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Abstract

A short review of the state of the art in experimental and computational fluid dynamics 
(CFD) characterization of micro-hydrodynamics and physicochemical processes in stirred 
tanks and agglomeration reactors is presented. Results of experimental and computa-
tional studies focusing on classical mixing tanks as well as other innovative reactors with 
various industrial applications are briefly reviewed. The hydrodynamic characterization 
techniques as well as the influence of the fluid dynamics on the efficiency of the physico-
chemical processes have been highlighted including some of the limitations of the reported 
modeling approach and solution strategy. Finally, the need for specialized CFD codes tai-
lored to the specific needs of fluid-particle reactor design and optimization is advocated to 
advance research in this field.

Keywords: physicochemical, hydrodynamics, wet agglomeration, stirred tanks, CFD

1. Introduction

Hydrodynamic and physicochemical interactions play an important role in many industrial 
unit processes and hence its importance in many engineering applications of fluid flow. Fluid 
flow investigations in a wide range of process conditions as well as complex biological, physi-
cal and chemical processes have been the subject of many scientific publications over the past 
two decades. Several studies on bench, pilot and industrial scales have been conducted on a 
wide variety of hydrodynamic conditions and different reactor geometric designs. In many of 
these studies, the aim is to provide an insight into the fluid flow and process dynamics in terms 
of the spatial and temporal evolution within the flow device, and in some cases, performance 
testing of newly designed flow units and processing techniques with potential applications on 
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Figure 1. Reactor design and process optimization parameters in mixing tank applications.

industrial scale. Regardless of the focus of these studies, it is quite apparent that valuable infor-

mation can be obtained from the basic study of fluid flow dynamics in process units especially 
from design and optimization perspective.

A quick survey of the studies in this field shows that many innovative process reactors have 
been successfully tested on different scales for a wide variety of technical applications rang-

ing from fine particle separation and water purification to cell culture preparation [1–6]. 

Experimental data, which are collected in these studies for numerical validation purposes, 
are often used to characterize the hydrodynamic behaviour as well as to quantify the fluid 
parameters of interest such as the flow velocity profile, vorticity, turbulent kinetic energy and 
its rate of dissipation, turbulent intensity, and so on. While there is a large body of scientific 
literature focusing on the hydrodynamics and physicochemical processes in stirred tank reac-

tors, the aim of the present communication is to briefly summarize developments in this field 
especially in the application of the knowledge of the fluid dynamics to fluid-particle reactor 

design, development and optimization.

2. Design and formulation of mixing tank problems

2.1. Design parameters and process optimization

In fluid engineering problems, research has shown that it is possible to optimize all influencing 
process parameters in an evolutionary manner right from the conceptual design to the final 
performance testing phase. This will entail the integration of the fluid flow investigation with 
the process reactor conceptual design and system optimization [1]. Nowadays, this multistage 
process design and optimization work flow shown in Figure 1 can be fully automated through 
the use of computational platform. In formulating and developing a numerical solution strat-
egy to a particular physical problem involving fluid-particle interactions, a sound theoretical 
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understanding and analysis of the problem is often required. This will assist in the selection of 
appropriate experimental data collection methods and mathematical models that sufficiently 
encapsulate the physics of the problem. A number of numerical approaches and solution strate-

gies discussed in the subsequent sections have been developed for a multitude of fluid flow 
scenarios. Therefore, it is important to evaluate each circumstance individually and form an 
opinion regarding which model would provide the best fit for a particular fluid engineering 
problem. It has been suggested that the robustness of any mathematical model is a function of 
the numerical code being used and the flow scenario being modeled [7].

2.2. Fluid dynamics and governing equations

The interactions of different phases in fluid flow occur on different scales of the fluid motion as 
depicted in Figure 2. Fluid dynamics is primarily focused on the macroscopic phenomena of the 
fluid flow in which the fluid is treated as a continuum. For instance, a fluid element is composed 
of many molecules, and the fluid dynamics represent the behaviour of the numerous molecules 
within the system. This concept with certain assumptions forms the basis of the derivation of 
fluid conservation equations of mass and momentum also known as the Navier-Stokes equation 

using a fluid control volume [8, 9]. The general form of the governing equations of mass and 
momentum conservation in any fluid flow system can be written as follows (Eqs. (1) and (2)):

    
∂ρ

 __ ∂t   + ∇  ∙  (ρ v →  )  =  S  
m

    (1)

    ∂ __ ∂t   (ρ v →  )  + ∇  ∙  (ρ v →   v →  )  = − ∇p + ∇  ∙  ( τ   ̿ )  + ρ g →   +  F 
→
    (2)

Figure 2. Multiscale modeling approach to fluid-particle interactions (reproduced from [14] with permissions © 2017 
Springer).
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where  ρ  is the density,  p  is the static pressure,   v 
→
    is the velocity component,   S  

m
    is the source 

term that represent the mass added to the continuous phase from the disperse phase or any 
user define source,   τ   ̿   represents the stress tensor due to viscous stress,  ρ g →    is the gravitational 

force and   F 
→

    represent the exerted body forces [10–13].

2.3. Modeling approach and solution strategies

In modeling complex single and multiphase flows in mixing tanks and process reactors, there 
exist two common numerical solution strategies, namely Eulerian-Eulerian and Eulerian-
Lagrangian modeling approach, depending on the scale of the fluid flow as shown schemati-
cally in Figure 3. In the former, the fluid domain is treated as an interpenetrating continuum, 
while in the latter, the discrete or distinct particles of the dispersed phase are tracked in the 
Lagrangian reference frame. In addition to the flow field, information on the particle popu-

lation such as the mean size, mass or volume fraction, and number density can be obtained 
using either of the two approaches [10]. Several variants of these two classes exist such as the 

Eulerian granular model based on the kinetic theory of granular flow (KTGF), disperse phase 
model (DPM), discrete element model (DEM) and the macroscopic particle model (MPM). 
In the case of Eulerian-Eulerian approach, the species distribution of the discrete phase may 
be accounted for using the population balance model (PBM), while the Eulerian-Lagrangian 
models can directly compute the particle size distribution while taking into account different 
collision and interaction mechanisms using DEM [15–18].

2.3.1. Treatment of flow domain and turbulent flow conditions

Turbulence modeling forms an integral part of the numerical analysis of complex fluid flows 
since most engineering fluid flows entail certain form of instability. Several closure models 

Figure 3. Parametric relationships between different modeling strategies (reproduced from [19] with permissions © 2015 
Annual Reviews).
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have been developed for resolving turbulence parameters in steady-state Reynolds Averaged 
Navier-Stokes (RANS) equations. The two equation eddy viscosity models such as k-ε and 
k-ω have been found to perform reasonably well in the modeling of rotating flows in pro-

cess reactors with the only drawback being the assumption of local isotropic turbulence. The 
underlying theoretical assumptions underpinning the use of these models can be found in 
the following reference texts [12, 13]. Since the reactors encountered in most of the practical 

physicochemical processes contain moving or rotating parts, it is therefore necessary to take 
this into consideration in the preparation of the computational grid. The most common strat-
egy for steady-state calculations include the single reference frame (SRF), multiple reference 
frame (MRF) or frozen rotor approach, mixing plane model (MPM) and snapshot approach, 
while the sliding or dynamic mesh is frequently used in transient calculations of fluid flow. For 
detailed information on the practical applications of the above-mentioned methods, readers 
are referred to the following reference texts [20, 21].

2.3.2. Model coupling for multiphase flow problems

Modeling complex physicochemical processes involving fluid flow sometimes necessitates 
the integration of the existing mathematical models in order to appropriately describe the 
physics of the problem. This can be achieved through the use of specially developed or cus-

tomized in-house numerical codes or a modification of the existing ones with several soft-
ware package vendors offering a platform for software improvement through the use of 
Application Programming Interface API or Application Customization Toolkit ACT. Such 
flexibility allows engineers and researchers to extend the capability and versatility of the 
existing numerical codes. Many software vendors go a step further in this respect by actively 
encouraging the development of scalable apps that extend the capability of their core soft-
ware; an excellent example is the mixing tank template released by ANSYS Inc. for the auto-

mation of mixing tank simulation process. However, there exist several other flexible options 
for numerical code development using the open source platform, and the readers are advised 
to consider available options for their specific problem.

3. Experimental analysis of physicochemical processes

Several analytical and instrumental techniques have been developed for the study of complex 
hydrodynamic-mediated processes found in particle-laden flow—flocculation, wet agglom-

eration, sedimentation, floatation, fluidization and crystallization that often occur in a wide 
range of process conditions. These techniques shown in Figure 4 are used either in the quan-

tification of the hydrodynamics of the carrier and dispersed phase, or in the determination 
of the spatial and temporal evolution of the discrete phase properties such as the change in 

the particle size and distribution. In the case of the hydrodynamic interactions of the carrier 
and dispersed phase, a number of laser-based fluid flow techniques such as particle image 
velocimetry (PIV), particle tracking velocimetry (PTV), laser Doppler anaemometry (LDA), 
laser Doppler velocimetry (LDV), and more recently, radioactive tracking techniques such as 
positron emission particle tracking (PEPT) and computer-aided radioactive particle tracking 
(CARPT) have gained wider acceptance in the scientific community and in industry due to 
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their ease of use and non-intrusive nature [20–22]. These techniques provide valuable insight 
into the salient macroscale fluid flow characteristics such as the instantaneous and time-aver-

aged hydrodynamic behaviour of the continuous phase, as well as the influence of the dis-

persed phase on the fluid flow. This is achieved by coupling the flow field measurements with 
the particulate phase properties and motion [21]. The experimental data set is subsequently 
used in the validation of numerical simulation results [18, 23].

The dominant and widely used macroscale experimental fluid flow characterization tech-

niques are the laser velocimetry and radioactive particle tracking techniques such as the PIV 
or PTV, LDV or LDA with the PIV reported to be a more efficient technique [24]. These on-line 
methods facilitate the determination of the properties of multiphase particle-laden flow espe-

cially at low concentration. These local methods are quite superior to other similar techniques 
such as optical fiber probing and light scattering due to their non-intrusive nature with little 
or no interference on the flow while providing time series and time-averaged fluid flow char-

acteristics with a high spatial resolution [18]. The workings of typical field imaging technique 
such as PIV consist of the tracer particles, laser source for flow illumination and high capac-

ity cameras—complementary metal-oxide semiconductor (CMOS) or charge-coupled device 

(CCD) for the fluid flow image recording. The captured images are thereafter post-processed 
and correlated to obtain the hydrodynamic parameters of interest. Table 1 provides a list 

of recent publications on the experimental analysis of physicochemical processes in stirred 
tanks. These studies demonstrated the importance of robust and reliable experimental data 
for complex fluid flow analysis and numerical model validation. Recent advances in experi-
mental techniques have led to the emergence of radioactive particle tracing measurement 

techniques which aim to improve the ease of data collection, data accuracy and reliability.

In order to correlate the hydrodynamic and process conditions with the suspension or dis-

persion properties especially the change in the species concentration—spatial and temporal 
evolution of the particle size distribution, a number of laboratory measurement techniques 
are widely adopted [25]. The choice will depend to a large extent on the concentration and 
size distribution of the disperse phase and the nature of the flow. Regardless of the chosen 
analytical approach, such a correlation will facilitate an assessment of the treatment process 

Figure 4. Experimental measurement techniques for multiphase particulate flow (reproduced from [18] with permissions 

© 2012 CRC Press).
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and the reactor performance under a particular process condition. For instance, the conven-

tional physicochemical simulation tests such as the cylinder, Imhoff cone and jar tests can 
be combined with parametric analytical techniques such as the Buchner-funnel or pressure 
filtration test, capillary suction time (CST) test, electrokinetic charge analysis using colloi-
dal titrations (i.e. zeta and streaming potential), laser light scattering or laser diffraction, 
microscopy, image analysis, photometric dispersion analysis (PDA), fiber optic sensor and 
HNMR spectroscopy. These techniques have been successfully employed to characterize 
the physicochemical process in bench, pilot and full-scale studies [38–41]. A careful con-

sideration of the limitations of each of these approaches will ensure proper selection of an 

appropriate method.

Reactor 

configuration
Stirrer 

configuration
Experimental 

technique

Technical application Tracer particles

Cylindrical tank Rotating disc 2D PIV Mixing/agglomeration Silver-coated and hollow glass 

spheres [1]

Cylindrical tank Hydrofoil 
impellers

PEPT Mixing Radioactive particles [26]

Cylindrical tank Rushton turbine PIV Mixing Polymeric and glass particles 
[27]

Cylindrical tank Hollow blade 

semi-elliptic disc 

turbine

TRPIV, PIV Mixing Neutrally buoyant glass beads 
[24]

Cylindrical tank Pitched-blade 

turbine impeller

FPIV Mixing Soda-lime glass beads [28]

Cylindrical tank Rushton turbine CARPT Mixing Radioactive particles [29]

Cylindrical tank Rushton turbine LDA Mixing Hollow glass spheres [30]

Cylindrical tank Kenics static 
mixer

PEPT Mixing Radioactive particles [31]

Cylindrical tank Pitched-blade 

turbine

PEPT Mixing Radioactive particles [32]

Cylindrical tank Pitched-blade 

turbine

PIV Mixing Silica glass spheres [23]

Square tank Hydro foil 
impeller

PIV, image 
analysis

Mixing/agglomeration In situ agglomerated flocs [33]

Cylindrical tank Six-blade 

Rushton turbine

3V3 Mixing Opt image polycrystalline 
particles [34]

Cylindrical tank Rushton turbine, 
pitched-blade 

turbine

PEPT Mixing Monosized silica gel particles 

[35]

Cylindrical tank Six-blade 

Rushton turbine

PEPT, LDA Mixing Ion-exchange resin particles 
[36]

Cylindrical tank Rotor-stator 

mixer

PIV Mixing Polyamide particles [37]

Table 1. Selected studies on the experimental analysis of physical and chemical processes in stirred tanks.
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Test parameters Agitation speed

145 rpm 165 rpm

Mean agglomerate diameter, mm 3.8330 3.9182

Mean agglomerate compressive strength, Nm m−2 0.4298 0.4351

Mean strain rate, s−1 0.3639 0.4088

Mean maximum compressive force, N 4.9476 5.2303

Table 2. Agglomerate characteristics test properties as a function of the reactor agitation speed in a wet agglomeration 

process.

In most of the physicochemical processes involving particulate flow either as a colloidal dis-

persion or granular suspension, the species attributes—mean size, particle concentration and 
distribution and fractal properties of the resulting agglomerates—are the primary parameters 
of interest [21]. In this case, an appropriate physicochemical simulation such as a jar or cyl-
inder test is often followed by a parametric analysis to characterize the process performance 
as a function of species attributes. Several other parameters may be of interest depending on 
the type of reactor and the required solid-liquid separation method. Such parameters may 
include aggregate mean size, shape and distribution, aggregate volume concentration, aggre-

gate strength, sludge volume index, silting index, residual supernatant turbidity, absorbance 
or optical density, electrical conductivity, viscosity, zeta or streaming potential, specific resis-

tance to filtration, capillary suction time, and so on [38, 39]. In the case of chemical optimi-
zation, a parametric dose-response curve will give reasonably accurate information on the 
required chemical dose for a particular process condition [42–45]. Table 2 and Figure 5 show 

a typical correlation of the agglomerate test properties with the process condition—shear 
rate. However, regardless of the choice of parametric test, an examination of the supernatant, 
sediment, filtrate and residue will yield some valuable information on the reactor perfor-

mance under specific process conditions. Such assessment is carried out either by direct in 
situ measurements such as in particle counting, ex situ analysis in which the samples are 
extracted for measurements or by other indirect parametric indicators. A detailed discussion 
on the practical applications of different dispersed phase measurement techniques is avail-
able elsewhere [40, 41].

Considering the wide range of options available to select from, optimizing a given physico-

chemical condition for a particular process reactor under laboratory conditions is a daunting 
task. Therefore, in optimizing the design and process parameters for a particular reactor, a sta-

tistical correlation of these parameters from a data set is often required, depending on the avail-
able time and complexity of the problem, to obtain accurate information on the optimum design 
and process conditions. A number of statistical methods such as the design of experiment and 

response surface methodology can be applied to a large set of experimental data to obtain the 
desired optimization points. This will facilitate an understanding of the influence of different 
process conditions on the reactor performance which will assist in the selection of optimized 

operating conditions.
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4. Modeling physicochemical processes in stirred tank reactor

The use of computational fluid dynamics (CFD) as a research tool to investigate complex fluid-
particle interactions has been growing in popularity both in academia and in the industry [46]. 

CFD provides a powerful alternative and a more robust platform for engineers in the design of 

equipment and processes involving fluid flow and heat transfer when compared to the classi-
cal experimental approach. Nowadays, numerical simulations complement the experimental 
and analytical techniques and are increasingly being performed in many fluid engineering 
applications ranging from chemical and mineral processing to civil and environmental pro-

cess engineering [46]. However, it is worth pointing out that the continual development of 
reliable empirical, mathematical and computational models relies on a robust and detailed 
experimental data.

Tables 3 and 4 provide a list of recent experimentally validated numerical studies focusing on the 
physicochemical analysis of fluid-particle reactors. The former is focused on the analysis of the 
mixing phenomena in stirred tanks while the latter deals with the technical application of mixing 

Figure 5. A parametric correlation of agglomerate properties with the process condition—shear rate (a) 145 rpm and (b) 
165 rpm.
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Reactor configuration Fluid agitator/

application

Experimental 

validation method

Numerical code/

modeling approach

Turbulence models

Cylindrical tank Grid disc impeller LDA CFX/MRF k-ε [53]

Cylindrical tank Grid disc impeller, solid 
disc, propeller

LDA CFX/MRF k-ε [52]

Cylindrical tank Rushton turbine, 
flotation impeller

2D PIV Fluent/MRF k-ε [54]

Cylindrical tank Rushton disc impeller LDA Fluent/snapshot k-ε [55]

Cylindrical tank Rushton turbine LDA Fluent/MRF k-ε, DES [56]

Cylindrical tank Foil impeller, Rushton 
turbine

Image analysis PHOENICS/MRF k-ε [57]

Cylindrical Tank Pitched-blade turbine PEPT CFX/MRF k-ε [58]

Cylindrical tank Rushton turbine LDV Fluent/MRF k-ε [59, 60]

Cylindrical tank Rushton turbine PLIF Fluent/MRF k-ε [61]

Square tank Rushton turbine Power consumption 

measurements

Fluent/MRF RSM [62]

Cylindrical tank Pitched-blade turbine 2D PIV Fluent/sliding mesh k-ε [63]

Cylindrical tank Rushton turbine CARPT Fluent/MRF k-ε [64]

Cylindrical tank Rushton turbine Solids concentration 

measurements

CFX/MRF k-ε [65]

Cylindrical tank Pfaudler retreat curve 

impeller

2D PIV, laser 
granulometry, 
nephelometry

Fluent/sliding mesh k-ε [66]

Square tank Rotating cylinder LDA Fluent/MRF k-ε [67]

Cylindrical tank Rushton turbine, pitched 
blade turbine

RPT, LDA Fluent/MRF k-ε [68]

Cylindrical tank Rushton turbine LDV Fluent/MRF k-ε, LES [69]

Cylindrical tank Flat blade turbine, 
pitched blade turbine, 
Rushton turbine

LDV Fluent/MRF k-ε [70]

Cylindrical tank Rushton turbine LDV Fluent/MRF RSM [71]

Cylindrical tank Rushton turbine, disc 
turbine, elliptical blade 
disc turbine

SPIV Fluent/sliding mesh k-ε, LES [72]

for several industrial processes. The modeling approach in most of these studies is applicable 
to mixing tanks and process reactors of various geometric designs. Joshi et al. [47, 48] provide a 

comprehensive review of CFD applications in a single phase mixing tank hydrodynamic analysis 
focusing on axial and radial flow impellers in a multitude of flow scenarios. Their two-part study, 
which is one of the most detailed and comprehensive reviews in this field, summarizes develop-

ments in mixing tank modeling by bringing together the results of scientific investigations span-

ning several decades. Similar reviews focusing on turbulent multiphase flows and multiphase 

Laboratory Unit Operations and Experimental Methods in Chemical Engineering66



reactor modelling, and which provide a more comprehensive discussion on the subject matter 
are available elsewhere [19, 49–51].

Regardless of the specific focus of each study, most of the studies differ only in terms of 
stirrer-vessel configurations, experimental validation methods and the choice of modeling 
approach. In terms of the stirrer-vessel configuration, there is a wide variety of flow inducers 
available for fluid flow investigation, each with different power demands and flow patterns. 
In addition to well-established impeller designs employed in most of the studies—Rushton 
turbine, pitched-blade turbine, propeller, and so on, a few innovative designs have been used 
with good results [52]. The turbulence models of choice in most of the investigations are the 
two equation eddy viscosity models such as k-ε and k-ω, and RSM models which are quite 
efficient in handling rotating flows in stirred tanks and multiphase reactors. The dominant 
modeling approaches for rotating flow problems are the MRF and sliding mesh. The former 
is suitable for steady-state problems while the latter is employed for transient calculations. 
Despite the technical limitations of some of the experimental flow measurement techniques, 
reasonable agreement was obtained in most of the studies between the experimental data and 

numerical simulation. In a few of the studies, the model predictions were not quite robust 

enough when compared to the experimental data set partly due to the complexity of the flow 
scenario being modeled.

Reactor configuration Fluid agitator/

application

Experimental 

validation method

Numerical code/

modeling approach

Turbulence models

Cylindrical tank Rushton turbine 2D PIV, LDA Fluent/sliding mesh DES [73]

Cylindrical tank Double Rushton turbine LDA CFX/MRF k-ε [74]

Cylindrical tank Rushton turbine Mixing time, power 
consumption, 
solids concentration 

measurements

CFX/MRF/sliding 

grid

k-ε [75]

Cylindrical tank Rushton turbine Particle size analysis, 
conductometry

Fluent/MRF k-ε [76]

Cylindrical tank Pitched-blade turbine, 
double disc impeller

PIV, critical impeller 
speed measurements

Fluent/MRF k-ε [77]

Cylindrical tank Rushton turbine LDV Fluent/MRF k-ε [78]

Cylindrical tank Pitched-blade turbine PEPT Fluent/MRF k-ω, k-ε, RSM [79]

Cylindrical tank Rigid, rigid-flexible and 
punched rigid-flexible 
impeller

Solids concentration 

measurements

Fluent/MRF k-ε [80]

Cylindrical tank Flat blade impeller, 
angle pitch impeller

DPIV Fluent/MRF k-ε [81]

Cylindrical tank Rotor-stator mixer PIV Fluent/MRF/sliding 

mesh

k-ε, k-ω [82]

Cylindrical tank Rotor-stator mixer LDA Fluent/sliding mesh k-ε [83]

Table 3. Selected studies on CFD characterization of single phase and multiphase flows in classical stirred tank reactors.
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Reactor configuration Fluid agitator/application Experimental 

validation 

method

Numerical 

code/modeling 

approach

Turbulence 

models

Cylindrical flocculator Paddle mixer/flocculation LDA, 2D PIV CFX/MRF k-ε, RSM [84]

Rectangular flocculator Axial impeller/water 

purification
2D PIV Fluent/MRF k-ε [85]

Cylindrical sedimentation 
tank

Axial impeller/water 

purification
Laser diffraction CFX/MRF k-ε [86]

Cylindrical Jar testing 
device

Paddle stirrer/flocculation LDA Fluent/MRF k-ε, k-ω, RSM 
[7, 87, 88]

Cylindrical flocculation 
reactor

Rushton turbine/

bio-flocculation
LDV Fluent/MRF k-ε [89]

Cylindrical stirred tank Pitched turbine blade/silica 

particle deagglomeration

Laser diffraction/
PIDS

Fluent/MRF k-ε [90]

Cylindrical stirred 
bioreactor

Marine impeller/cell 

cultivation

Tracer and 
dynamic method

Fluent/MRF k-ε [91]

Cylindrical tank R1342-type impeller/
flocculation

Image analysis Fluent/MRF k-ε [92]

Cylindrical tank Rushton impeller/cell culture Optical sensor CFX/MRF k-ε [93]

Cylindrical bioreactor Rushton, scaba and paddle 
impellers/cell culture

Optical density Fluent/MRF k-ε [94]

Cylindrical tank Turbine, anchor and oblique 
impellers/autoclave

Tracer injection Fluent/MRF k-ε [95]

Cylindrical bioreactor Marine impeller/recombinant 

protein synthesis
PIV Fluent/MRF k-ε [91, 96]

Cylindrical tube reactor Impeller/bacterial inactivation 2D PIV CFX/MRF RSM [2]

Cylindrical bioreactor Rushton turbine/anaerobic 

digestion

Gas 
chromatography

Fluent/MRF k-ε [97]

Cylindrical tank Turbine impeller/
polymerization

Droplet size 

measurements

Fluent/MRF k-ε [98]

Cylindrical tank Rushton impeller/cell 

cultivation

Dynamic method Fluent/MRF k-ε [99]

Cylindrical tank Rushton turbine/cell 

inactivation

PIV Fluent/MRF k-ε [100]

Cylindrical tank Rushton turbine and 

propellers/cell culture

Dynamic method Fluent/MRF RSM [101]

Cylindrical crystallizer Rushton impeller/

precipitation

X-ray/laser 
diffraction

Fluent/MRF k-ε [102]

Cylindrical 
Photobioreactor

Rotating cylinder/algal 
culture

Optical density Fluent/SRF k-ω [103, 104]

Table 4. Selected studies on CFD characterization of hydrodynamics and physicochemical processes in field-assisted 
process reactors.
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5. Conclusions and future perspectives

A review of recent advances in the experimental analysis and numerical modeling of physi-
cochemical processes in stirred tanks and agglomeration reactors have been presented. This 
review briefly summarizes important findings and major contributions from numerous pub-

lications in this field. This short review of the developments in this field clearly shows that 
significant progress has been made over the past decade in the understanding of complex 
physicochemical phenomena that are vital for many industrial and environmental processes, 
especially from experimental and theoretical perspective. However, there is still a gap in 
knowledge especially in the suitability of the existing mathematical models to accurately pre-

dict the reactor performance in a wide range of existing and emerging processes. This clearly 
calls for a numerical code programming and development to form an integral part of the engi-

neering training and curriculum in future. The successful design, development and optimiza-

tion of agglomeration units depend on the robustness of the experimental data, mathematical 

models and simulation tools. This short review is by no means an exhaustive one, and readers 
are advised to consult other multitudes of scientific publications on the subject matter. In con-

clusion, numerical modeling along with robust experimental data will continue to be highly 
indispensable well into the foreseeable future.
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