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Abstract

The coal-based power plants have been plagued by twin problems—low thermal effi-
ciency and emission of high level of pollutants into the environment. Over the last few 
decades, attention was paid by researchers worldwide to overcome these problems and to 
design, build, and operate coal-based plants with improving efficiency levels and reduc-
ing emission levels. Operating the power plants with higher levels of steam temperature 
and pressure was adopted as the direction toward achieving the needed improvements. 
The requirement to operate the plants with increasingly higher levels of temperature and 
pressure made it necessary to design the components with superalloys. Hot corrosion 
then becomes a major design consideration, particularly for superheaters and reheaters. 
Thus, it becomes important to study the hot corrosion behavior of candidate superal-
loys. The present chapter attempts to review the work done over the last two decades 
to understand the hot corrosion behavior of superalloys in the context of their use in 
advanced coal-based power plants.

Keywords: ultra-supercritical coal fired power plants, nickel-based superalloys, hot 
corrosion, fireside corrosion, sulfidation

1. Introduction

Ultra-supercritical (USC) power plants are expected to overcome two challenges—(i) an 

increase in demand for electricity and (ii) a significant reduction in the enhanced greenhouse 
effect due to CO

2
 emission from the fossil fuel. By increasing the operating temperature and 

pressure of the steam systems, an increase in the power plant efficiency and a major reduction 
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in the CO
2
 emission from the power plants based on firing pulverized coal can be realized [1]. 

The goal of the latest designs in power plants is to generate 760°C steam. In the process, metal 

surface temperature of the key components such as superheaters and reheaters may reach as 
high temperature as 800°C [2]. The materials used for superheaters and reheaters in coal-fired 
boiler environments always suffer coal ash hot corrosion at elevated temperatures [3, 4]. Coal 

ash hot corrosion is the result of competition between oxidation and sulfidation. Sulfidation 
comes into picture as the materials get exposed to high-temperature combustion gases con-

taining sulfate coal ash [5]. Superalloys, in particular, nickel-base superalloys, have been the 
candidate materials for application in boilers for ultra-supercritical power plants based on 

firing coal. Compared to different types of high-temperature steels, nickel-based superalloys 
are well known for their superior resistance to coal ash hot corrosion [6, 7]. While there have 

been several publications on use of high-temperature materials in advanced power plants, a 

systematic review of application of superalloys for critical components facing hot corrosion 

and high temperature creep loading conditions in advanced coal-based power plants has not 

been carried out in the recent years. This chapter proposes to bridge this gap.

2. What are ultra-supercritical power plants?

Because of the abundant availability of coal reserves in the world, the use of coal for electricity 

generation has been done extensively. Coal has thus dominated as fuel for electricity genera-

tion, even though many modern technologies have emerged for power generation. Use of coal 

for power production is, however, beset with serious problems. Coal-based power plants emit 

pollutants and CO
2
 at high levels. Further, the efficiency of the conventional coal-based power 

plants has been very low, 35–40%. The efficiency of the power plant can be increased by increas-

ing the operating steam temperature and pressure. Development studies were undertaken 
worldwide to build power plants with increased values of these two operating parameters. In 

addition to increased thermal efficiency, an increase in these two parameters would lead to a 
reduction in greenhouse gases, an issue where the public is becoming increasingly conscious of.

Several of the existing coal-based power plants belong to the category of subcritical power 

plants operating at a steam pressure of ~22 MPa and a steam temperature of ~550°C; the ther-

mal efficiency of these plants is in the range of 35–37%. The plants operating in the tempera-

ture range of 540–580°C with steam pressure extending up to 25 MPa are termed supercritical 

power plants; their efficiency is of the order of 45%. Ultra-supercritical power plants operate 

Main steam 

pressure, MPa

Main steam 

temperature, °C

Reheat steam 

temperature, °C

Average 

efficiency
CO

2
 emissions  

(g/KWh)

Subcritical <22.1 Up to 565 Up to 565 36 766–789

Supercritical 22.1–25 540–580 540–580 45 722

Ultra-supercritical >25 >580 >580 >45 <722

Table 1. Classification of power plant conditions [8].
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at temperature higher than 580°C and pressure higher than 25 MPa, leading to an efficiency 
level of more than 45%. All over the world, several plants have been set up conforming to 

ultra-supercritical technology. Recent advances in the alloy making and processing capability 
to produce different items of hardware from these alloys have resulted in the possibility of 
setting up advanced ultra-supercritical power plants, where the operating temperature would 
be 700°C or more and operating pressure in the range of 30–35 MPa. The associated efficiency 
is expected to be equal to or better than 50%. These advancements in terms of temperature 
and pressure parallelly result in a reduction in emitted CO

2
 levels. Table 1 gives the details.

3. Hot corrosion in coal-fired boilers

Materials that exhibited strength to withstand the higher temperatures and pressures present 

in the superheaters of supercritical and ultra-supercritical advanced boilers with required 

stress rupture strength were available, but they proved to be especially susceptible to corro-

sion by certain coals, most notably high sulfur-bearing varieties.

The cause of this type of corrosion, referred to as coal ash corrosion or hot corrosion or fire-

side corrosion in advanced power plant terminology was soon understood. It is now gener-

ally accepted to be due to the presence of liquid alkali iron trisulfates on the surface of the 
superheater and reheater tubes beneath an overlying ash deposit. Coal ash corrosion or hot 

corrosion is a widespread problem for superheater and reheater tubes, especially when high 

sulfur, high alkali, and high chlorine coals are used, and is a crucial problem that needs to be 
resolved before advanced ultra-supercritical boilers can be deployed. The loss from corrosion 

increased with high levels of SO
2
, alkali sulfates, and temperature.

Performance of nickel superalloys in such industries as aerospace or gas or marine turbines 
has been well documented. However, it is important to note that the operating conditions 

within a coal-fired boiler are very different in terms of the service environment. Hot corrosion 
as it occurs in coal-fired boilers is a complex topic since it is a consequence of the combined 
effect of combustion gas atmosphere, fly ash deposits, and the alloy itself.

4. Components/subsystems subjected to hot corrosion in ultra-

supercritical power plants

High-performance materials are required to be used for the manufacture of different sections 
in boilers and steam turbines of an ultra-supercritical power plant. Table 2 summarizes the 
prime design requirements for the selection of materials for various critical parts in boilers 

and steam turbines. The superheater and reheater tubing are among the sections exposed to 

severe environmental conditions. The outside surface of the tubing suffers fireside coal ash 
corrosion, while the internal surface faces steam-side oxidation conditions. In addition, the 

materials used for the subject tubing have to possess adequate stress rupture strength, as they 

are subjected to long hours of mechanical loading at elevated temperatures.
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5. When does the designer choose superalloys for these components?

Development of USC power plants requires high-performance alloys able to resist the high 

temperature and pressure conditions occurring in such plants. Materials for superheaters and 

reheaters need to possess high creep strength and fireside corrosion resistance when it comes 
to fulfilling the requirements of highly efficient power plants. Development of qualified alloys 
for boiler heat exchangers was a very important task in the last decade. At temperatures higher 
than about 600°C, martensitic alloys are limited by their creep strength performance [25]. 

Accordingly, substitution of ferritic and martensitic materials with more creep-resistant mate-

rials became necessary. Aiming at efficiencies above 40%, iron-base austenitic alloys came for 
consideration and design with nickel-base superalloys became essential for 700°C technology.  
Since the beginning of advanced ultra-supercritical power plant concept in the 1990s in 

Europe, different nickel-based superalloys have been evaluated for their fireside corrosion, 
steam-side oxidation, and resistance to creep and stress rupture. Table 3 gives the chemical 

composition of nickel-based superalloys that have been the subject of studies in the context of 
their usage on USC power plants.

6. Overview of work done in the area by different researchers

A number of superalloy grades were studied by different researchers for their hot corrosion 
behavior in USC power plants. Table 4 gives a summary of these studies. Different material 
characterization techniques were adopted to study the nature of corrosion products appear-

ing on the exposed surface; Table 5 gives a list of them. Based on the characterization, conclu-

sions were drawn on the phases occurring in the scale resulting from hot corrosion. Table 6 

summarizes the findings of different authors for the two superalloy grades 617 and 740. Some 
of the studies carried out in the past also looked into the relative performance of different 
superalloy grades in USC power plant environments. Published information in this respect 

has been summarized in Table 7.

Design requirements

Boiler

 Headers/steam pipes Thermal fatigue strength, weld strength

 Reheater and superheater tubes Creep rupture strength and fireside corrosion resistance

Steam turbine

 Casings/shells Steam-side oxidation resistance

 Bolting Resistance to stress relaxation up to maximum steam temperature

 Rotors/discs Steam-side oxidation resistance, creep rupture strength, resistance to thermal 

fatigue cracking

 Vanes/blades Steam-side oxidation resistance, solid particle erosion resistance

Table 2. Components in ultra-supercritical power plants where superalloy grades have come into consideration.
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Sl. No. Material Ni Cr Co Mo W Al C Fe Mn Si S Ti Cu B Nb La P Refs.

1 Inconel 740 49.5 25.0 20 0.5 — 0.9 0.03 0.7 0.3 0.50 <0.002 1.8 <0.1 0.002 2.0 — <0.002 [9]

2 Inconel 740H 49.0 25.0 20 0.5 — 1.35 0.03 0.7 0.3 0.15 <0.002 1.35 <0.1 0.002 1.5 — <0.002 [10]

3 Inconel 617 >44.5 20.0–24.0 10.0–15.0 8.0–10.0 — 0.8–1.5 0.05–0.15 <3.0 <1.0 <1.0 <0.015 <0.6 <0.5 <0.006 — — — [11]

4 Haynes 230 57 22 <5.0 2.0 14 0.3 0.1 <3.0 0.5 0.4 — <0.1 — — <0.5 — — [12]

5 Haynes 282 57 20 10 8.5 — 1.5 0.06 <1.5 <0.03 <0.15 — 2.1 — 0.005 — — — [13]

6 Alloy 263 Bal. 19.0–21.0 19.2–21.0 5.6–6.1 — 1.9–2.4 0.04–0.08 <0.7 <0.60 <0.40 <0.007 2.4–2.8 <0.20 <0.005 — — — [14]

Table 3. Chemical compositions of candidate superalloy grades for ultra-supercritical power plant applications.
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Sl. No. Characterization techniques used

1 Thermogravimetric analysis (TGA)

2 Scanning electron microscopy (SEM)

3 Energy-dispersive spectroscopy (EDS)

4 X-ray diffraction (XRD)

5 Electron-probe microanalysis (EPMA)

Table 5. Techniques used by researchers to characterize the hot corrosion in simulated USC power plants.

Sl. No. Super alloy Refs.

1 740 [5, 15–19]

2 740H [17, 20]

3 Haynes 282 [21]

4 Alloy 263 [17, 18]

5 Alloy 617 and derivatives [17, 18, 20, 22, 23]

6 600,601,690,602CA,214,45TM,HR160,693 [24]

7 Alloy 230 [20, 24]

Table 4. Superalloy grades studied for their hot corrosion behavior in USC power plat environments.

Sl. No. Material Phases Refs.

1 Alloy 740 NiO, Cr
2
O

3,
 CrS, Ni

3
S

2,
 (Ni, Co)Cr

2
O

4,
 Fe(CrAl)

2
O

4
[15]

3 Alloy 740 Co
3
S

4
, Ni

3
S

2
, (Ni, Co)Cr

2
O

4
, Al

2
O

3
, TiO

2
, NaKS

2
O

7
, Cr

2
O

3
, [19]

2 Alloy 740 Cr
2
(SO

4
)

3,
 Ni

3
S

2
, Co

3
S

4
, CrS, TiS, [5]

4 Alloy 617 Cr
2
O

3
, Al

2
O

3
, TiO

2
, CrS,NiCr

2
O

4
, CoCr

2
O

4
, FeCr

2
O

4
, Fe

2
O

3
, Cr

2
(SO

4
)

3,
 NiO [23]

Table 6. Phases observed in the scale formed after hot corrosion of different superalloy grades in simulated USC power 
plant environment.

Sl. No. Alloy grades studied Rating based on corrosion resistance Refs.

1 740, 263, 617 740 > 263 > 617 [18]

2 740, 740H 740H > 740 [17]

3 617, 617B 617B > 617 [22]

4 740H, 263, 617 740H > 263 > 617 [10]

Table 7. Relative rating of candidate superalloy grades from the point of view of hot corrosion in simulated USC power 

plants.
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7. Mechanisms of hot corrosion of superalloys in USC power plants

7.1. Initiation and propagation of hot corrosion reaction

From the studies carried out in the past, it emerges that hot corrosion reaction occurs in two 

phases. In the first phase, referred to as initiation phase, there is essentially no weight change, 
and the chromium oxide layer formed on the surface is still protective in nature. In the second 

phase, referred to as propagation phase, the chromium oxide layer gets fluxed and loses its 
protective nature. Degradation of the material starts, manifesting itself as a loss in weight. It is 

often considered that extent of initiation phase is the safe regime for deploying the material in 

service facing such hot corrosion conditions. If the corrosive environment is more aggressive, 

the initiation phase may get reduced and propagation phase may take off earlier. For exam-

ple, compared to simulated coal ash environment, (simulated coal ash + flue gas) environ-

ment is more aggressive; in the latter environment, initiation phase was found to be shorter, 
propagation phase taking off earlier [23]. Figure 1 schematically illustrates these issues.

7.2. Effect of chemical composition

7.2.1. Effect of chromium level

Gagliano et al. [26] carried out studies on 19 alloys varying in chromium content from 16 to 

44% and concluded that material’s resistance to coal ash corrosion is primarily dependent 

on chromium content, with alloys containing greater than 22% chromium generally exhibit-

ing satisfactory corrosion resistance. According to the rule of thumb in boiler construction 

industry, with increasing chromium content in the alloy matrix, lower corrosion rates are 

expected due to higher ability of sufficient diffusion barrier formation [27]. Based on hot cor-

rosion studies carried out on a number of special steels and superalloys, it was observed that 

weight loss due to hot corrosion decreases with increasing chromium content. This is shown 

schematically in Figure 2. This tendency appears to be true for iron-based austenitic alloys, as 

confirmed within the COORETEC study [28, 29]. But for nickel-based austenitic alloys, this 
tendency cannot be confirmed when SO

2
/SO

3
-rich atmospheres were present. Both grades 617 

and 263 have similar chromium content; however, they perform very differently in SO
2
/SO

3
-

rich environment. Even though chromium content of alloy 617 is high lying at 22%, the oxide 

scale is apparently not capable of forming a diffusion barrier tight enough to protect metal 
against sulfur-induced corrosion [18].

7.2.2. Effect of cobalt

Cobalt is less resistant to hot corrosion than nickel. Nickel-based alloys are in general more 
resistant to low-temperature hot corrosion than cobalt-based alloys. For example, Tiwari [30] 

studied the relative hot corrosion behavior of a nickel-based superalloy and a cobalt-based 
superalloy in Na

2
SO

4
-60% V

2
O

5
 environment at 900°C and reported that the latter had inferior 

corrosion resistance.

Zhao et al. [15] reported the hot corrosion reaction in superalloy 740 propagated by the out-

ward migration of Cu and the inward migration of SO
3
. With the progressive formation of 
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Cr
2
O

3
 scale, there is an increase in Cr-depletion and enrichment of Co and Ni in the layers 

immediately below the scale. Due to the high diffusivity of Co in the scale, CoO forms on the 
exterior of the scale. CoO is surrounded by Cr

2
O

3
, and the solid-state reaction occurs to form 

CoCr
2
O

4
 spinel in the outer of the scale gradually. CoO forming on the surface layer reacts 

with SO
3
 to form CoSO

4
. Even though NiO may form on the surface and NiSO

4
 formation 

could result through the reaction of NiO and SO
3
, it is believed that CoSO

4
 forms preferen-

tially due to the fact that CoSO
4
 is much more stable thermodynamically than NiSO

4
. The 

dissolution of Co and CoO induces severe low-temperature hot corrosion. It may be noted in 

this context that some candidate superalloy grades have considerable Co level in the chemical 

composition. For example, superalloy 740 has as much as 19–20 wt% Co, and alloy 617 has 

10–11 wt% Co. Zhao et al. [15] suggested that a decrease in Co level of the superalloy 740 will 

act in a beneficial way to resist coal ash/flue gas corrosion. Further studies are required to 
evaluate the effect of a decrease in the level of Co on the hot corrosion behavior of alloy 740.

7.2.3. Effect of molybdenum

Catastrophic or self-sustaining rapid hot corrosion can occur in superalloys, which contain 

molybdenum because molybdenum oxide can react with Na
2
SO

4
 in the salt [31]. The effect 

of Mo on hot corrosion of superalloys was reported [32–35]. The alloy containing Mo suffers 
catastrophic degradation. It is reported that MoO

2
 reacts with Na

2
SO

4
 to produce an acid salt 

(SO
2
-rich), leading to acidic fluxing. The MoO

3
 may get incorporated into the Na

2
SO

4
 via the 

formation of complex compounds such as Na
2
MoO

4
, Na

2
MoO

4
.MoO

3
, and Na

2
MoO

4
.2MoO

4
. 

Figure 1. Schematic showing the initiation and propagation phases in the hot corrosion process.
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All these phases are liquid and have a high solubility of Al
2
O

3
 and Cr

2
O

3
. It may be noted in 

this context that some of the candidate superalloys have significant levels of Mo. For example, 
alloy 617 has as much as ~9 wt% Mo in its chemical composition.

7.3. Effect of temperature

Operating temperature is one of the important factors that influence sulfidation tendency 
in coal ash hot corrosion of nickel-based superalloys [5]. A high sulfidation tendency can 
be observed at low temperatures due to the formation of low-melting alkali sulfate eutectic 
mixtures [5]. This is the reason why Ni-based superalloys suffer rapid degradation in the tem-

perature range of the so-called Type II hot corrosion. But, the sulfidation tendency decreases 
at the high-temperature form of hot corrosion, in the temperature of the so-called Type I hot 

corrosion. Extent of hot corrosion of Inconel 740 was found to be an important function of the 

temperature in the temperature range of 700–800°C studied by the authors. The corrosion rate 

was well in the acceptable range at 700°C. There was a 10-fold increase in the rate on increas-

ing the temperature to 750°C, and this was associated with large-scale internal sulfidation 
and TiS formation. The corrosion rate at 800°C was lower than at 750°C, and the extent of TiS 

formation was also lower than at 750°C.

The course of corrosion reaction can change with operating temperature. For Ni-XCr-10Al 

alloy, corrosion follows a multistage parabolic rate law at 700°C, but it changes to a quasipa-

rabolic rate at 800°C [36].

Zhao et al. [15] studied the hot corrosion of alloy 740 at 550 and 700°C. Molten sulfate-induced 

hot corrosion did not occur at 550°C since the sulfates on the coal ash do not melt at this 

Figure 2. Schematic of the dependence of weight loss due to hot corrosion at 650°C on Cr content based on data obtained 

for various special steels and superalloys.
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temperature. At 700°C, due to the formation of low-melting point eutectic, molten sulfates 

form and cause accelerated attack after about 1000 h of exposure. No internal sulfidation 
occurred at 550°C, while sulfides precipitated at scale/alloy interface and in Cr-depletion zone 
at 700°C. The spinel phases occur in corrosion product at 700°C, while at 550°C that was not 

the case.

7.4. Effect of aggressive species in the environment

The type and extent of hot corrosion are a function of the composition of flue gas, particularly 
its SO

2
 content [19]. It has been demonstrated that the extent of hot corrosion of Inconel 740 in 

the flue gas with SO
2
 was higher than that in the flue gas without SO

2
 [19]. The extent of sul-

fidation attack was much higher in the flue gas with SO
2
. SO

2
 in flue gas accelerated the cor-

rosion damage of the alloy in coal ash environment. The metal loss was found to be doubled 

after 123 h of exposure on switching over from flue gas without SO
2
 to flue gas with 1% SO

2
. 

The sulfidation was predominant in the propagation stage.

8. Conclusion

The subject of hot corrosion of superalloys in coal-fired boilers in advanced power plants is 
a highly complex phenomenon, with a large multiplicity of variables coming into picture. 

The chemical composition of the alloy plays an important role in this context. High levels 

of cobalt and molybdenum may have a detrimental effect. While high levels of chromium 
were found to be useful in combating hot corrosion, a simple relationship between chro-

mium level and resistance to hot corrosion does not seem to hold good when environments 

contain sulfur-bearing species. Clearly, further work is warranted to optimize the chemical 
composition to combat hot corrosion while maintaining the stress rupture strength and 

microstructural stability over long periods of power plant operation. Increasing levels of 

sulfur-bearing species in the environment increase the extent of sulfidation and suscepti-
bility to hot corrosion. Temperature is also an important parameter in influencing the hot 
corrosion process; the progress of corrosion reaction and the phases present in the corro-

sion product could be very different, depending on the reaction temperatures.
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