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Abstract

Any disruption in the intracellular functions ranging from DNA transcription to protein 
ligand binding as well as intercellular communication may cause cellular transformation 
to malignant cell in the proper microenvironment when it could escape from the immune 
system. In this chapter, specifically, genetic alterations playing role in the prostate cancer 
are intended to be reviewed briefly under the subheadings of genomic instability and the 
hallmarks of cancer which are sustaining proliferative signaling, evading growth sup-
pressors, resisting cell death, enabling the replicative immortality, inducing angiogen-
esis, activating invasion and progression to metastatic disease, reprogramming of the 
energy metabolism and evading immune destruction.
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1. Introduction

The basic molecular pathways and genetic alterations related to the cancer formation from 

normal cells irrespective of origin of tissue, are explained elsewhere in detail in many relevant 

textbooks. In this chapter, specifically, genetic alterations playing role in the prostate cancer 
are intended to be reviewed briefly under the subheadings of the hallmarks of cancer pro-

posed by Hanahan and Weinberg, in the light of up to date studies [1, 2].

The proposed hallmarks of cancer are consisted of sustaining proliferative signaling, evading 

growth suppressors, resisting cell death, enabling replicative immortality, inducing angio-

genesis, activating invasion and metastasis, reprogramming of energy metabolism and evad-

ing immune destruction [1, 2]. Underlying these hallmarks is the genome instability, which 

generates the genetic diversity promoting their acquisition [1, 2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The Cancer Genome Atlas (TCGA) research on prostate cancer figured out seven genetic sub-

types of prostate cancer [3]. Four subtypes are characterized by specific gene fusions includ-

ing whereas the rest are characterized by genetic mutations particularly in SPOP, FOXA1, and 

IDH1 genes [3]. Gene fusions mainly included ERG (46%), ETV1 (8%), ETV4 (4%), FLI1 (1%) 

and gene mutations were commonly found in SPOP (11%), FOXA1 (3%) and IDH1 (1%) [3]. 

However, still almost quarter percent are not categorized in any of them, confirming genetic 
heterogenicity of prostate cancer [3]. However, these recently suggested genetic subgroups of 

prostate cancer may fit for future clinical trials of selective medical or genetic treatments in 
relevant subgroups. Yet, it is to be noted that the presented classification does not necessarily 
mean the relevant genes either involving gene fusions or mutations are themselves cause of 

cancer formation and yet they may only represent common alterations during carcinogenesis 

driven by any other one.

In other words; any disruption in the intracellular functions ranging from DNA transcrip-

tion to protein ligand binding as well as intercellular communication may cause cellular 

transformation to malignant cell in the proper microenvironment when it could escape from 

immunity.

2. Genomic instability

Using allelotyping except the short arms of the acrocentric chromosomes, loss of heterozy-

gosity and or gene fusions were shown to be 61% in prostate cancer [4]. Common allelic 

deletions were in chromosome 16q (60%), chromosome 8p (50%), chromosome 10p (55%) and 

10q (30%). Allelic deletions of chromosomes 2, 3, 7, 12, 13, 17, 18, 22, X and Y were at lower 

frequencies, however no allelic deletions were present in any case without any of the dele-

tions in chromosomes 8, 10, or 16 [4–7]. As expected, the more chromosomal deletions were 

present, the higher histological grade was present in prostate cancer [4]. This genetic het-

erozygosity more has recently been confirmed by TCGA research as the gene fusions were 
reported in 59% of prostate cancer [3]. With more specific methods, deletion in some specific 
regions of chromosome 8p (specifically 8p11-8p21) is more common up to 50–70% in prostate 
cancer compared to others [4, 5, 8, 9]. Chromosomal region 8p11-8p21 contains over 400 genes 

(Figure 1) among which some has gained more attention in research for prostate carcinogen-

esis like NKX3.1 which is an androgen regulated prostate specific homeobox gene [10–12]. 

Conditional deletion of one or both alleles of Nkx3.1 in mice has been shown to cause pros-

tatic intraepithelial neoplasia (PIN) [13]. Even in murine epigenetic cancer models, Nkx3.1 

deficiency further increased the frequency of PIN lesions [14].

Another chromosomal alteration commonly seen, occur in chromosome 10 [4, 5, 15–19]. One 

of the common alterations (60%) is the loss of the phosphatase and tensin homolog gene 

(PTEN) on chromosome 10q23.3 which is a negative regulator of the PIK3/Akt survival path-

way [15–19]. The loss of PTEN in prostate cancer has been linked to higher Gleason grades, 

oncogenic TMPRSS2-ERG fusions, androgen-independent progression and metastasis [15–19].  

Else, the size of PTEN deletions were classified into five distinct subtypes: (1) small interstitial 
(70 bp–789 kb); (2) large interstitial (1–7 MB); (3) large proximal (3–65 MB); (4) large  terminal 
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(8–64 MB), and (5) extensive (71–132 MB), all were flanked by low copy repetitive (LCR) 
sequences [20]. All types had some gains of 3q21.1-3q29 and deletions at 8p, RB1, TP53 and 

TMPRSS2-ERG and ones with large interstitial deletion had worse prognosis [20]. Although 

PTEN deletions seem to affect aneuploidy through PIK3/Akt pathway, some other factors act 
directly. To give a sample, NKX3.1 binds to androgen receptor at the ERG gene breakpoint 

and inhibits the recombination of TMPRSS2 and ERG gene loci. Loss of NKX3.1 favors error-

prone nonhomologous end-joining (NHEJ), further increasing TMPRSS2-ERG fusions [21]. 

Interestingly, intrinsic mechanism of the repair of DNA double-strand breaks (DSBs) driven 

by BRD4, itself may mediate the formation of oncogenic gene rearrangements by engaging 

the NHEJ pathway [22]. BRD4 belongs to the bromodomain and extra-terminal (BET) family 

of chromatin reader proteins that bind acetylated histones. These findings further outline 
importance of de novo alterations occurring synchronously are important for carcinogenesis 

together with error-prone intrinsic DNA repair mechanisms.

Again, the deletion of 16q23-q24 which is one of the most frequent genetic aberrations is 

associated with poor prognostic factors like advanced tumor stage, high Gleason grade, 

accelerated cell proliferation lymph node metastases and positive surgical margin [7, 23, 24]. 

Having ERG fusions were associated with higher incidence of 16q deletions [7, 23, 24]. Also, 

deletion of chromosome 13q occurs up to 50% of prostate cancer and its importance lies in 

the fact that this region contains RB transcriptional corepressor 1 gene which an important 

negative regulator of the cell cycle and the first tumor suppressor gene found [25, 26]. As 

well, deletion of three loci between 13q14.2 and 13q14.3 is associated with early biochemical 

relapse [27].

Figure 1. Some of the important genes located in 8p11-8p21 which are deleted up to 50–70% of prostate cancer (from 

http://www.ensembl.org).
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Other than structural chromosomal aberrations like aneuploidy, translocation, etc. epigenetics 

is another issue considered in carcinogenesis. The term “field cancerization” which had been 
suggested for head and neck cancers for the first time, refers to multifocal presence of genetic 
aberrations necessary for malignant transformation in a given tissue [28].

This term is also valid for prostate cancer, as cancerous tissues are multifocal with varying 

Gleason scores and preneoplastic tissues like high grade prostatic intraepithelial neoplasia 

(HGPIN) are detected closer to cancerous tissues [29]. This is further confirmed by methyla-

tion studies [30–35]. In a study comparing methylation status of GSTP1, MGMT, p14/ARF, 

p16/CDKN2A, RASSF1A, APC, TIMP3, S100A2 and CRBP1 genes among prostate cancer, 

HGPIN and BPH tissues, methylation was increased significantly from BPH to HGPIN and 
to prostate cancer [30]. Quantitative methylation specific PCR study of radical prostatectomy 
specimens, methylation of some genes like APC, RARb2 and RASSF1A were continuous in 

the histopathologically normal tissue around the cancerous tissue, forming a methylation 

halo up to 3 mm [31]. Another study including microarray study of methylation of large num-

bers of genes, the length of the halo was detected to be up to 10 mm [32].

3. Microenvironment

Prostatic stromal microenvironment is important for normal organogenesis as well as sup-

porting carcinogenesis and the survival of the cancer cells [36, 37]. However, the exact path-

ways and stroma-tumoral interactions are poorly understood and still needed to be further 

clarified.

Cultured fibroblasts from regions close to prostate cancer cells were shown to induce tumor 
progression of initiated nontumorigenic epithelial cells both in an in vivo tissue recombi-

nation system and in an in vitro coculture system [38, 39]. Prostatic carcinoma-associated 

fibroblasts secrete SDF-1 which activates Akt pathway in the via the TGF-beta-regulated 
CXCR4 [40]. That is, TGF-beta promotes tumor formation although it has primarily growth-

inhibitory action [40]. Marked reactive stroma is associated with poor prognosis in clinically 

localized prostate cancer and microarray gene expression analysis detected higher expression 

of 544 genes and lower expression of 606 genes in the reactive stroma, all of which have vari-

ous functions like neurogenesis, axon genesis and DNA damage repair pathways [41]. In a 

recent study evaluating the nuclear and mitochondrial DNA integrity of prostate cancer cells, 

prostate cancer-associated stroma detected copy-neutral diploid genome with only rare and 

small somatic copy-number aberrations in contrast to several small somatic copy-number 

aberrations in prostate cancer cells [42]. This indicates, that above-mentioned gene expression 

changes in prostate cancer-adjacent stroma seem to be not related to frequent or recurrent 

genomic alterations in the tumor microenvironment [42].

Also, metabolic status of the prostatic stromal microenvironment has been suggested to influ-

ence the tumorigenic potential of the tumor epithelial compartment [43]. As well, it has been 

shown that the loss of the signaling adapter, p62, in stromal cells triggered an inflammatory 
response, activating cancer-associated fibroblasts which promotes tumor formation in vitro 
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and in vivo. Loss of p62 resulted in lower mTORC1 activity and deregulation of metabolic 

pathways related to the inflammation [44].

One interesting study, chronic bacterial inflammation with inoculated Escherichia coli bacte-

ria induced focal prostatic glandular atypia/ prostatic intraepithelial neoplasia in male C3H/

HeOuJ mice, suggesting a link between inflammation and prostatic neoplasia [45].

4. Sustaining proliferative signaling

To keep normal tissue architecture and function normal cells need to control proliferative 

signaling. However, in cancer cells, proliferative signaling is sustained to keep their growth. 

This is accomplished by either increased paracrine stimulation or excessive response to hor-

mones by altered receptor matching or deregulated pathways. Insulin has been shown to 

activate insulin activated the insulin receptor (INSR) in case of inhibition of the IGF1 recep-

tor (IGF1R) [46]. Mitochondrial redox signaling by p66Shc-ROS pathway has been shown to 

promote androgen-induced prostate cancer cell proliferation. As well, dihydrotestosterone 

was shown to increase the translocation of p66Shc into mitochondria and its interaction with 

cytochrome c [47]. The phosphatidylinositol 3′-kinase (PI3K) pathway has been suggested 
to be a dominant growth factor-activated cell survival pathway in prostate carcinoma cells. 

Apoptosis induced by PI3K inhibition has been shown to be reduced by either dihydrotestos-

terone or ErbB1 activating ligands which are epidermal growth factor, transforming growth 

factor alpha, and heparin-binding EGF-like growth factor [48]. Smad1 acts as a substrate for 

MAPKs and plays a central role in transmitting signals from the pathways of bone morphoge-

netic proteins. Deregulation of the pathways of bone morphogenetic proteins and activation 

of the ERK/MAP kinase (MAPK) pathway by growth factors was suggested to promote the 

development and progression of prostate cancer [49].

5. Evading growth suppressors and resisting cell death

In general sense, cancer cells need to gain new capabilities to suppress or bypass cell cycle check-

points that negatively regulate the cell proliferation and promote apoptosis. Chromosome 17p 

includes an important gene, TP53 which encodes a tumor suppressor protein, p53, containing 

transcriptional activation, DNA binding, and oligomerization domains and it functions in 

cellular stresses to induce cell cycle arrest, apoptosis, senescence, DNA repair, or changes in 

metabolism. Deletion of chromosome 17p occurs mainly in advanced stages of prostate cancer 

and metastatic prostate cancer rather that early invasive prostate cancer [50–52]. BCL2 gene 

located in 18q21.33, encodes an integral outer mitochondrial membrane protein which blocks 

apoptosis. Its overexpression occurs in advanced, hormone-refractory disease [53].

Functional loss of CDKN1B which maps to 12p13.1 is prevalent in prostate cancer [54]. It inhib-

its cyclin-dependent kinase (CDK), sharing similarity with another inhibitor CDKN1A/p21. 

The encoded protein prevents the activation of cyclin E-CDK2 or cyclin D-CDK4  complexes, 
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in this way it controls the cell cycle progression at G1 stage. It is degraded through CDK 

dependent phosphorylation and subsequent ubiquitination by SCF complexes, permitting 
cellular transition from quiescence to the proliferative state. Its inactivation in prostate cancer 

is done by expression loss or increased degradation by abnormal phosphorylation and ubiq-

uitinylating, rather than being mutated [55, 56].

Cyclin dependent kinase inhibitor 2A (CDKN2A) located in 9p21.3 encodes three alternatively 

spliced variants two of which encode structurally related isoforms functioning as inhibitors of 

CDK4 kinase and one variant functioning as stabilizer of the tumor suppressor protein p53. 

It is also rarely mutated in early prostate cancer, mainly mutated in advanced disease [57].

6. Enabling replicative immortality

Telomeres are located at the ends of eukaryotic linear chromosomes to protect chromosomes 

from end-to-end fusions and protect against the loss of terminal DNA during cell division [58].  

Telomerase which is a ribonucleoprotein polymerase, maintains telomere length dur-

ing cell divisions by addition of the telomere repeat TTAGGG [59]. Therefore, telomerase 

is also important for the maintenance of chromosomal stability and cellular immortality. 

The enzyme consists of a protein component with reverse transcriptase activity, telomerase 

reverse transcriptase (TERT) for adding telomeric DNA repeats onto chromosome ends and 

an RNA component (TERC) for adding telomeric DNA repeats onto chromosome ends [60, 61]  

Telomerase activity was detected in prostate cancer and high-grade prostatic intraepithelial 

neoplasia [62, 63]. Both TERT and TERC activities are important in telomere maintenance. 

Knockdown of TERC by siRNA has been shown to reduce proliferation of prostate cancer 

cells and increased TERC expression which is regulated by MYC, was detected in prostate 

cancer [64]. In benign prostatic hyperplasia, PIN and prostate cancer, high levels of telomere 

dysfunction were detected, and it was suggested that telomere dysfunction may play a role in 

carcinogenesis through genomic instability [65].

7. Inducing angiogenesis

As in any kind of tumoral tissue, tissue needs more blood supply as it grows uncontrolled. 

Therefore, cancer cells need to regulate pathways to induce angiogenesis. In prostate can-

cer related angiogenesis, ps20 which is a TGF-beta1-induced regulator of angiogenesis, has 

been suggested to promote endothelial cell migration and/or pericyte stabilization of newly 

formed vascular structures [66]. As well, stromal expression of connective tissue growth factor 

also promotes angiogenesis and therefore prostate cancer progression. Expression of CTGF 

in tumor-reactive stroma has been shown to induce increased micro-vessel density. CTGF 

which is also a downstream mediator of TGF-beta1 seem to be another important regulator of 

angiogenesis in the tumor-reactive stromal microenvironment [67].
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8. Activating invasion and metastasis

Epithelial cancers progress to higher pathological grades of malignancy carcinomas and 

become locally invasive and metastatic to distant locations. This is termed as epithelial to 

mesenchymal cell transition during which the, the associated cancer cells alter their shape, 

their attachment to other cells and the extracellular matrix.

Abnormal increased expression of the mitochondrial ribosomal protein S18-2 has been shown 

to induce epithelial to mesenchymal cell transition in prostate cancer through the TWIST2/

E-cadherin signaling and induce CXCR4-mediated migration of prostate cancer cells [68]. 

MiRNALet-7a has been shown to induce invasion of prostate cancer cells and induce migra-

tion by stimulating epithelial-mesenchymal transition through CCR7/MAPK pathway [69]. 

Interestingly, inactivation of the androgen receptor resulted in lower expression of a tran-

scriptional repressor (SAM pointed domain-containing ETS transcription factor, SPDEF) of 

CCL2, which mediates epithelial to mesenchymal cell transition of the prostate cancer cells. 

That may explain progression to metastatic stage in a subset of castration resistant prostate 

cancer [70].

9. Reprogramming of energy metabolism

It has been shown that energy metabolism of early prostate cancers mainly depends on lipids 

and other energetic molecules for energy production and not on aerobic respiration or aerobic 

glycolysis (Warburg effect) [71]. Initially defined by Otto Warburg, the Warburg effect defines 
increased rate of glucose uptake, lactate production in proliferating cells in the presence of 

oxygen and fully functioning mitochondria [72]. The Warburg effect is the first defined energy 
metabolism of cancer cells energy [72]. However, in prostate cancer that is not the matter, as 
prostate cancer cells do not have increased glucose uptake except advanced stage disease [73].

In the advanced stages, reduced mtDNA content is a critical step in the metabolism restruc-

turing for cancer cell progression. As, MtDNA depleted prostate cancer cells exhibit Warburg 

effect [74]. Reduced microRNA-132 (miR-132) expression was suggested to cause metabolic 

switch in prostate cancer cells by inhibiting Glut1 expression which results increased rate of 

lactate formation, cellular glucose uptake and the rapid growth of the cancer cells [75].

10. Evading immune destruction

The immune system acts a barrier to tumor formation and progression. The role of immune 

system is clear when increased malignancies in transplant patients is considered. In patients 

with renal transplants, genitourinary malignancies are the third most common malignancy 

after skin malignancies and lymphoproliferative disorders [76–78].
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Cancer cell transfer extracellular vesicle-mediated estrogen receptor-binding fragment-

associated antigen 9 (EBAG9) to their microenvironment promoting self-immune escape 

and further progression. EBAG9 suppresses T-cell infiltration into tumor in vivo and limits 
T-cell cytotoxicity [79]. Interestingly, the adaptive immune system was suggested to promote 

de novo prostate carcinogenesis in a human c-Myc transgenic mouse model [80]. Recently, 

tumoral exosome-immune cell cross-talk has been suggested [81]. Prostate-cancer-derived 

exosomal prostaglandin E2 (PGE2) was suggested to result impaired CD8+ T cell response 

immunosuppression via exosomal regulation of dendritic cell function [81]. Exosomal PGE2 

triggered potently the expression of CD73, an ecto-5-nucleotidase responsible for AMP to 

adenosine hydrolysis, on dendritic cells. CD73 induction of dendritic cell resulted in an ATP-

dependent inhibition of TNFα- and IL-12-production [81].

11. Conclusions

Above briefly mentioned properties of prostate cancer cells and related genes, genetic path-

ways and their interactions have still no specific clinical use in prostate cancer management.

Yet, we are too far to understand the exact genetic mechanisms underlying prostate carcino-

genesis. But, it is sure that as we progress in further researches we will be more surprised to 

find out unknown interactions of supposed to be well known genetic mechanism.
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