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Abstract

Obesity, a complex metabolic disorder linked to the development of several diseases, is 
characterized by both hypertrophy and hyperplasia of adipocytes. While white adipose 
tissue (WAT) is an energy storage site, brown adipose tissue (BAT) activation generates 
heat from nutrients by non-shivering thermogenesis. The human orthologue of silenc-
ing information regulator 2 (Sir2) which was recognized as a regulator of life span in 
S. cerevisiae, includes seven sirtuins which are NAD+-dependent protein deacetylases 
distributed in different subcellular compartments. Sirtuins, particularly Sirt1, have 
emerged as important nutrient sensors and regulators of metabolism. Sirt1 has been 
shown to play a role in retarding the expansion of WAT while stimulating both differen-
tiation and activation of brown adipose tissue as well as browning of WAT. This chapter 
focuses on the role of sirtuins in adipose tissue biology, their implications in obesity and 
potential as therapeutic targets.

Keywords: sirtuins, white adipose tissue, brown adipose tissue, adipogenesis, metabolic 
control, obesity

1. Introduction

Adipose tissue is a functionally diverse organ with remarkable plasticity to adapt to changes 

in energy balance and contribute to systemic regulation of metabolism. It is capable of 

expanding in response to over-nutrition preventing ectopic fat deposition in non-adipose tis-

sues, as well as mobilizing stored lipids during starvation or energy demand. Apart from its 

storage function, its ability to produce multiple adipokines as an endocrine organ, influences 
functions of other metabolic tissues. The ability of adipose tissue to respond to changes in 

energy balance is finely regulated by molecular mechanisms linked to nutrient response and 
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the redox status of the tissue. Sirtuins are a group of NAD+-dependent protein-deacetylating 

enzymes that play a key role in metabolic homeostasis. They influence genome stability, tran-

scription and activity of several enzymes contributing to epigenetic regulation and act as key 

nutrient sensors.

Acetylation and deacetylation of histones and other DNA associated proteins are key epigen-

etic processes that can influence chromatin structure regulating the transition between highly 
condensed and transcriptionally less active heterochromatin state to loose and transcription-

ally active euchromatin structure [1]. The extent of acetylation of histones depends, on one 

hand, on the balance between the activity of acetyl transferases such as histone acetyl trans-

ferase and deacetylases such as histone deacetylases (HDACs) [2, 3] and on the other hand on 

acetyl CoA which is an important metabolite at the junction of several metabolic pathways. 

Phylogenetically, eukaryotic HDACs are ancient proteins comprising of two subfamilies of 

proteins with different structure and function [4, 5]. While the enzymes belonging to the clas-

sical HDAC family are generally Zn-dependent enzymes which remove acetyl group from 

lysine residues on acetylated protein substrates with the addition of a water molecule, those 

belonging to the sirtuin family remove acetyl moieties bound to protein substrates to another 

substrate viz. NAD+ cleaving it to nicotinamide and O-acetyl ADP–ribose. So far 11 members 
of the classical HDAC enzymes, subdivided into three classes (HDAC I, III and IV), and 7 

members of sirtuins belonging to HDAC class III family have been identified.

Sirtuins, particularly SIRT1, play a key role in adipogenesis of white adipose tissue (WAT) and 
browning of WAT, metabolism of glucose and fat, insulin sensitivity, control of inflammation 
and energy homeostasis. Dysregulation of these physiological processes have major implica-

tions in the development of obesity and related metabolic diseases. The role of sirtuins in the 

regulation of adipose tissue biology and its implications in the development of obesity form the 

subject matter of this chapter. A number of reviews on the structure and functions of various 
sirtuins and their implications in aging and several pathological conditions are available [6–11].

2. Sirtuins in adipose tissue biology

2.1. Biochemistry and molecular biology of sirtuins

2.1.1. Classification and tissue distribution

Interest in understanding the role of sirtuins in mammalian system was driven by findings 
in calorie-restricted conditions in model organisms. The discovery of a protein in yeast, 

referred to as yeast-silencing information regulator-2 (Sir2) [12] followed by the demonstra-

tion of its localization in the nucleolus and telomeres [13] and low histone acetylation level in 

the genetic loci highlighted the importance of this group of proteins in regulating chromatin 

structure in specific loci. These findings were followed by demonstration of the importance of 
the protein in regulating yeast lifespan [14] and identification of Sir2 as an NAD-dependent 
histone deacetylase [15]. This revealed the connection between a molecule involved in gene 
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silencing and cellular metabolism and led to establishing sirtuins as important epigenetic reg-

ulators. This was followed by identification of Sir2 orthologues in mammalian systems; these 

were demonstrated to be NAD+-dependent protein deacetylating enzymes that are highly 

conserved across bacteria to humans.

On the basis of sequence similarity, mammalian sirtuins are classified into four classes, class I–
IV. Mammalian SIRT1–3 belong to class I, SIRT4 to class II, SIRT5 to class III and SIRT6 and 7 to 
class IV (Table 1) [9, 16]. All these enzymes share a conserved catalytic core structure, but they 

differ in their enzymic activity. While class I sirtuins (SIRT1–3) show robust deacetylase activ-

ity in vitro, SIRT4–7 show weak deacetylase activity; SIRT4 shows mono ADP–ribosyl transfer-

ase activity and SIRT2, 3 and 6 exhibit both deacetylase and ribosyl transferase activity. SIRT5 

removes succinyl, malonyl and glutaryl groups from acylated protein–lysine residues. SIRT6 

is more efficient in removing long chain fatty acyl groups such as myristoyl and palmitoyl 
groups. The enzymic reaction proceeds through the formation of a ternary complex involving 

acetyl protein substrate and NAD at the active site, which decomposes to form deacylated 

protein, nicotinamide and 2-O-acetyl-ADP ribose. They also differ in tissue distribution and 
subcellular localization (Table 1) [6, 9]. SIRT1 is expressed in metabolic tissues such as liver, 
muscle, adipose tissue and other organs such as heart, brain, pancreas; it is localized mainly in 

the nucleus, but shuttles from nucleus to cytosol. SIRT2, primarily a cytosolic protein, is highly 
expressed in heart, brain and skeletal muscle. SIRT3–5 are expressed in mitochondria. SIRT3 

and 5 are mainly expressed in kidney, brain, liver and heart. In contrast to white adipose tis-

sue, brown adipose tissue (BAT) expresses SIRT3. SIRT4 is expressed in heart, liver, pancreas 

and vascular smooth muscle. SIRT6 and 7 are localized predominantly in the nucleus. While 

SIRT6 is expressed in brain, liver and muscle, SIRT7 is mainly found in liver and spleen.

2.1.2. Biological effects of sirtuins

Mammalian sirtuins influence various cellular processes such as chromatin silencing, cell 
cycle regulation, differentiation and survival, mitochondrial biogenesis, metabolism, inflam-

mation and stress response. While most studies in model organisms indicate a role for sirtu-

ins in mediating the increased longevity affected by calorie restriction [17], a similar role for 

mammalian sirtuins is debated [18]. Sirtuins deacetylate transcription factors and regulate 

their activities either by influencing their cytoplasmic-nuclear distribution, their binding to 
DNA or changing their interaction with regulatory proteins.

SIRT1 is by far the best characterized among all mammalian sirtuins. It has been linked to 
hypothalamic control of energy balance [19], has a role in adipogenesis and fat mobilization, 

as well as regulation of carbohydrate and lipid metabolism [6, 7]. SIRT1 promotes vasodila-

tion and regenerative function in endothelial and smooth muscle cells of vascular wall by 

targeting eNOS for deacetylation [20]. In cardiomyocytes, SIRT1, 3 and 7 play a critical role in 
promoting cardiomyocyte resistance to stress and toxicity [21].

Important targets of SIRT1 include p53, forkhead box type O transcription factors (FOXO), 
PPARγ co-activator-1α (PGC1α), NFkB, androgen receptor and their co-regulatory molecules 
(Table 1). Apart from its effect on PGC1α, a master regulator of mitochondrial biogenesis, 
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Sirt 1 Sirt 2 Sirt 3 Sirt 4 Sirt 5 Sirt 6 Sirt 7

Class I I I II III IV IV

Subcellular 

location

Nucleus, cytoplasm Cytoplasm, 

nucleus

Mitochondria Mitochondria Mitochondria Nucleus Nucleolus

Tissue Liver, heart, brain, 

pancreas, muscle, 

adipose tissue

Heart, brain, 

skeletal muscle

Brown adipose 

tissue, kidney 

brain, heart, liver

Vascular smooth 

muscle, skeletal 

muscle, heart, liver, 

pancreas

Brain, heart, 

muscle, liver, 

kidney

Brain, liver, 

muscle

Liver, spleen

Activity Deacetylation Deacetylation Deacetylation ADP-ribosylation Deacetylation, 

demalonylation 

desuccinylation

Deacetylation, 

ADP-

ribosylation

Deacetylation

Target PGC1-α, PPARγ, PPARα, 
FOXO1, FOXO3, p53, 
notch, NF-kB, HIF-1α, 
LXR, FXR, SREBP1c

Tubulin, 

PEPCK, 
FOXO-1,PAR-3

LCAD, HMGCS-2, 
SOD-2, GDH, 
IDH2

GDH, Malonyl CoA 
decarboxylase

CPS1 H3KK9, H3K56 SIRT 1

Biological 

effects (WAT)

Adipogenesis Inhibition Inhibition Stimulates

Lipogenesis Inhibition (decreases 

AC1)
Stimulates malonyl 

decarboxylase

Lipolysis Stimulates (FOXO1, 
ATGL)

Stimulates

β-oxidation

Oxphos

Glucose 
metabolism

Improves insulin 

sensitivity

Decreases insulin 

sensitivity

Inflammation Decreases Decreases Increases

Adipokines Increases adiponectin

Decreases leptin

Increases 

adiponectin

Increases 

adiponectin

Decreases leptin

A
dipose Tissue
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Sirt 1 Sirt 2 Sirt 3 Sirt 4 Sirt 5 Sirt 6 Sirt 7

Biological 

effects (BAT)

Brown 

adipogenesis

Stimulates 

(expressed more 

in BAT than WAT)

Stimulates 

(expressed more in 

BAT than WAT)

Inhibits (expressed 

more in BAT than 

WAT)

Browing Stimulates

Whitening Inhibits

β-oxidation Stimulates Stimulates

Oxphos Stimulates mitochondrial 

biogenesis

Stimulates

Thermogenesis Stimulates Stimulates Inhibits

Glucose 
metabolism

Improves glucose 

tolerance

Increases on cold 

exposure

Increases 

glucose uptake

Decreases glucose 

tolerance

Effects on 
sirtuins

Obesity Decreased Decreased Increased Decreased? Decreased Increased/

decreased

CR Increased Increased Decreased (?) Increased Increased

Gastric banding 
surgery

Increased Increased

References [6, 7, 11, 31, 52, 53, 77, 78, 

100, 102]

[6, 7, 11, 26, 31] [6, 7, 11, 27, 31] [6, 7, 11, 31, 65, 66] [6, 7, 11, 31] [6, 7, 11, 31] [6, 7, 11, 31, 108]

Table 1. Sirtuins – targets, enzymic activity and biological effects.
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SIRT1 acts on several transcription factors like estrogen like receptors, the nuclear respiratory 
factors 1 and 2 to induce mitochondrial gene expression [22].

SIRT1 appears to directly block lipid anabolism by interfering with PPARγ and LXR signal-
ing. The repressive effect of SIRT1 on PPARγ activity requires the formation of a co-represssor 
complex that involves NCoR1 [23]. SIRT1 also has a role in reverse cholesterol transport; it 
stimulates cholesterol efflux from macrophages and the hepatic conversion of cholesterol to 
bile acids through LXR [24] . It is also present in the cytosol of many cell types and regulates 

major cytoplasmic enzymes such as acetyl CoA synthase and eNOS by deacetylation [20].

Compared to SIRT1, not much is known about the physiological effect of other mamma-

lian sirtuins. SIRT2 shows similarity to SIRT1 in several of its biological effects. It appears 
to increase hepatic glucose which is beneficial in starving conditions where SIRT2 activity 
increases. While it suppresses glycolysis by deacetylating and destabilizing glucokinase, it 

activates gluconeogenesis by enhancing the action of a key gluconeogenic enzyme PEPCK by 
its deacetylation [25]. It also appears to have a role in the control of microtubule stability and 

cell cycle oscillations by deacetylating α-tubulin [26].

SIRT3 is a major regulator of mitochondrial function; it deacetylates several mitochondrial 

proteins which are critical in mitochondrial oxidative metabolism. Calorie restriction increases 

activity of SIRT3 which alters the mitochondrial acetylome [27, 28]. SIRT4 is a mitochondrial 

matrix protein with remarkable ADP-ribosyltransferase activity [29]. It is reported to regulate 

insulin secretion [30], the activity of glutamate dehydrogenase, and serves as a metabolic regu-

lator by inhibiting the activity of several metabolic enzymes such as pyruvate dehydrogenase 

opposing the effect of SIRT3 [31]. Although recent studies have identified several SIRT5 target 
proteins, not much is known about its biological function. SIRT5 appears to play a role in energy 

homeostasis and free radical metabolism [32]. SIRT6 deficient mice aged prematurely and its 
overexpression increased life span of male mice apparently by altering IGF signaling [31].

2.1.3. Regulation of sirtuins

Sirtuins are regulated in response to nutritional and metabolic challenges, oxidative stress, 

and inflammation in a cell and tissue specific manner. They are subject to transcriptional con-

trol, post-transcriptional regulation by miRNA and post-translational modulation [31]. These 

regulatory events can either alter the levels of each sirtuin or their enzyme activity or both. 

Their activity can be modulated either directly by post-translational modifications(PTMs) 
such as phosphorylation and acetylation, protein interactions and by compounds that activate 

them, or indirectly by modulating NAD+ levels. The substrates themselves appear to regulate 

sirtuin expression indicating the possible formation of feedback regulatory loops.

Some of the key factors involved in metabolic homeostasis that cause upregulation of SIRT1 
include CREB, FOXO1, FOX3a, C/EBPα, PPARα and PPARβ/δ while the negative regulators 
include ChREBP, C/EBP. NFkB, EGR1, APE1 positively regulate transcription of SIRT1 during 
stress conditions. SIRT1 in turn can modulate the activity of several of these transcription fac-

tors. The enzymatic activity of SIRT1 is enhanced by post-translational modification by phos-

phorylation [33] and SUMOylation (Lys734) [34]. The activity of SIRT1 can also be controlled 
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through interaction with different protein complexes such as DBC1 (nuclear protein deleted 
in breast cancer-1), AROS (active regulator of SIRT1) and NCoR1 [35, 36]. SIRT1 can also be 
activated indirectly by either increasing NAD+ synthesis from NAD+ precursors like nicotinic 

acid, NAM, nicotinamide riboside or decreasing NAD+ consumption by two alternate enzyme 

families, PARP and cADP ribose synthase [37]. SIRT1 can enhance its own activity by auto-
deacetylation. This is inhibited by SIRT7 suggesting coordinated action of different sirtuins [38].  

SIRT1 is inhibited by NADH which competes with NAD+ [39] and by nicotinamide [40]. In 
vitro studies using malignant cell lines, have reported the role of different miRNAs in the 
post-transcriptional regulation of SIRT1 [31]. Mir34a is reported to regulate SIRT1 at differ-

ent levels; it inhibits translation of SIRT1 mRNA; it indirectly suppresses transcription and 
enzyme activity of SIRT1 by modulating the levels of NAD through regulation of the biosyn-

thetic enzyme nicotinamide phosphoribosyl transferase [41].

Unlike SIRT1, information on the regulation of other sirtuins is limited. Cyclin(E-Cdk2 and 
A-Cdk2) mediated phosphorylation at S331 inhibits SIRT2 activity whereas Erk1/2 enhanced 
its activity [31]. Cyclic AMP–PKA pathway, which is activated in response to various stim-

uli, causes upregulation of SIRT3 expression through PGC1α. cAMP may also activate 
SIRT3 by direct binding [31]. Activated AMPK also positively regulates SIRT3 by increasing 
NAD. Similar to SIRT3, expression of SIRT5 is also upregulated by PGC1α, while AMPK 
appears to negatively regulate its expression [31]. Several transcription factors and miRNAs 

appear to regulate expression of SIRT6. While Nuclear Respiratory factor 1 (NRF-1) and co-
activators induce SIRT6 expression during nutrient deprivation, cAMP signaling reduces 

SIRT6 expression. A relation between SIRT6 and mir122 has also been suggested [31].

2.2. Sirtuins regulate WAT development and metabolism

Adipose tissue is classified into white adipose tissue (WAT) which serves as the principal 
energy storage organ and brown adipose tissue (BAT) whose principal function is maintain-

ing temperature by non-shivering thermogenesis. A third category includes beige or brite 

(brown in white) adipocytes within WAT which can potentially differentiate into cells of 
brown like phenotype.

2.2.1. Sirtuins and WAT development

The cellular and molecular mechanisms that govern the adipocyte life cycle have been exten-

sively studied [42–45]. Both white and brown adipocytes develop by a highly regulated 

process of differentiation of mesenchymal stem cells (MSC). During the early phase of adipo-

genesis the pluripotent MSCs are committed to unipotent pre-adipocytes which in the latter 
phase undergo terminal differentiation acquiring the characteristic phenotype and functions 
of mature adipocytes. The complex process of adipocyte differentiation is coordinated by 
myriad factors. Isoforms of bone morphogenetic protein, BMP2 and BMP4 are the key posi-

tive regulators of commitment to white pre-adipocytes [46, 47]. This early phase of differenti-
ation is also subject to negative regulation by several transcription factors including members 

of GATA and Forkhead family, Wnt and Notch signaling, Kruppel-like factors 2 and 7 (KLF2, 
KLF7) and CHOP proteins [48].
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The differentiation of white pre-adipocytes to mature adipocytes is mediated by multiple 
transcription factors. The key transcription factors involved are CCAAT enhancer binding 

protein (C/EBP), PPARγ and sterol-regulatory element binding protein 1 (SREBP1) [43]. 

C-EBP, which exists in six different isoforms, is activated and translocated to the nucleus in 
response to cAMP mediated signaling [43]. Hormones induce transient expression of C/EBPβ 
and C/EBPδ which upregulate expression of PPARγ and C/EBPα [43] PPARγ, (particularly the 
isoform PPARγ1) that belongs to the nuclear receptor superfamily, heterodimerises with reti-
noid receptor α (RXRα), another nuclear receptor, and binds to DNA to promote expression 
of adipocyte specific genes such as leptin, adiponectin, FABP4, and perilipin. Activation of C/
EBPα leads to transcriptional activation of several genes encoding proteins such as GLUT4, 
SCD1, FABP4 which are critical in establishing adipocyte phenotype [43].

All seven sirtuin genes are expressed in human and rodent WAT. A difference in their level of 
expression, particularly a reduction in SIRT1, has been observed, in experimental obese mod-

els as well as obese human subjects [11]. Studies in experimental model systems suggest that 

sirtuins, particularly SIRT1, are negative modulators of WAT adipogenesis. Overexpression of 
SIRT1 decreased accumulation of fat while its knockdown increased fat accumulation in 3T3L1 
cells undergoing differentiation [23]. Resveratrol, an activator of SIRT1 reduces osteoblastic dif-
ferentiation of MSC to adipocytes [49]. SIRT1 is upregulated in WAT in calorie-restricted mice 
model in which there was significant reduction in fat mass [50, 51]. Further, transgenic mice 
overexpressing SIRT1showed lower body weight and reduction of fat mass [52], while ablation 

of SIRT1 in WAT resulted in gain in body weight, increase in fat mass and an increase in the 
size of individual adipocytes [53]. Studies using bone marrow-derived MSC with SIRT1 deletion 
showed impaired self- renewal and differentiation to osteoblasts without significantly affecting 
their differentiation to adipocytes [54]. In the light of these observations it has been suggested 

that although SIRT1 inhibits adipocyte differentiation, its expression is critical for maintenance 
of MSC pool [11].

PPARγ is an important substrate for SIRT1 [55]. SIRT1 dependent deacetylation of lysine resi-
dues (268 and 293 K) on PPARγ is critical in the regulation of its transcriptional activity by its 
co-repressors NCoR and SMRT. Sirt1 can thus inhibit white adipogenesis by suppressing the 
transcriptional activity of PPARγ by promoting the binding of its co-repressors NCoR and 
SMRT [23]. Further, C/EBPα, a PPARγ dependent factor, regulates the expression of SIRT1 
during adipogenesis [56]. miRNAs can also regulate effects of SIRT1 on adipogenesis. For 
example, mir 146b can promote adipogenesis by suppressing SIRT1-FOXO1 cascade [57]. 

SIRT2, the predominant sirtuin in adipose tissue, has also been shown to inhibit adipocyte 

differentiation by deacetylating FOXO1 and enhancing its repressive interaction with PPARγ 
[58, 59]. Unlike SIRT1 and SIRT2, SIRT7 knockdown in human pre-adipocytes reduced lipid 
content and the number of FABP4+ differentiated adipocytes indicating a contrasting effect 
of SIRT7. Further, SIRT7 knockout mice had significantly reduced WAT and increased SIRT1 
activity. This suggests that SIRT7 influences adipogenesis in mice by inhibiting autocatalytic 
activation of SIRT1, further highlighting the importance of cross talk among sirtuins in the 
control of adipose tissue maintenance [38].
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2.2.2. Sirtuins and WAT metabolism

During times of positive energy balance, storage of lipids as triglycerides in lipid droplets in 

adipocytes leads to expansion of adipose tissue. It leads to changes in the levels of adipokines 

such as leptin and adiponectin that affect metabolic functions of other organs particularly 
liver, muscle and brain, which in turn can affect the adipose tissue function [43, 45]. The 

stored lipid is mobilized in response to hormones and systemic energy needs during periods 

of negative energy balance. Metabolism of adipose tissue is thus linked with that of other tis-

sues. SIRT1 appears to serve as an important metabolic switch through which adipose tissue 
and other metabolic organs respond to energy needs [8].

When energy stores are high, excess nutrients particularly glucose and amino acids are used 

to synthesize fatty acids de novo primarily in liver and are exported to WAT where they are 
stored as TG [6] SIRT1 deacetylates sterol-responsive element binding protein 1c (SREBP1c) 
causing reduction of its transcriptional ability and suppression of fatty acid synthesis [6]. 

Further, by increasing PGC1α-mediated mitochondrial biogenesis, SIRT1 facilitates fatty acid 
oxidation. SIRT1 promotes gluconeogenesis in the liver through deacetylation and activation 
of PGC1α and FOXO1, and increasing expression of gluconeogenic enzymes [22] and inhibits 

glycolysis [6] This increases hepatic production of glucose during fasting. Apart from SIRT1, 
SIRT6 also has been shown to repress glycolysis in liver [31]. Further, SIRT1, by deacetylating 
STAT3, reduces its repressive effect on gluconeogenesis [60].The hepatic effects of sirtuins can 
thus affect nutrient flux into the adipose tissue.

Sirtuins are not only critical in WAT adipogenesis, they also play a key role in maintaining 

the functions of differentiated adipocytes by regulating the expression of several PPARγ-
responsive genes involved in metabolism. Activation of SIRT1 reduces expression of acetyl 
coA carboxylase and other lipogenic genes involved in the de novo synthesis of FAs in pre-adi-
pocytes. Multiple studies support the role of PPARγ in regulating adipose tissue metabolism 
[61]. Over-expression of a dominant negative form of PPARγ downregulates the expression 
of key genes involved in lipid metabolism, insulin signaling and decreases lipid content in 

3T3L1 differentiated adipocytes [62]. Further, selective ablation of PPARγ in mature white and 
brown adipocytes results in adipocyte death without any effect on pre-adipocyte differentia-

tion indicating the requirement of PPARγ for maintenance of differentiated functions of adipo-

cytes [63]. Insulin dependent glucose uptake in the adipocyte takes place through the GLUT4 
transporter. Expression of GLUT4 gene is regulated by PPARγ. SIRT1 appears to regulate 
glucose–induced secretion of insulin by transcriptional repression of UCP2 which uncouples 

mitochondrial ATP production [64]. SIRT1 by deacetylating SREBP1, destabilizes and reduces 
its occupancy on the lipogenic gene promoters suppressing fatty acid synthesis [6]. Although 

SIRT1 inhibits lipogenesis in WAT, SIRT4 appears to have an opposite effect. Deletion of mito-

chondrial SIRT4 decreased lipogenesis apparently by regulating malonyl CoA decarboxylase, 

thereby altering the level of malonyl CoA that represses fatty acid oxidation [65, 66]. While an 

increase in SIRT4 in fed state results in deacetylation and inactivation of malonyl CoA decar-

boxylase resulting in enhanced FA synthesis, during fasting, reduction of SIRT4  expression 
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leads to activation of malonyl CoA decarboxylase resulting in enhanced lipid oxidation. It 

therefore appears that SIRT4 exhibits a dual effect regulating anabolism and catabolism of 
fatty acids [65]. SIRT6 also appears to regulate lipogenesis. In SIRT6 overexpressing mice, 

expression of diacylglycerol acyl transferase a key enzyme involved in TG synthesis was down 
regulated along with certain PPARγ responsive genes involved in lipogenesis [31, 67].

2.2.3. Mobilization of depot fat

During periods of negative energy balance, the triglycerides stored in the lipid droplets, 

are hydrolysed to FFA which are released into circulation. In the basal state or during TG 
synthesis, perilipin, the structural protein on lipid droplet, is bound to protein CGI-58 (com-

parative gene identification-58) which is a co-activator of the adipose triglyceride lipase 
(ATGL). In response to cAMP dependent PKA-mediated phosphorylation of perilipin, CGI-
58 is released leading to activation of ATGL [68]. Activated ATGL moves to the lipid droplet 
membrane surface to hydrolyse TG to diacyl glycerol. Further activation of hormone sen-

sitive lipase (HSL) by PKA mediated phosphorylation causes binding of HSL to perilipin 
and continues lipolysis forming monoacyl glycerol which is acted upon by another specific 
monoacyl glycerol lipase (MGL) forming glycerol and FFA which are released to plasma for 
systemic utilization.

Unlike its suppressive effect on adipogenesis in WAT, SIRT1 appears to promote mobilization 
and utilization of depot fat. Overexpression of SIRT1 in differentiated 3T3L1 cells resulted in 
decreased triglyceride levels and increased release of FFAs [23], while knockdown of SIRT1 
decreased basal and stimulated lipolysis in adipocytes in culture. In in vivo studies using 

mice receiving high fat diet, activators of SIRT1 such as resveratrol reduced fat mass [69]. 

Further, over expression of SIRT1 inhibited diet induced accumulation of fat [6, 31, 52]. SIRT1 
regulates the expression of ATGL gene and thereby lipolysis in adipocytes through modula-

tion of the acetylation and transcriptional activity of FOXO1 [70]. SIRT2 also appears to show 

similar effect on fat mobilization [58, 59].Although sirtuins influence mitochondrial oxidative 
metabolism in other metabolic tissues such as liver, their role in WAT mitochondrial metabo-

lism is poorly understood.

2.3. Role of sirtuins in BAT development and browning of WAT

Unlike white adipogenesis, BAT biogenesis involves BMP7-stimulated commitment of Myf 

5+ cells to brown pre-adipocytes that mature into mitochondria–rich brown adipocytes.BMP7 

stimulation of progenitor cells leads to down regulation of early adipogenic inhibitors such 

as Pref1, Nectin, Wnt signaling molecules [43]. This is followed by upregulation of transcrip-

tion factors such as PPARγ and C/EBPα which cause upregulation of expression of PRDM16, 
a key factor involved in adipocyte–myocyte switch through activation of expression of BAT 

specific genes (PGC1α, UCP-1, ZIC1) and downregulation of myogenic genes such as Myf5 
and MyoD or myogenin [43]. This leads to increased biogenesis of mitochondria. PRDM16 is 
a 140 kDa protein that binds and activates the transcriptional function of PPARγ and PGC1α. 
PGC1α co-activates PPARγ-RXRα heterodimer stimulating the expression of BAT-specific 
genes UCP1and UCP3.
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The ability of human white adipocytes to acquire brown fat-like phenotype, termed brown-

ing, in response to β-adrenergic stimulation, cold exposure [43] and by several molecules 

such as muscle derived irisin [71, 72] liver derived FGF21 [73] and small molecules such as 

β-aminoisobutyric acid [74] has been observed. These type of cells called beige or brite adiop-

cytes express genes involved in thermogenesis such as UCP1, deiodinase type II and PGC1α 
in response to stimulation of β3–adrenergic receptors [43].

Sirtuins also appear to play a role in the differentiation and function of BAT. Like WAT, brown 
adipose tissue also has been shown to express all the members of the mammalian SIRT family 

[11]. While the relative level of expression of SIRT3 and 5 are higher, that of SIRT1 and 7 are 
lower in BAT than those in WAT. Calorie restriction (CR) and cold exposure upregulated the 

expression of SIRT3 present in the mitochondria in BAT [75]; SIRT1 and SIRT2 also showed an 
upregulation under such conditions. Conversely, SIRT3 is down regulated in BAT in high fat 

diet induced obese mice. SIRT1 also appears to have a role in differentiation of pre-adipocyte 
to brown adipocytes. It appears that SIRT1 influences BAT differentiation through repres-

sion of the MyoD-mediated myogenic gene expression signature and stimulation of PGC-1α 
mediated mitochondrial gene expression [76]. SIRT1 appeared to improve glucose homeosta-

sis in SIRT1 transgenic mice and brown adipocytes derived from them due to an enhanced 
response of brown adipocytes to β3-adrenergic stimuli rather than differences in differentia-

tion status [77]. Of the different sirtuins, SIRT3 appeared to be critical in the differentiation of 
brown adipocytes. SIRT3 has been shown to activate PGC1α mediated thermogenic response 
in differentiating brown adipocytes.

Brown remodeling of white fat in response to cold exposure is shown to be regulated by 

SIRT1-dependent deacetylation of PPARγ. SIRT1-dependent deacetylation of Lys 268 and Lys 
293 of PPARγ is required to recruit the co-activator PRDM16 to PPARγ, leading to upregula-

tion of BAT-specific genes and repression of WAT genes [78].In response to different envi-
ronmental stimuli, SIRT1 can differentially modulate PPARγ in WAT. SIRT1 inhibits PPARγ 
through local modulation of acetylation status of histones and recruitment of co-repressor 

NCoR in response to caloric restriction; but on cold exposure, it directly enhances PPARγ 
signaling through deacetylation of PPARγ itself [79]. SIRT1 deficiency in mice results in accu-

mulation of lipid droplets and reduction of mitochondrial content in BAT indicating a role for 

SIRT1 in the white remodeling of BAT which appears to occur in obese conditions [80].

2.4. Sirtuins and obesity

Grossly elevated fat stores in adipose tissue with hypertrophic or hyperplastic adipocytes 
and concomitant development of blood vessels result in obesity. The relevance of sirtuins in 

adipose tissue development and metabolism and their effects on metabolism of glucose and 
lipids primarily in the liver, and insulin function suggest a possible link between sirtuins and 

obesity.

The level of expression and activity of SIRT1 decrease in adipose tissue in different obesity 
models. Expression of SIRT1 in adipose tissue of db/db leptin resistant obese mice and in mice 
fed on HFD was significantly low [53, 81]. Overexpression of SIRT1 in HFD-induced obese 
animals caused less inflammation and better glucose tolerance. SIRT1 expression in obese pigs 
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is reported to be lesser than that in lean pigs [82]. Apart from decrease in SIRT1 levels, its 
function is also affected by changes in its post translational modification in obesity. One of the 
important post-translational modifications of SIRT1 which has been shown to be affected in 
obesity leading to inhibition of its nuclear localization is casein kinase mediated phosphoryla-

tion of ser-164 which is enhanced in obese and not in lean animals [83]. Unlike SIRT1 which 
is decreased in WAT in obesity, there is no consensus on the changes in other sirtuins in obese 

WAT; while some reports show decrease in SIRT2–6, other reports do not show any significant 
differences between obese and respective controls. But in obese BAT, SIRT1 and SIRT3 are 
down regulated and SIRT7 is upregulated. It has been shown that mir34a, which regulates the 

expression and activity of Sirt1, is elevated in obesity [41]. A possible association of sirtuins 

with obesity and obesity-associated pathological conditions in humans has also been indicated 

mostly from observational studies [84–88]. There is significant reduction in sirtuins in adipose 
tissue and other metabolic tissues in obese subjects and that weight loss or long term fasting 

can result in increase in their expression.

2.4.1. Sirtuins, insulin response and energy homeostasis

Insulin resistance is a hallmark of obesity and a major factor contributing to obesity associ-

ated pathological conditions. In vitro and in vivo studies suggest that SIRT1 regulates insulin 
response. In insulin resistant cells where SIRT1 is down regulated, induction of SIRT1 expres-

sion increased insulin sensitivity [89]. SIRT1 regulated insulin-dependent glucose uptake in 
adipocytes. Increase in SIRT1 activity improved insulin sensitivity [90]. Adipose tissue-specific 
SIRT1 knockout mice were reported to be more prone to developing insulin resistance. In 
experimentally induced diabetic animals, overexpression of SIRT1 increased insulin sensitivity. 
Mechanistically, SIRT1 effect appears to involve transcriptional repression of protein tyrosine 
phosphatase 1B gene which is critical in insulin signaling [91] Along with SIRT1in WAT, SIRT3 
and SIRT5 contribute to systemic glucose homeostasis. As indicated before, SIRT1 also regulates 
insulin secretion by β-cells of pancreas by repressing UCP-2 [64]. Inhibition of SIRT1 expression 
reduced insulin secretion in β-cell lines; conversely overexpression of SIRT1 increased it. In vivo, 

transgenic mice over expressing SIRT1 in pancreatic β-cells showed increase in glucose-stimu-

lated insulin secretion [92]. Further, SIRT1 deficiency impaired insulin secretion apparently by 
disrupting glucose sensing and impairing response to fluctuations in glucose levels [93].

In addition to its effect on peripheral tissue metabolism, SIRT1 in hypothalamus appears to act 
as a key regulator of central control of energy homeostasis. Evidence in support of this include 
(a) increase in the expression and activity of SIRT1 in hypothalamus in both calorie restriction 
and fasting [19, 94] (b) inhibition of hypothalamic SIRT1 expression, specifically in anorexigenic 
POMC neurons, resulted in loss of response to leptin and reduced energy expenditure indicat-

ing requirement of SIRT1 in POMC neurons for homeostatic defense against diet- induced 
obesity [95] (c) deletion of SIRT1 expression specifically in orexigenic Agouti-related peptide 
(AgRP)-expressing neurons, which promotes feeding in response to fasting, decreased AgRP 

neuronal activity resulting in decreased food intake and body weight [96] (d) Central inhibi-

tion of SIRT1 in rodents on a high fat diet caused decreased body weight and increased energy 
expenditure. This is mediated through increased acetylated-FoxO1-mediated increased pro-

duction of POMC and its active product αMSH which in turn augmented TRH and T3 levels 
suggesting a hypothalamic–pituitary-thyroid axis which stimulates energy expenditure [97].
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2.4.2. Sirtuins and inflammation in adipose tissue

Inflammation of adipose tissue in obesity is a major contributor to insulin resistance and 
pathogenesis of the metabolic syndrome [98]. SIRT1 could act as a transcriptional regulator 
of inflammation in multiple tissues, particularly adipose tissue as well as macrophages and 
endothelial cells [90, 99]. The levels of SIRT1 is inversely related to inflammation in adipose 
tissue. SIRT1 expression in human subcutaneous adipose tissue was less in cases where mac-

rophage infiltration was high [100–102]. The decrease in SIRT1 in obese conditions in adipose 
tissue is suggested to be due to its proteosomal degradation. Activation of C-jun N termi-

nal kinase (JNK1), which is a key component in inflammation associated signaling pathway, 
leads to phosphorylation of SIRT1, followed by its degradation in proteasomes [53, 103]. The 

molecular basis of the beneficial effect of SIRT1 on inflammation is related to suppression of 
NFkB activation [104]. SIRT1 inhibits transcriptional activity of NFkB directly by deacetylat-
ing the RelA/p65 subunit of NFkB at Lys 310 [105]. Moreover mir34a dependent decrease in 

SIRT1 activity can increase NFkB activity [41]. This suggests that SIRT1 and inflammatory 
signals interact at various levels and that SIRT1 is an important molecular link between nutri-
ents, inflammation and metabolic dysfunction of the tissue. Though not much data on the 
role of other sirtuins in inflammation in human subjects is available, SIRT5 expression levels 
also correlate inversely with markers of inflammation [106] Deletion of SIRT7 in mice reduced 

WAT inflammatory gene expression in HFD induced obesity, suggesting opposing functions 
for SIRT1 and 7 [107].

2.4.3. Sirtuin activators for therapy

Since sirtuins play an important role in regulation of adipogenesis, and adipose tissue metab-

olism, pharmacological activation of sirtuins could be a useful approach for the treatment 

of obesity and related metabolic disorders. Sirt1 is an allosteric enzyme which is regulated 
by ligand binding. Resveratrol, which is a naturally occurring polyphenol with anti-oxidant 

property, increased the enzyme activity of SIRT1 by binding to its allosteric site [108]. High 

throughput screening has identified several small molecular activators of SIRT1 [109]. The 

most potent of these is SRT1720 which, protects against diet induced obesity [6]. The adminis-

tration of SRT1720 reduced expression of lipogenic enzymes and reduced hepatic lipid accu-

mulation, it also enhanced oxidative metabolism in skeletal muscle, liver and BAT in mice, 

protecting from HFD induced obesity and insulin resistance [110]. However, increasing sir-

tuin activity could result in indiscriminate deacetylation of histones and several other key pro-

teins in different tissues. Sirtuin activating therapies would therefore have to be target specific.

3. Conclusions

Epigenetic modifications have emerged as fundamental modulators of metabolic functions, 
and sirtuins, a group of class III histone deacetylases, play a key role in this context. In this 

chapter the regulatory effects of sirtuins on adipose tissue metabolism in both WAT and BAT, 
and implication of alterations in their expression and activity in obesity, inflammation, and 
insulin resistance have been highlighted.
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In spite of considerable advances in molecular biology of mammalian sirtuins, many questions 

remain unanswered. Among the different sirtuins, the role of SIRT1 in development and metabo-

lism of white adipose tissue is reasonably well known. Although all the other sirtuins are expressed 

in WAT, their role in WAT function is not clear. Similarly, the role of SIRT1 and 3 in brown remodel-
ing of white fat has been elucidated, but the regulatory effects of the other sirtuins are still unknown.

Different sirtuins control similar cellular processes in adipose tissue. Unraveling the potential 
crosstalk and coordination between them will require further study. The significance of this in the 
possible gene regulatory network and coordinated action among sirtuins in metabolic regulation 

is evident from the antagonistic interaction between SIRT1 and 7 in adipose tissue metabolism.

Apart from functional differences between WAT and BAT, variations in the status of different 
depots of WAT are also related to a risk for obesity-associated diseases. It is not clear whether 

there is any depot dependent variation in sirtuin action.

As the expansion of a vascular tissue like adipose tissue is associated with neovascularization, 

adipogenesis and angiogenesis are interrelated. Understanding the role of sirtuins in adipose 

tissue angiogenesis is of paramount importance especially in brown tissue, where both the 

mitochondrial activity and oxygen demand are high.

Sirtuins appear to be an attractive target for the treatment of obesity and related metabolic 
disorders. Increasing sirt activity in adipose tissue by identifying natural compounds, or engi-

neering small molecular activators is an area which needs intensive research; increasing intra-

cellular levels of NAD+, a substrate for sirtuins, is an alternate approach.
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