. In terms of regenerating damaged bone or cartilage, a piezoelectric scaffold may

provide the necessary stimulation for cell regrowth, and diminish the need for other growth

factors [43]. Typically, scaffolds are made out of polymers, such as PVDF, and can also promote

the growth of neurons and wound healing [50].

3. Piezoelectric medical devices

Many biomedical piezoelectric applications exceed the aforementioned purposes of mimicking

or employing biological piezoelectric phenomena. In some cases, the choice of material

depends mostly on the strength of the piezoelectric effect and the cost of the material. PZT

(lead zirconium titanate) and quartz are common piezoelectric materials used in industry. PZT

is cheaper, has higher piezoelectric coupling coefficients, and can be manipulated by changing

the composition. Quartz, however, is more stable and has consistent properties over a broader

temperature range [4]. Developing implants or technology involving direct human contact has

more constraints. Ceramics, like quartz, barium titanate, and potassium sodium niobate, are

more biocompatible because they do not contain lead [50]. In addition, many biomedical

devices require higher flexibility than ceramics can provide, due to the dynamic nature of

human motion. Biocompatible polymers include most biological materials and PVDF copoly-

mers. So far, polymer applications of PVDF have included, but are not limited to, biomechan-

ical energy harvesting systems, sensors, and wound scaffolds [50, 52]. The piezoelectric

coefficient of the beta phase of PVDF is listed in Eq. (3) [53].

dij ¼

0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

0

B

@

1

C

A
(3)

3.1. Piezoelectric sensors

Piezoelectric materials can be employed in monitoring many bodily signals because they convert

mechanical energy into an electrical signal. They are especially applicable to monitoring dynamic

pressure changes; many human vital signs consist of rhythmic activities like the heartbeat or
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breathing. Lower pressure systems from (1 Pa-10 kPa) include sound waves and tactile sensing.

In the higher end of that range are intraocular pressure and cranial pressure. Higher-pressure

systems (10 kPa–100 kPa) correspond to blood pressure measurements and some bodily move-

ments. Piezoelectric sensors can be tailored by structure or material to match the pressure range

of the desired quality [54]. Implanted or wearable medical sensors have greater applicability, as

the Internet of Things becomes more fully developed. A medical professional or computer

algorithm can monitor a patient for early warning signs that may have been missed between

scheduled check-ups through their implanted device [55]. Table 2 lists some literature studies of

piezoelectric sensors and their tested applications.

The variety of applications for piezoelectric sensors in the biomedical industry is promising,

however much of this technology is still in the research and development phase. Before reaching

the market, these devices need to have scalable manufacturing and guaranteed quality for every

device [52].

3.1.1. Developing synthetic skin

A specific application for piezoelectric pressure sensing is synthetic skin. As a bare minimum,

synthetic skin should provide the magnitude of contact force and approximate location of

Material Applications Device characteristics Refs.

Prawn cell Wrist pulse 100 Hz�10 MHz range [56]

PVDF Human voice detection

Hand motion

Breathing rate

50–1000 Hz range [57]

(Na0.5,K0.5)NbO3 (NKN) thin

film

Cardio mechanical electric sensor 10 Hz resonance [58]

PVDF Wrist pulse

Measuring peripheral arterial pressure

pulse

[59]

AlN Heart and respiration patterns for sleep

apnea

Tested over 0.1–10 Hz [60]

PVDF Heartbeat and respiration detection Tested 0.1–2 Hz [61]

Fish gelatin Joint movement

Human vocal cord movement

Radial artery pulses

d33–20 pm/V

Stability over 108,000 cycles

[62]

PZT Eye fatigue via eyelid motion [63]

Poly-L-lactic acid Lung pressure

Eye pressure

Brain pressure

Biodegradable

Stability over 108,000 cycles

[64]

Piezoelectric ceramic Vision correction Force sensitivity 0.1 � 10�2 N to

5 � 10�2 N

0.01–5 Hz

[65]

PVDF Food detection by swallowing pattern Limit of detection: 1 Hz

Tested over 1–5 Hz

[66]

Table 2. Examples of piezoelectric sensors and their applications.
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contact with the sensitivity of normal skin [53]. For humans, mechanoreceptors have a range

from 3 to 400 Hz, and a spatial resolution of 1–2 mm [67]. Ideally, it would also provide

information about temperature changes or humidity [68]. Human skin itself acts as a vibra-

tional sensor; it is structured to amplify tactile stimulation [69]. Piezoelectric force transducers

offer a solution to quantifying and locating contact forces [53]. The use of polymers for

synthetic skin is popular because of their similarity in texture and flexibility to human skin

[70]. Polymers can be molded to emulate human characteristics, such as fingerprints to

enhance their sensitivity [69]. Processing techniques, such as electrospinning, can increase

response by aligning the molecular dipoles [25]. In a similar way, using hybrid materials or

structuring ceramics and polymers can yield higher piezoelectric properties [71, 72].

Though there are many materials, which can be used for this purpose, most are structured in

arrays. A unit in the array will send an electrical signal describing the characteristic of the

force. In prosthetics, the electric signal will arrive at a location which still can perceive tactile

senses [53]. One of the problems with arrays is interference between signals, otherwise known

as crosstalk. During crosstalk, neighboring units are affected by the unit undergoing force and

send their own signal. This can lead to an ill-defined contact region, which can be fixed using

the installation of transistors or through triangulation of the signal [53, 68].

3.1.2. Biological quartz microbalance

One other interesting application of piezoelectric sensors is the detection of disease or odor through

a change in chemical composition of a sensor. The quartz microbalance is used for a variety of

purposes, such as gas detection [73], composition analysis, and chirality classification [74]. It can

also sense changes in liquid density or viscosity [75]. This method relies on mass changes in a

coating film around the crystal. Quartz microbalances generally operate in a 5–10 MHz range; the

accumulation of mass can be quantified by the Sauerbrey equation (Eq. (4)) [75, 76]. An increase in

mass indicates a decrease in the frequency of quartz vibration [76]. When this mass becomes too

great (>2%) this relationship becomes inaccurate, and a better approximation is needed [74]. In this

type of sensor, biological molecules are imbedded or attached to piezoelectric materials. This

technology can also be used for detection of bacteria and biomolecules.

Δf

f 0
¼ �

Δm

m
(4)

The detection of bacteria or biomolecules usually involves the incorporation of a biomolecule

in an exterior film. One method of detecting glucose uses the enzyme hexokinase embedded in

a polymer matrix. The glucose binds to the enzymes at a rate proportional to its concentration

in solution [77]. In another glucose detection system, the frequency of the quartz was

increased. The sensor was coated with dextran and Concanavalin A. The dextran preferentially

binds to the glucose, therefore the presence of glucose causes the release of Concanavalin A.

Glucose has a lower molecular weight, and therefore the frequency increased with its detach-

ment. This method of glucose detection is advantageous because it does not involve the use of

enzymes; however has a lower detection range [78]. The quartz microbalance may also be

applicable to developing bioelectronic olfactory replacements. It has been used to detect
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hazardous odorants such as diacetyl, which can cause damage to the lung if inhaled, and could

be used to measure other odors [79]. Unfortunately, some of the quartz microbalance equip-

ment is bulky and requires complicated molecules as indicators. One of the olfactory biosen-

sors is 14 mm in diameter [80]. If the synthetic nose to be used for many compounds, the size

may be too large to be practical. In addition, sensors based on biomolecules, such as the

glucose have problems with biological stability [78]. These problems need to be fixed before

they can be viewed as commercially viable.

3.1.3. Cochlear implants

The destruction of inner ear cells results in severe hearing loss and is most commonly treated

by cochlear implants. Though the current technology allows for recovery from deafness, it is

incompatible with water and has very high-power requirements [81]. Piezoelectric materials

can be used for creating an artificial basilar membrane (ABM). The membrane performs

mechanical frequency selectivity for the cochlea. Varying physical rigidity and thickness of

the basilar membrane allows it to perform its duty, and likewise piezoelectric materials can

filter out frequency based on their physical properties [82]. Ceramics, such as PZT or AlN

films, can be fabricated in beam or cantilever arrays with lengths corresponding with different

resonance frequencies [81, 83]. Alternatively, devices based on PVDF or P(VDF-TrFE) mem-

branes have been fabricated [47, 83–85]. The typical range of human hearing is 20 Hz–20 kHz.

The fabricated PVDF membrane was able to detect signals in the 100 Hz–10 kHz range, which

encompasses the range of human vocalizations [84]. Many experimental cochlear ABMs need

increased sensitivity, stability, and size reduction to be practically used [83].

3.2. Beyond sensors

3.2.1. Piezoelectric surgery

In addition to creating implants, piezoelectricity can be used in a variety of medical treatments,

most of which depend on the vibrational properties of the piezoelectric device. Unlike

implanted devices, piezoelectric devices needed for surgery do not need to be biocompatible,

because they do not come in contact with human cells. Therefore, many external devices will

make use of lead zirconate titanate (PZT), as it is easier to produce [86]. The typical

piezosurgical devices will consist of stacked rings which are given an applied voltage. The

stacked actuator design increases the actuator efficiency because the electric field is determined

by the applied voltage and the thickness (Eq. (5)) [87]. The strain is proportional to the electric

field if the thickness of the actuator is decreased, a higher strain can be generated for the same

amount of voltage.

E ¼

V

t
(5)

The resulting vibration will be transduced to the tip, which is installed in such a way that it

will amplify vibrations, because traditionally ceramics are more brittle and do not display

much displacement [88].
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In surgery, piezoelectric devices, such as the ultrasonic lancet, are used for delicate operations

to preserve surrounding tissue. By controlling the micromovements of the oscillating device,

damage to soft tissues can be avoided, and the separation between interfaces is easily accom-

plished. Alternatives to piezosurgery, such as a chisel and hammer or rotating saw are seen as

more invasive, have potential to lacerate non-discriminatorily [89]. Hard tissues, such as

mineralized bones are damaged by frequencies of 25–39 kHz, however neurovascular tissue

is cut at frequencies higher than 50 kHz. There are no macrovibrations which may cause

discomfort to the patient or disturbance of surrounding tissue [90]. The tip oscillates in a linear

direction, and can span the distance of 60–200 μm [86].

The first use of piezosurgery was the dental industry, with applications like removal of implants,

bone harvesting, and inferior alveolar nerve detachment [91]. Many such surgeries require work-

ing in small spaces and do not require larger incisions on the bone material. The removal of

implants takes advantage of how the ultrasonic vibrations target the interfacial layer, and weaken

the implant’s attachment to bone. This reduces the adhesion forces and allows the implant to be

removed with fewer incisions. In a similar way, the collection of graft material is another excellent

use of an ultrasonic lancet. After making preliminary cuts with a saw, the ultrasonic vibrations

reduce the need for chisel strikes [91]. In surgery performed on the lower jawline, protecting the

inferior alveolar nerve is important to patient recovery [92]. As said previously, the use of

piezosurgery prevents the damage of these nerve tissues. Another benefit in all surgeries is particle

breakdown caused by ultrasonic activity, which makes visibility easier [92].

Piezosurgery has some other applications in neurosurgery and orthopedic surgery; however, it

is limited in equipment fragility and associated expenses [86, 90]. The tip of the device frac-

tures, creating the need for replacements [88]. It also takes longer to perform operations, and

can damage tissue through heating. Irrigation is required to keep the area cool, and larger scale

devices are used for macrosized surgeries [86].

3.2.2. Ultrasonic dental scaling

Apiezoelectric dental scalar also has piezoelectric ceramic rings (Figure 3) on the inside to induce

axial vibrations, and operates at ultrasonic frequencies [93]. Ultrasonic dental scalers operate in

the range of 25–50 kHz, and oscillate parallel to the tooth surface over a range of 10–100 μm [94].

Its purpose is to remove accumulated biofilms from the tooth surface and for treatment of root

canals. The vibrations of the tip break down the calculus (tartar) and plaque which have formed

on the tooth’s enamel surface. Because of the tip’s quick speed, when the irrigation water passes

over the scalar, micro- and nanosized bubbles form around its curve and tip [95, 96]. When these

Figure 3. The stacked actuator design and other components of an ultrasonic dental scaler. Reprinted from Engelke et al.

[93] with permission from Hindawi.
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bubbles collapse, cavitation forces create shock waves cleaning the tooth. This adds to the

ultrasonic scalar’s effectiveness, and further investigation of the cavitation’s effects could lead to

new dental technology which further reduces scaler contact with teeth [97].

The oscillation pattern of the scaler depends on the type of tip chosen [93] and the effectiveness

of the scaler varies depending on how it is used. Influencing factors can be the lateral force, tip

angle, and power setting [98]. Increasing the power on the ultrasonic scalar too much will

scratch a tooth’s protective enamel surface, increasing the tooth’s surface roughness and

causing damage to the surrounding tissues. The variety of ultrasonic scalers’ operating condi-

tions demonstrates the need for research on appropriate forces needed to remove dental tartar

without causing damage.

3.2.3. Microdosing

Microdosing is another application of piezoelectrics and has become popular because it con-

serves the amount of medication dispensed and can reduce discomfort by avoiding injections

[99, 100]. In some cases, an injected drug can be aerosolized in order to avoid injection. In this

case, piezoelectric vibrations can break the drug into fine particles which can be carried in an

air stream and inhaled by the patient [100]. In the case of solids, a stacked actuator design is

applicable by providing a single oscillation, rather than the consistent vibration of the previ-

ously mentioned ultrasonic devices. A glass tube is attached to the actuator and an electric

signal stimulates the actuator providing a force to the tube and displacing a certain amount of

the solid. Though the dispensing is very precise, it does have a minimum dosage and blockage

can occur in the glass tube [101].

Stacked actuators in fluid pumps can administer small single doses or a continuous flow [102].

Fluid administration, like those for eye drops, often require small single doses [99]. A more

complex form of controlled microdosing can be accomplished through a diaphragm pump

[103]. This is more suited for some dosing systems such as insulin dispensing. One pump

design places four chambers in series, with electrodes connecting the gate so they operate in

tandem. Here the voltage controls the degree of membrane fluctuation and the phase of the

material controls its direction [104]. An alternative design has parallel cylinders which are

filled and emptied according to a certain sequence. The number of steps in the sequence

determines the flow rate [105]. Though PZT is a popular material for biomedical pumps,

polymer actuators such as PVDF-TrFE have been used as well [106].

3.2.4. Energy harvesting

In order to have implantable sensors within the body, they need to have a convenient source of

energy. If the sensor is battery powered, future surgery will be required to extract and replace

the battery. This is a current problem with pacemakers and limits the number of sensors placed

after surgery. Energy harvesting through the body’s movement via piezoelectricity is one way

to avoid the need for battery incorporation or replacement. Energy harvesting from organs or

the human body requires specific considerations, the most important being biocompatibility.

Like implants, energy harvesting devices ideally should not contain hazardous chemicals, like

lead, or must be sealable [107]. In the field of energy harvesting, one of the key modes of

energy harvesting, a vibrating cantilever, is not as applicable to in situ biological energy
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harvesting because a vibrating cantilever has a very high resonance frequency for peak power

generation [108]. Though a cantilever’s resonance frequency can be changed by altering its

physical characteristics, such as adding a proof mass or increasing size [109], an implant needs

to be small as to avoid interference with organ function [108]. Typically, piezoelectric biomed-

ical harvesters will be thin films that target tiny irregular vibrations caused by normal organ

deformation [110]. A piezoelectric energy harvester provides an AC power source, and the

most energy is gained near the resonance frequency of the film [111]. This adds another

engineering constraint as biological motions usually have low natural frequencies. The human

heart beats at around 39 Hz and the frequency of someone walking is around 1 Hz [108, 112].

The energy harvesting element also has to be small, as large devices may impede the normal

function of human organs or cause discomfort.

Most implanted devices should have some degree of flexibility for use in the human body.

Both polymer and ceramic flexible devices can be adhered to consistently moving body parts

to provide a source of energy. This could include wrapping a piezoelectric film around a

pulsing artery or anchoring it to an expanding diaphragm, lung, or heart [108]. The heart, or

locations near it, are advantageous places to put an energy harvesting device because they

could power a pacemaker. Ceramic nanoribbons are usually attached to some flexible film

such as polyimide, polyethylene terephthalate, or polyethylene naphthalate. The ceramic com-

ponents, made of PMN-PT, PZT, or BaTiO3, are fabricated in small units and then transferred

to the flexible film [110]. PVDF and PVDF-TrFE thin films can also be used to fabricate energy

harvesters. These films have the advantage of being biocompatible and do not have to be

transferred onto a flexible matrix [113].

In replacement joints, stacked ceramic sheets are preferred for energy harvesting. Knee surgery

is a difficult process and complications can arise after surgery [112]. The replacement joint

can become imbalanced, and be subject to wear, loosening, or even fracture. The presence of

sensors in the replacement joint vicinity would allow doctors to study how to improve knee

replacements and detect problems with greater speed. The stacked actuator is the best design

for energy harvesting in implanted joints. These actuators do not need to be as flexible, because

the downward force from the knee is compressive, rather than stretching [114]. Prospective

locations for the actuators could be in the tibial component of the joint or in the polyethylene

cartilage imitation [112, 114].

The main limitations of piezoelectric energy harvesting are low efficiency and power output.

This is large concern with biomedical devices, because they often do not operate at the device’s

resonance frequency [115]. Another avenue of research focuses on enhancing the efficiency of

energy harvesting by mechanically scraping screening charges found on the surface of piezo-

electric materials [116–119].

4. Conclusion

The purpose of this book chapter has been to give an overview of piezoelectric in the biomed-

ical industry. We have described the piezoelectric properties of biological materials and how
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they can be used to develop disease treatment. We also covered piezoelectric materials used in

sensors, and other devices to explore the current industries which can be improved by further

research. By describing these challenges, we hope to bring greater understanding of how

important piezoelectricity is to the medical industry and the opportunities it has for future

development.
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