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Abstract

Bilevel optimization is a special kind of optimization where one problem is embedded
within another. The outer optimization task is commonly referred to as the upper-level
optimization task, and the inner optimization task is commonly referred to as the lower-
level optimization task. These problems involve two kinds of variables: upper-level variables
and lower-level variables. Bilevel optimization was first realized in the field of game theory
by a German economist von Stackelberg who published a book (1934) that described this
hierarchical problem. Now the bilevel optimization problems are commonly found in a
number of real-world problems: transportation, economics, decision science, business, engi-
neering, and so on. In this chapter, we provide a general formulation for bilevel disjunctive
optimization problem on affine manifolds. These problems contain two levels of optimiza-
tion tasks where one optimization task is nested within the other. The outer optimization
problem is commonly referred to as the leaders (upper level) optimization problem and the
inner optimization problem is known as the followers (or lower level) optimization problem.
The two levels have their own objectives and constraints. Topics affine convex functions,
optimizations with auto-parallel restrictions, affine convexity of posynomial functions,
bilevel disjunctive problem and algorithm, models of bilevel disjunctive programming prob-
lems, and properties of minimum functions.
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1. Affine convex functions

In optimization problems [16, 17, 19, 23–27], one can use an affine manifold as a pair M;Γð Þ,

where M is a smooth real n-dimensional manifold, and Γ is an affine symmetric connection on

M. The connection Γ produces auto-parallel curves x tð Þ via ODE system

€xh tð Þ þ Γ
h
ij x tð Þð Þ _xi tð Þ _xj tð Þ ¼ 0:

They are used for defining the convexity of subsets in M and convexity of functions f : D⊂

M ! R (see also [3, 6]).

Definition 1.1 An affine manifold M; Γð Þ is called autoparallely complete if any auto-parallel x tð Þ

starting at p∈M is defined for all values of the parameter t∈R.

Theorem 1.1 [1] Let M be a (Hausdorff, connected, smooth) compact n-manifold endowed with an

affine connection Γ and let p∈M. If the holonomy group Holp Γð Þ (regarded as a subgroup of the group

Gl TpM
� �

of all the linear automorphisms of the tangent space TpM) has compact closure, then M;Γð Þ is

autoparallely complete.

Let M; Γð Þ be an auto-parallely complete affine manifold. For a C2 function f : M ! R, we

define the tensor HessΓf of components

HessΓfð Þij ¼
∂
2f

∂xi∂xj
� Γ

h
ij

∂f

∂xh
:

Definition 1.2 A C2 function f : M ! R is called:

(1) linear affine with respect to Γ if HessΓf ¼ 0, throughout;

(2) affine convex (convex with respect to Γ) if HessΓ f ≽ 0 (positive semidefinite), throughout.

The function f is: (1) linear affine if its restriction f x tð Þð Þ on each autoparallel x tð Þ satisfies

f x tð Þð Þ ¼ atþ b, for some numbers a, b that may depend on x tð Þ; (2) affine convex if its restric-

tion f x tð Þð Þ is convex on each auto-parallel x tð Þ.

Theorem 1.2 If there exists a linear affine nonconstant function f on M;Γð Þ, then the curvature tensor

field Rh
ikj is in Ker df .

Proof. For given Γ, if we consider

∂
2f

∂xi∂xj
¼ Γ

h
ij

∂f

∂xh
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as a PDEs system (a particular case of a Frobenius-Mayer system of PDEs) with 1
2 n nþ 1ð Þ

equations and the unknown function f , then we need the complete integrability conditions

∂
3f

∂xi∂xj∂xk
¼

∂
3f

∂xk∂xi∂xj
:

Since,

∂
3f

∂xi∂xj∂xk
¼

∂Γ
h
ij

∂xk
þ Γ

l
ijΓ

h
kl

 !

∂f

∂xh
,

it follows

∂f

∂xh
Rh

ikj ¼ 0, Rh
ikj ¼

∂Γ
h
ij

∂xk
�

∂Γ
h
ki

∂xj
þ Γ

l
ijΓ

h
kl � Γ

l
kiΓ

h
jl:

Corollary 1.1 If there exists n linear affine functions f l, l ¼ 1,…, n on M; Γð Þ, whose df l are linearly

independent, then Γ is flat, that is, Rh
ikj ¼ 0.

Of course this only means the curvature tensor is zero on the topologically trivial region we

used to set up our co-vector fields df l xð Þ. But we can always cover any manifold by an atlas of

topologically trivial regions, so this allows us to deduce that the curvature tensor vanishes

throughout the manifold.

Remark 1.1 There is actually no need to extend df l xð Þ to the entire manifold. If this could be done, then

df l xð Þ would now be everywhere nonzero co-vector fields; but there are topologies, for example, S2, for

which we know such things do not exist. Therefore, there are topological manifolds for which we are

forced to work on topologically trivial regions.

The following theorem is well-known [16, 17, 19, 23]. Due to its importance, now we offer new

proofs (based on catastrophe theory, decomposing a tensor into a specific product, and using

slackness variables).

Theorem 1.3 Let f : M ! R be a C2 function.

(1) If f is regular or has only one minimum point, then there exists a connection Γ such that f is affine

convex.

(2) If f has a maximum point x0, then there is no connection Γ making f affine convex throughout.

Proof. For the Hessian HessΓfð Þij be positive semidefinite, we need n conditions like inequalities

and equalities. The number of unknowns Γh
ij is

1
2 n

2 nþ 1ð Þ: The inequalities can be replaced by

equalities using slackness variables.
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The first central idea for the proof is to use the catastrophe theory, since almost all families

f x; cð Þ, x ¼ x1;…; ; xn
� �

∈R
n, c ¼ c1;…; cmð Þ∈Rm, of real differentiable functions, with m ≤ 4

parameters, are structurally stable and are equivalent, in the vicinity of any point, with one of

the following forms [15]:

We eliminate the case with maximum point, that is., Morse 0-saddle and the saddle point.

Around each critical point (in a chart), the canonical form f x; cð Þ is affine convex, with respect

to appropriate locally defined linear connections that can be found easily. Using change of

coordinates and the partition of unity, we glue all these connections to a global one, making

f x; cð Þ affine convex on M.

At any critical point x0, the affine Hessian HessΓf is reduced to Euclidean Hessian, ∂
2f

∂xi∂xj
x0ð Þ.

Then the maximum point condition or the saddle condition is contradictory to affine convexity

condition.

A direct proof based on decomposition of a tensor: Let M; Γð Þ be an affine manifold and

f : M ! R be a C2 function.

Suppose f has no critical points (is regular). If the function f is not convex with respect to Γ, we

look to find a new connection Γ
h

ij ¼ Γ
h
ij þ Th

ij, with the unknown a tensor field Th
ij, such that

∂
2f

∂xi∂xj
xð Þ � Γ

h

ij xð Þ
∂f

∂xh
xð Þ ¼ σij xð Þ, x∈M,

where σij xð Þ is a positive semi-definite tensor. A very particular solution is the decomposition

Th
ij xð Þ ¼ ah xð Þbij xð Þ, where the vector field a has the property

Daf ¼ ah xð Þ
∂f

∂xh
xð Þ 6¼ 0, x∈M

and the tensor bij is

bij xð Þ ¼
1

Daf

∂
2f

∂xi∂xj
xð Þ � Γ

h
ij xð Þ

∂f

∂xh
xð Þ � σij xð Þ

� �

, x∈M:

Remark 1.2 The connection Γ
h

ij is strongly dependent on both the function f and the tensor field σij.

Suppose f has a minimum point x0. In this case, observe that we must have the condition

σij x0ð Þ ¼ ∂
2f

∂xi∂xj
x0ð Þ. Can we make the previous reason for x 6¼ x0 and then extend the obtained

connection by continuity? The answer is generally negative. Indeed, let us compute

bij x0ð Þ ¼ lim
x!x0

1

Daf

∂
2f

∂xi∂xj
xð Þ � Γ

h
ij xð Þ

∂f

∂xh
xð Þ � σij xð Þ

� �

:

Here we cannot plug in the point x0 because we get 0
0 , an indeterminate form.
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To contradict, we fix an auto-parallel γ tð Þ, t∈ 0; e½ Þ, starting from minimum point x0 ¼ γ 0ð Þ,

tangent to _γ 0ð Þ ¼ v and we compute (via l’Hôpital rule)

bij x0; vð Þ ¼ lim
t!0

bij γ tð Þð Þ ¼

∂
3f

∂xi∂xj∂xk
x0ð Þ � Γ

h
ij x0ð Þ ∂

2f
∂xh∂xk

x0ð Þ �
∂σij
∂xk

x0ð Þ
� �

vk

ah x0ð Þ ∂
2f

∂xh∂xk
x0ð Þvk

:

But this result depends on the direction v (different values along two different auto-parallels).

In some particular cases, we can eliminate the dependence on the vector v. For example, the

conditions

∂
3f

∂xi∂xj∂xl
x0ð Þ � Γ

h
ij x0ð Þ

∂
2f

∂xh∂xl
x0ð Þ �

∂σij

∂xl
x0ð Þ

¼ r
∂
3f

∂xi∂xj∂xk
x0ð Þ � Γ

h
ij x0ð Þ

∂
2f

∂xh∂xk
x0ð Þ �

∂σij

∂xk
x0ð Þ

� �

,

ah x0ð Þ
∂
2f

∂xh∂xl
x0ð Þ ¼ r ah x0ð Þ

∂
2f

∂xh∂xk
x0ð Þ

� �

are sufficient to do this.

A particular condition for independence on v is

∂
3f

∂xi∂xj∂xk
x0ð Þ � Γ

h
ij x0ð Þ

∂
2f

∂xh∂xk
x0ð Þ �

∂σij

∂xk
x0ð Þ ¼ 0:

In this particular condition, we can show that we can build connections of previous type good

everywhere.

1.1. Lightning through examples

Let us lightning our previous statements by the following examples.

Example 1.1 (for the first part of the theorem) Let us consider the function f : R2 ! R, f x; yð Þ ¼

x3 þ y3 þ 3xþ 3y and Γ
h
ij ¼ 0, i, j, h ¼ 1, 2. Then ∂f

∂x ¼ 3x2 þ 3, ∂f
∂y ¼ 3y2 þ 3 and f has no critical

point. Moreover, the Euclidean Hessian of f is not positive semi-definite overall. Let us make the above

construction for σij x; yð Þ ¼ δij. Taking a1 ¼ a2 ¼ 1, we obtain the connection

Γ
h

11 ¼
6x� 1

3x2 þ 3y2 þ 2
,Γ

h

22 ¼
6y� 1

3x2 þ 3y2 þ 2
,Γ

h

12 ¼ Γ
h

21 ¼ 0, h ¼ 1, 2,

that is not unique.

Example 1.2 (for one minimum point) Let us consider the function f : R2 ! R, f x; yð Þ ¼ 1� e�

x2 þ y2
� �

and Γh
ij ¼ 0, i, j, h ¼ 1, 2. Then ∂f

∂x ¼ 2xe� x2þy2ð Þ, ∂f
∂y ¼ 2ye� x2þy2ð Þ and f has a unique critical
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minimum point 0; 0ð Þ. However, the Euclidean Hessian of f is not positive semi-definite overall. We

make previous reason for σij ¼ 2e� x2þy2ð Þδij, a1 ¼ ∂f
∂x , a

2 ¼ ∂f
∂y. Hence we obtain Γ

h

ij ¼ Th
ij,

Γ
1

11 ¼ � 2x3

x2 þ y2
,Γ

1

12 ¼ Γ
1

21 ¼ � 2x2y

x2 þ y2
,Γ

1

22 ¼ � 2xy2

x2 þ y2
,

Γ
2

11 ¼ � 2x2y

x2 þ y2
,Γ

2

12 ¼ Γ
2

21 ¼ � 2xy2

x2 þ y2
,Γ

2

22 ¼ � 2y3

x2 þ y2
:

Observe that lim x;yð Þ! 0;0ð ÞT
h
ij x; yð Þ ¼ 0. Hence take Γ

h

ij 0; 0ð Þ ¼ 0.

The next example shows what happens if we come out of the conditions of the previous

theorem.

Example 1.3 Let us take the function f : R! R, f xð Þ ¼ x3, where the critical point x ¼ 0 is an

inflection point. We take Γ xð Þ ¼ �1� 2
x2 , which is not defined at the critical point x ¼ 0, but the

relation of convexity is realized by prolongation,

σ xð Þ ¼ f 00 xð Þ � Γ xð Þf 0 xð Þ ¼ 3 x2 þ 2xþ 2
� �

> 0, ∀x∈R:

Let us consider the ODE of auto-parallels

x00 tð Þ � 1þ 2

t2

� �

x0 tð Þ2 ¼ 0, t 6¼ 0:

The solutions

x tð Þ ¼ � 1

2
ln ∣� 2þ t2 � ct∣þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi

8þ c2
p arctanh

2t� c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

8þ c2
p þ c1

are auto-parallels on R\ 0; t1; t2f g;Γð Þ, where t1, t2 are real solutions of �2þ t2 � ct ¼ 0. These curves

are extended at t ¼ 0 by continuity. The manifold R;Γð Þ is not auto-parallely complete. Since the image

x Rð Þ is not a “segment”, the function f : R! R, f xð Þ ¼ x3 is not globally convex.

Remark 1.3 For n ≥ 2, there exists C1 functions φ : R
n ! R which have two minimum points without

having another extremum point. As example,

φ x1; x2
� �

¼ x1
2 � 1

� �2
þ x1

2

x2 � x1 � 1
� �2

has two (global) minimum points p ¼ �1; 0ð Þ, q ¼ 1; 2ð Þ.

The restriction

φ x1; x2
� �

¼ x1
4 þ x1

4

x2
2 þ 2x1 þ 2

� �

� x1
2 þ 2x1

3

x2 þ 2x1
2

x2
� �

, x1 > 0, x2 > 0

is difference of two affine convex functions (see Section 2).
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Our chapter is based also on some ideas in: [3] (convex mappings between Riemannian mani-

folds), [7] (geometric modeling in probability and statistics), [13] (arc length in metric and

Finsler manifolds), [14] (applications of Hahn-Banach principle to moment and optimization

problems), [21] (geodesic connectedness of semi-Riemannian manifolds), and [28] (tangent and

cotangent bundles). For algorithms, we recommend the paper [20] (sequential and parallel

algorithms).

2. Optimizations with autoparallel restrictions

2.1. Direct theory

The auto-parallel curves x tð Þ on the affine manifold M;Γð Þ are solutions of the second order

ODE system

€xh tð Þ þ Γ
h
ij x tð Þð Þ _xi tð Þ _xj tð Þ ¼ 0, x t0ð Þ ¼ x0, _x t0ð Þ ¼ ξ0:

Obviously, the complete notation is x t; x0; ξ0ð Þ, with

x t0; x0; ξ0ð Þ ¼ x0, _x t0; x0; ξ0ð Þ ¼ ξ0:

Definition 2.1 Let D⊂M be open and connected and f : D ! R a C2 function. The point x0 ∈D is

called minimum (maximum) point of f conditioned by the auto-parallel system, together with initial

conditions, if for the maximal solution x t; x0; ξ0ð Þ : I ! D, there exists a neighborhood It0 of t0 such that

f x t; x0; ξ0ð Þð Þ ≥ ≤ð Þ f x0ð Þ, ∀t∈ It0 ⊂ I:

Theorem 2.1 If x0 ∈D is an extremum point of f conditioned by the previous second order system,

then df x0ð Þ ξ0ð Þ ¼ 0.

Definition 2.2 The points x∈D which are solutions of the equation df xð Þ ξð Þ ¼ 0 are called critical

points of f conditioned by the previous spray.

Theorem 2.2 If x0 ∈D is a conditioned critical point of the function f : D ! R of class C2 constrained

by the previous auto-parallel system and if the number

Hess fð Þij ξ
i
0ξ

j
0 ¼

∂
2f

∂xi∂xj
�

∂f

∂xh
Γ
h
ij

� �

x0ð Þ ξi0ξ
j
0

is strictly positive (negative), then x0 is a minimum (maximum) point of f constrained by the auto-

parallel system.
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Example 2.1 We compute the Christoffel symbols on the unit sphere S2, using spherical coordinates

θ;φð Þ and the Riemannian metric

gθθ ¼ 1, gθφ ¼ gφθ ¼ 0, gφφ ¼ sin
2θ:

When θ 6¼ 0,π, we find

Γ
θ
φφ ¼ �

1

2
sin 2θ,Γ

φ
φθ ¼ Γ

φ
θφ ¼ cotθ,

and all the other Γs are equal to zero. We can show that the apparent singularity at θ ¼ 0,π can be

removed by a better choice of coordinates at the poles of the sphere. Thus, the above affine connection

extends to the whole sphere.

The second order system defining auto-parallel curves (geodesics) on S2 are

€θ tð Þ �
1

2
sin 2θ tð Þ _φ tð Þ _φ tð Þ ¼ 0, €φ tð Þ � 2 cotθ tð Þ _φ tð Þ _θ tð Þ ¼ 0:

The solutions are great circles on the sphere. For example, θ ¼ α tþ β and φ = const.

We compute the curvature tensor R of the unit sphere S2. Since there are only two independent

coordinates, all the non-zero components of curvature tensor R are given by Ri
j ¼ Ri

jθφ ¼ �Ri
jφθ, where

i, j ¼ θ,φ. We get Rθ
φ ¼ sin

2θ, R
φ
θ ¼ �1 and the other components are 0.

Let θ t; θ0;φ0

� �

; ξ
� �

,φ t; θ0;φ0

� �

; ξ
� �

, t∈R
�

be the maximal auto-parallel which satisfies

θ t0; θ0;φ0

� �

; ξ
� �

¼ θ0, _θ t0; θ0;φ0

� �

; ξ
� �

¼ ξ1; φ t0; θ0;φ0

� �

; ξ
� �

¼ φ
0
, _φ t0; θ0;φ0

� �

; ξ
� �

¼ ξ2.

We wish to compute min f θ;φð Þ ¼ Rθ
φ ¼ sin

2θ with the restriction θ t; θ0;φ0

� �

; ξ
� �

;φ t, θ0;φ0

� �

;
��

ξÞÞ, t∈R.

Since df ¼ 2 sinθ cosθ; 0ð Þ, the critical point condition df θ;φð Þ ξð Þ ¼ 0 becomes sinθ cosθ ξ1 ¼ 0.

Consequently, the critical points are either θ0 ¼ kπ; k∈ℤ;φð Þ, ξ1; ξ2
� �

6¼ 0; 0ð Þ, or θ1 ¼ 2kþ 1ð Þ π
2
;

�

k∈ℤ;φÞ, ξ1; ξ2
� �

6¼ 0; 0ð Þ, or θ;φð Þ, ξ1 ¼ 0; ξ2 6¼ 0
� �

.

The components of the Hessian of f are

Hess fð Þθθ ¼
∂
2f

∂θ∂θ
¼ 2 cos 2θ, Hess fð Þθφ ¼ 0, Hessfð Þφφ ¼

1

2
sin

2
2θ:

At the critical points θ0;φð Þ or θ1;φð Þ, the Hessian of f is positive or negative semi-definite. On the

other hand, along ξ1 ¼ 0; ξ2 6¼ 0
� �

, we find Hessfð Þij ξ
iξj ¼ 1

2
sin

2
2θ ξ2

� �2

> 0, ξ2 6¼ 0: Conse-

quently, each point θ 6¼ kπ
2
;φ

� �

, is a minimum point of f along each auto-parallel, starting from given

point and tangent to ξ1 ¼ 0; ξ2 6¼ 0
� �

.
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2.2. Theory via the associated spray

This point of view regarding extrema comes from paper [22].

The second order system of auto-parallels induces a spray (special vector field) Y x; yð Þ ¼

yh;Γh
ij xð Þyiyj

� �

on the tangent bundle TM, that is,

_xh tð Þ ¼ yh tð Þ, _yh tð Þ þ Γ
h
ij x tð Þð Þyi tð Þyj tð Þ ¼ 0:

The solutions γ tð Þ ¼ x tð Þ; y tð Þð Þ : I ! D of class C2 are called field lines of Y. They depend on

the initial condition γ tð Þjt¼t0
¼ x0; y0

� �

, and therefore the notation γ t; x0; y0
� �

is more sugges-

tive.

Definition 2.3 Let D⊂TM be open and connected and f : D ! R a C2 function. The point

x0; y0
� �

∈D is called minimum (maximum) point of f conditioned by the previous spray, if for the

maximal field line γ t; x0; y0
� �

, t∈ I, there exists a neighborhood It0 of t0 such that

f γ t; x0; y0
� �� �

≥ ≤ð Þ f x0; y0
� �

, ∀t∈ It0 ⊂ I:

Theorem 2.3 If x0; y0
� �

∈D is an extremum point of f conditioned by the previous spray, then

x0; y0
� �

is a point where Y is in Ker df .

Definition 2.4 The points x; yð Þ∈D which are solutions of the equation

DYf x; yð Þ ¼ df Yð Þ x; yð Þ ¼ 0

are called critical points of f conditioned by the previous spray.

Theorem 2.4 If x0; y0
� �

∈D is a conditioned critical point of the function f : D ! R of class C2

constrained by the previous spray and if the number

d2f Y;Yð Þ þ df DYYð Þ
� �

x0; y0
� �

is strictly positive (negative), then x0; y0
� �

is a minimum (maximum) point of f constrained by the

spray.

Example 2.2 We consider the Volterra-Hamilton ODE system [2].

dx1

dt
tð Þ ¼ y1 tð Þ,

dx2

dt
tð Þ ¼ y2 tð Þ,
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dy1

dt
tð Þ ¼ λy1 tð Þ � α1y

12 tð Þ � 2α2y
1 tð Þy2 tð Þ,

dy2

dt
tð Þ ¼ λy1 tð Þ � β1y

22 tð Þ � 2β2y
1 tð Þy2 tð Þ,

which models production in a Gause-Witt 2-species evolving in R4: (1) competition if α1 > 0, α2 > 0,

β1 > 0, β2 > 0 and (2) parasitism if α1 > 0, α2 < 0, β1 > 0, β2 > 0.

Changing the real parameter t into an affine parameter s, we find the connection with constant coefficients

Γ
1
11 ¼

1

3
α1 � 2β2
� �

,Γ2
22 ¼

1

3
β1 � 2α2

� �

,

Γ
1
12 ¼

1

3
2α2 � β1
� �

,Γ212 ¼
1

3
2β2 � α1

� �

:

Let x t; x0; y0
� �

, t∈ I be the maximal field line which satisfies x t0; x0; y0
� �

¼ x0; y0
� �

. We wish to

compute max f x1; x2; y1; y2
� �

¼ y2 with the restriction x ¼ x t; x0; y0
� �

.

We apply the previous theory. Introduce the vector field

Y ¼ y1; y2;λy1 � α1y
12 � 2α2y

1y2;λy1 � β1y
22 � 2β2y

1y2
� �

:

We set the critical point condition df Yð Þ ¼ 0. Since df ¼ 0; 0; 0; 1ð Þ, it follows the relation λy1 � β1y
22

�2β2y
1y2 ¼ 0, that is, the critical point set is a conic in y1Oy2.

Since d2f ¼ 0, the sufficiency condition is reduced to df DYYð Þ x0; y0
� �

< 0, that is,

λ�
α1β1y

22

λ� 2β2y
2
� 2α2y

2

� �

y0
� �

< 0:

This last relation is equivalent either to

λ� 2α2y
2
0

� �

λ� 2β2y
2
0

� �

� α1β1y
2
02 < 0,λ� 2β2y

2
0 > 0

or to

λ� 2α2y
2
0

� �

λ� 2β2y
2
0

� �

� α1β1y
2
02 > 0,λ� 2β2y

2
0 < 0:

Each critical point satisfying one of the last two conditions is a maximum point.

3. Affine convexity of posynomial functions

For the general theory regarding geometric programming (based on posynomial, signomial

functions, etc.), see [11].
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Theorem 3.1 Each posynomial function is affine convex, with respect to some affine connection.

Proof. A posynomial function has the form

f : Rn
þþ ! R, f xð Þ ¼

X

K

k¼1

ck
Y

n

i¼1

xi
� �aik

,

where all the coefficients ck are positive real numbers, and the exponents aik are real numbers.

Let us consider the auto-parallel curves of the form

γ tð Þ ¼ a1
� �1�t

b1
� �t

; a2
� �1�t

b2
� �t

;…; anð Þ1�t bnð Þt
� �

, t∈ 0; 1½ �,

joining the points a ¼ a1;…; an
� �

and b ¼ b1;…; bn
� �

, which fix, as example, the affine connec-

tion

Γ
h
hj ¼ Γ

h
jh ¼ �

1

2

μh

μj xj
, and otherwise Γ

h
ij ¼ 0:

It follows

f γ tð Þð Þ ¼
X

K

k¼1

ck
Y

n

i¼1

ai
� �aik
� �1�t

bi
� �aik
� �t

¼
X

K

k¼1

ck
Y

n

i¼1

ai
� �aik

 !1�t
Y

n

i¼1

bi
� �aik

 !t

:

One term in this sum is of the formψk tð Þ ¼ A1�t
k Bt

k, and hence €ψk tð Þ ¼ A1�t
k Bt

k lnAk � lnBkð Þ2 > 0:

Remark 3.1 Posynomial functions belong to the class of functions satisfying the statement “product of

two convex function is convex”.

Corollary 3.1 Each signomial function is difference of two affine convex posynomials, with respect to

some affine connection.

Proof. A signomial function has the form

f : Rn
þþ ! R, f xð Þ ¼

X

K

k¼1

ck
Y

n

i¼1

xi
� �aik

,

where all the exponents aik are real numbers and the coefficients ck are either positive or

negative. Without loss of generality, suppose that for k ¼ 1,…, k0 we have ck > 0 and for

k ¼ k0 þ 1,…, K we have ck < 0. We use the decomposition
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f xð Þ ¼
X

k0

k¼1

ck
Y

n

i¼1

xi
� �aik

�
X

K

k¼k0þ1

∣ck∣
Y

n

i¼1

xi
� �aik

,

we apply the Theorem and the implication u00 tð Þ ≥ v00 tð Þ ) u� v convex. □

Corollary 3.2 (1) The polynomial functions with positive coefficients, restricted to Rn
þþ, are affine

convex functions.

(2) The polynomial functions with positive and negative terms, restricted to Rn
þþ, are differences of two

affine convex functions.

Proudnikov [18] gives the necessary and sufficient conditions for representing Lipschitz mul-

tivariable function as a difference of two convex functions. An algorithm and a geometric

interpretation of this representation are also given. The outcome of this algorithm is a sequence

of pairs of convex functions that converge uniformly to a pair of convex functions if the

conditions of the formulated theorems are satisfied.

4. Bilevel disjunctive problem

Let M1,
1
Γ

� �

, the leader decision affine manifold, and M2,
2
Γ

� �

, the follower decision affine manifold,

be two connected affine manifolds of dimension n1 and n2, respectively. Moreover, M2,
2
Γ

� �

is

supposed to be complete. Let also f : M1 �M2 ! R be the leader objective function, and let

F ¼ F1;…; Frð Þ : M1 �M2 ! R
r be the follower multiobjective function.

The components Fi : M1 �M2 ! R are (possibly) conflicting objective functions.

A bilevel optimization problem means a decision of leader with regard to a multi-objective

optimum of the follower (in fact, a constrained optimization problem whose constraints are

obtained from optimization problems). For details, see [5, 10, 12].

Let x∈M1, y∈M2 be the generic points. In this chapter, the disjunctive solution set of a follower

multiobjective optimization problem is defined by

(1) the set-valued function

ψ : M1 ⇉M2,ψ xð Þ ¼ Argminy∈M2
F x; yð Þ,

where

Argminy∈M2
F x; yð Þ≔ ∪

r
i¼1Argminy∈M2

Fi x; yð Þ

or

(2) the set-valued function
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ψ : M1⇉M2,ψ xð Þ ¼ Argmaxy∈M2
F x; yð Þ,

where

Argmaxy∈M2
F x; yð Þ≔∪

r
i¼1Argmaxy∈M2

Fi x; yð Þ:

We deal with two bilevel problems:

(1) The optimistic bilevel disjunctive problem

OBDPð Þ min
x∈M1

min
y∈ψ xð Þ

f x; yð Þ:

In this case, the follower cooperates with the leader; that is, for each x∈M1, the follower

chooses among all its disjunctive solutions (his best responses) one which is the best for the

leader (assuming that such a solution exists).

(2) The pessimistic bilevel disjunctive problem

PBDPð Þ min
x∈M1

max
y∈ψ xð Þ

f x; yð Þ:

In this case, there is no cooperation between the leader and the follower, and the leader expects

the worst scenario; that is, for each x∈M1, the follower may choose among all its disjunctive

solutions (his best responses) one which is unfavorable for the leader.

So, a general optimization problem becomes a pessimistic bilevel problem.

Theorem 4.1 The value

min
x

f x; yð Þ : y∈ψ xð Þ½ �

exists if and only if, for an index i, the minimum minx f x; yð Þ : y∈ψi xð Þ
	 


exists and, for each j 6¼ i,

either minx f x; yð Þ : y∈ψj xð Þ
h i

exists or ψj ¼ Ø. In this case,

min
x

f x; yð Þ : y∈ψ xð Þ½ �

coincides to the minimum of minima that exist.

Proof. Let us consider the multi-functions ϕi xð Þ ¼ f x;ψi xð Þ
� �

and ϕ xð Þ ¼ f x;ψ xð Þð Þ. Then

ϕ xð Þ ¼ ∪
k
i¼1ϕi xð Þ. It follows that minxϕ xð Þ exists if and only if either minxϕi xð Þ exists or

ψi ¼ ∅, and at least one minimum exists.

Taking minimum of minima that exist, we find

min
x

f x; yð Þ : y∈ψ xð Þ½ �: □
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Theorem 4.2 Suppose M1 is a compact manifold. If for each x∈M1, at least one partial function

y ! Fi x; yð Þ is affine convex and has a critical point, then the problem OBDPð Þ has a solution.

Proof. In our hypothesis, the set ψ xð Þ is nonvoid, for any x, and the compacity assures the

existence of minxf x;ψ xð Þð Þ.

In the next Theorem, we shall use the Value Function Method or Utility Function Method. □

Theorem 4.3 If a C1 increasing scalarization partial function

y ! L x; yð Þ ¼ u F1 x; yð Þ;…; Fk x; yð Þð Þ

has a minimum, then there exists an index i such that ψi xð Þ 6¼ ∅. Moreover, if f x; yð Þ is bounded, then

the bilevel problem

min
x

f x; yð Þ : y∈ψ xð Þ½ �

has solution.

Proof. Let minyL x; yð Þ ¼ L x; y∗ð Þ. Suppose that for each i ¼ 1,…, k, minyFi x; yð Þ < Fi x; y
∗ð Þ.

Then y∗ would not be minimum point for the partial function y ! L x; yð Þ. Hence, there exists

an index i such that y∗ ∈ψi xð Þ. □

Boundedness of f implies that the bilevel problem has solution once it is well-posed, but the

fact that the problem is well-posed is shown in the first part of the proof.

4.1. Bilevel disjunctive programming algorithm

An important concept for making wise tradeoffs among competing objectives is bilevel dis-

junctive programming optimality, on affine manifolds, introduced in this chapter.

We present an exact algorithm for obtaining the bilevel disjunctive solutions to the multi-

objective optimization in the following section.

Step 1: Solve

ψi xð Þ ¼ Argminy∈M2
Fi x; yð Þ, i ¼ 1,…, m:

Let ψ xð Þ ¼ ∪
r
i¼1ψi xð Þ be a subset in M2 representing the mapping of optimal solutions for the

follower multi-objective function.

Step 2: Build the mapping f x,ψ xð Þð .

Step 3: Solve the leader’s following program

min
x

f x; yð Þ; y∈ψ xð Þ½ �:

From numerical point of view, we can use the Newton algorithm for optimization on affine

manifolds, which is given in [19].
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5. Models of bilevel disjunctive programming problems

The manifoldM is understood from the context. The connection Γ
h
ij can be realized in each case,

imposing convexity conditions.

Example 5.1 Let us solve the problem (cite [7], p. 7; [9]):

min
x1;x2ð Þ

F x1; x2; yð Þ ¼ x1 � y; x2ð Þ

subject to

x1; x2ð Þ∈Argmin x1;x2ð Þ x1; x2ð Þ jy2 � x21 � x22 ≥ 0
� �

,

1þ x1 þ x2 ≥ 0, � 1 ≤ x1, x2 ≤ 1, 0 ≤ y ≤ 1:

Both the lower and the upper level optimization tasks have two objectives each. For a fixed y value, the

feasible region of the lower-level problem is the area inside a circle with center at origin x1 ¼ x2 ¼ 0ð Þ
and radius equal to y. The Pareto-optimal set for the lower-level optimization task, preserving a fixed y,

is the bottom-left quarter of the circle,

x1; x2ð Þ∈R2 jx21 þ x22 ¼ y2; x1 ≤ 0; x2 ≤ 0
� �

:

The linear constraint in the upper level optimization task does not allow the entire quarter circle to be

feasible for some y. Thus, at most a couple of points from the quarter circle belongs to the Pareto-optimal

set of the overall problem. Eichfelder [8] reported the following Pareto-optimal set of solutions

A ¼ x1; x2; yð Þ∈R3 jx1 ¼ �1� x2; x2 ¼ � 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2y2 � 1
q

; y∈
1
ffiffiffi

2
p ; 1

 �� �

:

The Pareto-optimal front in F1 � F2 space can be written in parametric form

F1; F2ð Þ∈R2 jF1 ¼ �1� F2 � t; F2 ¼ � 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t2 � 1
p

; t∈
1
ffiffiffi

2
p ; 1

 �� �

:

Example 5.2 Consider the bilevel programming problem

min
x

x� yð Þ2 þ x2 : �20 ≤ x ≤ 20; y∈ψ xð Þ
h i

,

where the set-valued function is

ψ xð Þ ¼ Argminy xy : �x� 1⩽ y⩽ � xþ 1½ �:

Explicitly,

ψ xð Þ ¼
�1; 1½ � if x ¼ 0

�x� 1 if x > 0

�xþ 1 if x < 0:

8

>

<

>

:
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Since F x; yð Þ ¼ x� yð Þ2 þ x2, we get

F x;ψ xð Þð Þ ¼

0; 1½ � if x ¼ 0

�2x� 1ð Þ2 þ x2 if x > 0

�2xþ 1ð Þ2 þ x2 if x < 0:

8

>

<

>

:

on the regions where the functions are defined.

Taking into account �2x� 1ð Þ2 þ x2 > 0 and �2xþ 1ð Þ2 þ x2 > 0, it follows that x ∘ ; y ∘ð Þ ¼ 0; 0ð Þ is

the unique optimistic optimal solution of the problem. Now, if the leader is not exactly enough in

choosing his solution, then the real outcome of the problem has an objective function value above 1

which is far away from the optimistic optimal value zero.

Example 5.3 Let F x; yð Þ ¼ F1 x; yð Þ; F2 x; yð Þð Þ and a Pareto disjunctive problem

ψ xð Þ ¼ Argminy F x; yð Þ ¼ Argminy F1 x; yð Þ ∪Argminy F2 x; yð Þ:

Then it appears a bilevel disjunctive programming problem of the form

min
x

f x; yð Þ; y∈ψ xð Þ½ �:

This problem is interesting excepting the case ψ xð Þ ¼ Ø, ∀x. If y ! F1 x; yð Þ and y ! F2 x; yð Þ are

convex functions, then ψ xð Þ 6¼ Ø.

To write an example, we use

F1 x; yð Þ ¼ xy : �x� 1⩽ y⩽ � xþ 1½ �, F2 x; yð Þ ¼ x2 þ y2 : y⩾ � xþ 1
	 


and we consider a bilevel disjunctive programming problem of the form

min
x

x� yð Þ2 þ x2 : �20 ≤ x ≤ 20; y∈ψ xð Þ
h i

,

with

ψ xð Þ ¼ ψ
1
xð Þ∪ψ

2
xð Þ,

where

ψ
1
xð Þ ¼ Argminy xy : �x� 1⩽ y⩽ � xþ 1½ � ¼

�1; 1½ � if x ¼ 0

�x� 1 if x > 0

�xþ 1 if x < 0,

8

>

<

>

:

ψ
2
xð Þ ¼ Argminy x2 þ y2 : y⩾ � xþ 1

	 


¼
�xþ 1 if x ≤ 1

0 if x > 1,

�

ψ xð Þ ¼

�1; 1½ � if x ¼ 0

�x� 1;�xþ 1f g if 0 < x ≤ 1

�x� 1; 0f g if x > 1

�xþ 1 if x < 0:

8

>

>

>

<

>

>

>

:
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The objective f x; yð Þ ¼ x� yð Þ2 þ x2 and the multi-function ψ xð Þ produce a multi-function

f x;ψ xð Þð Þ ¼

0; 1½ � if x ¼ 0

2xþ 1ð Þ2 þ x2; 2x� 1ð Þ2 þ x2
n o

if 0 < x ≤ 1

2xþ 1ð Þ2 þ x2; 2x2
n o

if x > 1

2x� 1ð Þ2 þ x2 if x < 0:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

In context, we find the inferior envelope

y xð Þ ¼

0 if x ¼ 0

�xþ 1 if 0 < x ≤ 1

0 if x > 1

�xþ 1 if x < 0

8

>

>

>

<

>

>

>

:

and then

f x; y xð Þð Þ ¼

0 if x ¼ 0

2x� 1ð Þ2 þ x2 if x∈ �∞; 0ð Þ∪ 0; 1ð �

2x2 if x > 1:

8

>

<

>

:

Since 2x� 1ð Þ2 þ x2 > 0, the unique optimal solution is x ∘ ; y ∘ð Þ ¼ 0; 0ð Þ.

If we consider only ψ1 xð Þ as active, then the unique optimal solution 0; 0ð Þ is maintained. If ψ2 xð Þ is

active, then the optimal solution is 0; 1ð Þ.

6. Properties of minimum functions

Let M1,
1
Γ

� �

, the leader decision affine manifold, and M2,
2
Γ

� �

, the follower decision affine manifold,

be two connected affine manifolds of dimension n1 and n2, respectively. Starting from a

function with two vector variables

φ : M1 �M2 ! R, x; yð Þ ! φ x; yð Þ,

and taking the infimum after one variable, let say y, we build a function

f xð Þ ¼ inf
y

φ x; yð Þ : y∈ a xð Þf g,

which is called minimum function.

A minimum function is usually specified by a pointwise mapping a of the manifold M1 in the

subsets of a manifold M2 and by a functional φ x; yð Þ on M1 �M2. In this context, some differ-

ential properties of such functions were previously examined in [4]. Now we add new proper-

ties related to increase and convexity ideas.

First we give a new proof to BrianWhite Theorem (see Mean Curvature Flow, p. 7, Internet 2017).
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Theorem 6.1 Suppose that M1 is compact,M2 ¼ 0;T½ � and f : M1 � 0;T½ � ! R. Let ϕ tð Þ ¼minxf x; tð Þ.

If, for each x with ϕ tð Þ ¼ f x; tð Þ, we have ∂f
∂t x; tð Þ ≥ 0, then ϕ is an increasing function.

Proof. We shall prove the statement in three steps.

(1) If f is continuous, then ϕ is (uniformly) continuous.

Indeed, f is continuous on the compactM1 � 0; 1½ �, hence uniformly continuous. So, for ε > 0 it

exists δ > 0 such that if ∣t1 � t2∣ < δ, then ∣f x; t1ð Þ � f x; t2ð Þ∣ < ε, for any x∈M1, or

�ε < f x; t1ð Þ � f x; t2ð Þ < ε

On one hand, if we put ϕ t1ð Þ ¼ f x1; t1ð Þ and ϕ t2ð Þ ¼ f x2; t2ð Þ, then we have

f x; t1ð Þ > f x; t2ð Þ � ε ≥ f x2; t2ð Þ � ε:

Hence minxf x; t1ð Þ ≥ f x2; t2ð Þ � ε, so is ϕ t1ð Þ � ϕ t2ð Þ ≥ � ε.

On the other hand,

f x; t2ð Þ þ ε > f x; t1ð Þ ≥ f x1; t1ð Þ:

Hence minxf x; t2ð Þ þ ε ≥ f x1; t1ð Þ, so is ϕ t1ð Þ � ϕ t2ð Þ ≤ ε.

Finally, ∣ϕ t1ð Þ � ϕ t2ð Þ∣ ≤ ε, for ∣t1 � t2∣ < δ, that is, ϕ is (uniformly) continuous.

(2) Let us fix t0 ∈ 0;Tð �. If ϕ t0ð Þ ¼ f x0; t0ð Þ and ∂f
∂t x0; t0ð Þ ≥ 0, then it exists δ > 0 such that

ϕ tð Þ ≤ϕ t0ð Þ, for any t∈ t0 � δ; t0ð Þ.

Suppose ∂f
∂t x0; t0ð Þ > 0, it exists δ > 0 such that f x0; tð Þ ≤ f x0; t0ð Þ, for each t∈ t0 � δ; t0ð Þ. It

follows minxf x; tð Þ ≤ f x0; tð Þ ≤ f x0; t0ð Þ, and so is ϕ tð Þ ≤ϕ t0ð Þ.

If ∂f
∂t x0; t0ð Þ ¼ 0, then we use f x; tð Þ ¼ f x; tð Þ þ εt, ε > 0. For f , the above proof holds, and we

take ε ! 0.

(3) ϕ is an increasing function.

Let 0 ≤ a < b ≤T and note A ¼ t∈ a; b½ � jϕ tð Þ ≤ϕ bð Þ
� �

. A is not empty. If α ¼ infA, then, by the

step (2), α < b and, by the step (1), α∈A. If α > a, we can use the step (2) for t0 ¼ α and it

would result that α was not the lower bound of A. Hence α ¼ a and ϕ að Þ ≤ϕ bð Þ.

Remark The third step shows that a function having the properties (1) and (2) is increasing. For

this the continuity is essential. Only property (2) is not enough. For example, the function

defined by ϕ tð Þ ¼ t on 0; 1½ � and ϕ tð Þ ¼ 1� t on 1; 2ð � has only the property (2), but it is not

increasing on 0; 2½ �.

Remark Suppose that f is a C2 function and minxf x; tð Þ ¼ f x0 tð Þ; tð Þ, where x0 tð Þ is an interior

point of M. Since x0 tð Þ is a critical point, we have

Optimization Algorithms - Examples132



ϕ
0

tð Þ ¼
∂f

∂t
x0 tð Þ; tð Þþ <

∂f

∂x
x0 tð Þ; tð Þ, x

0

0 tð Þ >¼
∂f

∂t
x0 tð Þ; tð Þ ≥ 0:

Consequently, ϕ tð Þ is an increasing function. IfM1 has a nonvoid boundary, then the monotony

extends by continuity (see also the evolution of an extremum problem).

□

Example 6.1 The single-time perspective of a function f : R
n ! R is the function g : R

n � Rþ ! R,

g x; tð Þ ¼ tf x=tð Þ, dom g ¼ x; tð Þ jx=t∈ dom f ; t > 0f g. The single-time perspective g is convex if f

is convex.

The single-time perspective is an example verifying Theorem 7.1. Indeed, the critical point condition for

g, in x, ∂g
∂x ¼ 0, gives x ¼ tx0, where x0 is a critical point of f . Consequently, ϕ tð Þ ¼ minxg x; tð Þ ¼

tf x0ð Þ. On the other hand, in the minimum point, we have
∂g
∂t x; tð Þ ¼ f x0ð Þ. Then ϕ tð Þ is increasing if

f x0ð Þ ≥ 0, as in Theorem 4.1.

Theorem 6.2 Suppose that M1 is compact and f : M1 �M2 ! R. Let ϕ yð Þ ¼ minxf x; yð Þ. If, for each

x with ϕ yð Þ ¼ f x; yð Þ, we have ∂f
∂yα x; yð Þ ≥ 0, then ϕ yð Þ is a partially increasing function.

Proof. Suppose that f is a C2 function and minxf x; yð Þ ¼ f x0 yð Þ; yð Þ, where x0 yð Þ is an interior

point of M1. Since x0 yð Þ is a critical point, we have

∂ϕ

∂yα
¼

∂f

∂yα
x0 yð Þ; yð Þþ <

∂f

∂x
x0 yð Þ; yð Þ,

∂x0
∂yα

>¼
∂f

∂yα
x0 yð Þ; yð Þ ≥ 0:

Consequently, ϕ yð Þ is a partially increasing function. If M has a non-void boundary, then the

monotony extends by continuity. □

Theorem 6.3 Suppose that M1 is compact and f : M1 �M2 ! R. Let ϕ yð Þ ¼ minxf x; yð Þ. If, for each

x with ϕ yð Þ ¼ f x; yð Þ, we have d2y f x; yð Þ ≤ 0, then ϕ yð Þ is an affine concave function.

Proof. Without loss of generality, we work on Euclidean case. Suppose that f is a C2 function

and minxf x; yð Þ ¼ f x yð Þ; yð Þ, where x yð Þ is an interior point of M1. Since x yð Þ is a critical point,

we must have

∂f

∂xi
x yð Þ; yð Þ ¼ 0:

Taking the partial derivative with respect to yα and the scalar product with ∂xi

∂yβ
it follows

∂
2f

∂xi∂xj
∂xj

∂yα
∂xi

∂yβ
þ

∂
2f

∂yα∂xi
∂xi

∂yβ
¼ 0:
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On the other hand

dyϕ yð Þ ¼ dyf x yð Þ; yð Þ ¼
∂f

∂xi
∂xi

∂yα
þ

∂f

∂yα

� �

dyα ¼
∂f

∂yα
dyα

d2yϕ yð Þ ¼
∂
2f

∂yα∂xi
∂xi

∂yβ
þ

∂
2f

∂yα∂yβ

� �

dyαdyβ

¼ �
∂
2f

∂xj∂xi
∂xi

∂yβ
∂xj

∂yα
þ

∂
2f

∂yα∂yβ

� �

dyαdyβ ≤ 0:

□

Theorem 6.4 Let f : M1 �M2 ! R be a C2 function and

ϕ yð Þ ¼ min
x

f x; yð Þ ¼ f x yð Þ; yð Þ:

If the set A ¼ x yð Þ; yð Þ : y∈M2f g is affine convex and f jA is affine convex, then ϕ yð Þ is affine convex.

Proof. Suppose f is a C2 function. At points x yð Þ; yð Þ, we have

0 ≤ d2f x yð Þ; yð Þ ¼
∂
2f

∂xi∂xj
∂xi

∂yα
∂xj

∂yβ
þ 2

∂
2f

∂xi∂yα
∂xi

∂yβ
þ

∂
2f

∂yα∂yβ

� �

dyαdyβ

¼
∂
2f

∂xi∂yα
∂xi

∂yβ
þ

∂
2f

∂yα∂yβ

� �

dyαdyβ ¼ d2ϕ yð Þ:
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