
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



7 

Optical Three-axis Tactile Sensor for  
Robotic Fingers 

Masahiro Ohka1, Jumpei Takata2, Hiroaki Kobayashi3, Hirofumi Suzuki4, 

Nobuyuki Morisawa1 and Hanafiah Bin Yussof1,5 
1Nagoya University,  

2Olympus, Co.,  
3Toyota Industry, Co.,  

4Honda, Co., 
5Universiti Tehnologi MARA 

1,2,3,4Japan 
5Malaysia 

1. Introduction     

Tactile sensors capable of sensing normal and shearing force produced on a robotic finger 
and an object are useful for fitting a dextrose hand that can be applied to tasks that require 
human-like handling. Examples include such manufacturing tasks as assembly, 
disassembly, inspection, and materials handing. Especially in the case of humanoid robots, 
grasping slippery or flexible objects is required in living environments for human beings in 
contrast to industrial robots that handle standardized objects in controlled environments. 
Since the three-axis tactile sensor is effective in such cases, its importance will increase with 
improvements in humanoid robots.  
A hemispherical tactile sensor is developed for general-purpose use with our three-axis 
tactile sensor that is mounted on the fingertips of a multi-fingered hand. The present three-

axis tactile sensor is comprised of an acrylic dome, a light source, an optical fiber scope, and 
a CCD camera. The light emitted from the light source is directed onto the edge of the 
hemispherical acrylic dome through optical fibers. The sensing elements are concentrically 
arranged on the acrylic dome. 

In the following sections, after conventional tactile sensors are summarized to compare the 

present tactile sensor’s merits and demerits with conventional tactile sensors,’ the principle 

of the three-axis tactile sensor is described. Then the basic sensing characteristics are 

examined for evaluating the present tactile sensor. Not only normal and shearing force 

sensing but also repeatability is examined in a series of experiments. Finally, surface 

scanning and object manipulation with one finger are shown to verify the applicability of 

the present tactile sensor to multi-fingered hands. 

2. Short survey of tactile sensors 

The importance of tactile sensors was first emphasized in 1982 by Harmon (Harmon, 1982). 

In this paper, human hand-like properties were desired in addition to functions of O
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distributed logic array. Based on questionnaires of robot engineers, he summarized such 

specifications of tactile sensors as a 10 x 10 array size, 1 – 10 ms response time, a wide 

dynamic range of 1:1000, linearity, and a skin-like surface. 

So far, various tactile sensors have been developed on the basis of several physical 
phenomena, such as the piezoresistance effect (Ohka, M. et al., 1994; Takeuchi et al., 1994), 
the capacitance variation (Novak, J. L., 1989), the piezoelectric effect (Dario et al., 1984; 
Bicchi et al., 1989; Howe & Cutkosky, 1993; Yamada & Cutkosky, 1994), the resistance 
variation of conductive rubber (Raibert & Tanner, 1982; Shimojo & Ishikawa, 1990), 
magnetic variation (Hackwood et al., 1983), and the optical effect(Mott et al., 1984; Tanie et 
al., 1986; Nicholls, 1990; Maekawa, 1992; Borovac et al., 1996). However, even today, 
multirole tactile sensors have not been developed since every tactile sensor has both merits 

and demerits. For example, although semiconductor type tactile sensors utilizing the 
piezoresistance effect possess good linearity and can internally incorporate data processing 
functions with IC technology, they are fragile. Such fragility is fatal since tactile sensing 
intrinsically requires contact between the finger surface and an object. While conductive 
rubber-type tactile sensors possess such excellent characteristics as large detective area and 
skin-like soft surface, they emit spontaneous noise generated by the chattering of carbon 
particles distributed in the rubber medium and also have hysteresis. 

Although optical effect type tactile sensors (hereafter, optical tactile sensor) possess several 

defects as well, they can be easily produced using simple equipment and Charge Coupled 

Device (CCD) cameras and image data processing, which are mature techniques. Thus we 

developed an optical three-axis tactile sensor based on the principle of an optical uniaxial 

tactile sensor comprised of an optical waveguide plate, made of transparent acrylic and 

illuminated along its edge by a light source (Mott et al., 1984; Tanie et al., 1986; Nicholls, 

1990; Maekawa, 1992). As shown in Fig. 1, the light directed into the plate remains within it 

due to the total internal reflection generated because the plate is surrounded by air, which 

has a lower refractive index than the plate. A rubber sheet featuring an array of conical 

feelers is placed on the plate to maintain array surface contact. If an object contacts the back 

of the rubber sheet and produces contact pressure, the feelers collapse, and at the points 

where these feelers collapse, light is diffusely reflected out of the reverse surface of the plate. 

The distribution of contact pressure is calculated from the bright areas viewed from the 

plate’s reverse surface.  

 
Fig. 1. Conventional optical tactile sensor 
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Improving the uniaxial tactile sensor to design a three-axis tactile sensor is possible. A new 

sensing element for it has been developed based on previous investigations (Ohka et al., 

1995; Ohka et al., 2004a; Ohka et al., 2004b; Ohka et al., 2005c); it has a columnar feeler and 

four conical feelers that maintain contact with the acrylic surface while the tip of the 

columnar feeler touches an object. Normal and shearing forces applied to the columnar 

feeler tip are calculated from the area-sum and area-difference for the contact areas, 

respectively. An optical three-axis tactile sensor for micro robots was developed on the basis 

of simplified structure with a miniaturization advantage (Ohka et al., 2005b). Using simple 

rubber sheets having only a conical feeler array and an image processing technique, normal 

and shearing forces are calculated from the integrated grayscale value and the movement of 

its centroid, respectively. However, these three-axis tactile sensors can approach an object 

surface within limited direction due to their flat surfaces. 

3. Sensing principle of optical three-axis tactile sensor 

3.1 Structure of the present optical tactile sensor 
The flat surface type tactile sensor described in the previous section is improved to be a 

hemispherical tactile sensor, which we intend to mount on the fingertips of a multi-fingered 

hand, as shown in Fig. 2 (Ohka et al., 2005c; Ohka et al., 2006). The multi-fingered robotic 

hand for general-purpose use in robotics that includes links, fingertips equipped with the 

three-axis tactile sensor, and microactuators (YR-KA01-A000, Yasukawa). Each 

microactuator consists of an AC servo motor, a harmonic drive, and an incremental encoder 

and is particularly developed for multi-fingered hand applications.  

 
Fig. 2. Rendering of a three fingered hand equipped with optical three-axis tactile sensors 
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Since the tactile sensor essentially requires a lens system, it is difficult to make it be thinner, 

so it should be designed as an integral type of a fingertip and a hemispherical three-axis 

tactile sensor, as shown in Fig. 3. It is composed of a fiberscope, an acrylic dome, a fixing 

dome, optical fibers and 41 sensing elements. The sensing element comprised of a columnar 

feeler and eight conical feelers is adopted, because the element showed wide measuring 

range and good linearity in a previous paper (Ohka et al., 2005c). The sensing elements are 

made of silicone rubber (KE119, Shinetsu Co.) and are designed to maintain contact with the 

conical feelers and the acrylic board and to make the columnar feelers touch an object. Each 

columnar feeler features a flange to fit it into a counter bore portion in the fixing dome to 

protect the columnar feeler from horizontal displacement caused by shearing force. 

Figure 4 shows a schematic view of the present tactile processing system to explain the 

sensing principle. The light emitted from the light source is directed into the acrylic dome 

through the optical fiber. Contact phenomena are observed as image data, acquired by the 

CCD camera through a bore scope guide and the fiberscope, and transmitted to the 

computer to calculate the three-axis force distribution. 
 

 
Fig. 3. Design of a fingertip including optical three-axis tactile sensor 

3.2 Expressions for sensing element located on vertex  
Dome brightness is inhomogeneous because the edge of the dome is illuminated and light 

converges on its parietal region. Since the optical axis coincides with the center line of the 

vertex, the apparent image of the contact area changes based on the sensing element’s 

latitude. Although we must consider the above problems to formulate a series of equations 

for the three components of force, the most basic case sensing element located on the vertex 

will be considered first. 

Coordinate O-xyz is adopted, as shown in Fig. 5. Based on previous studies (Ohka et al., 

2005c), since grayscale value ( )yxg ,  obtained from the image data is proportional to 

pressure ( )yxp ,  caused by contact between the acrylic dome and the conical feeler, normal 
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force is calculated from integrated grayscale value G . Additionally, shearing force is 

proportional to the centroid displacement of the grayscale value. Therefore, the xF , yF , and 

zF  values are calculated using integrated grayscale value G  and the horizontal 

displacement of the centroid of grayscale distribution jiu yx uu +=  as follows: 

 
Fig. 4. Principle of three-axis tactile sensor system 

 
Fig. 5. Relationship between spherical and Cartesian coordinates 

 )( xxx ufF = , (1) 

 )( yyy ufF = , (2) 

 )(GgFz −=  (3) 

where i and j are the orthogonal base vectors of the x- and y-axes of a Cartesian coordinate, 

respectively, and )(xfx , )(xfy , and )(xg  are approximate curves estimated in calibration 

experiments. 
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3.3 Expressions for sensing elements other than those located on vertex  
For sensing elements other than those located on the vertex, each local coordinate Oi-xiyizi is 

attached to the root of the element, where suffix i denotes element number. Each zi-axis is 

aligned with the center line of the element and its direction is along the normal direction of 

the acrylic dome. The zi-axis in local coordinate Oi-xiyizi is taken along the center line of 

sensing element i so that its origin is located on the crossing point of the center line and the 

acrylic dome's surface and its direction coincides with the normal direction of the acrylic 

dome. If the vertex is likened to the North Pole, the directions of the xi- and yi-axes are north 

to south and west to east, respectively. Since the optical axis direction of the CCD camera 

coincides with the direction of the z-axis, information of every tactile element is obtained as 

an image projected into the O-xy plane. The obtained image data  ( )yxg ,  should be 

transformed into modified image  ( )ii yxg , , which is assumed to be taken in the negative 

direction of the zi-axis attached to each sensing element. The transform expression is derived 

from the coordinate transformation of the spherical coordinate to the Cartesian coordinate 

as follows: 

 iii yxgyxg ϕsin/),(),( = . (4) 

Centroid displacements included in Eqs (1) and (2)  ( )yxux ,  and  ( )yxuy ,  should be 

transformed into  ( )iix yxu ,  and  ( )iiy yxu ,  as well. In the same way as Eq. (4), the transform 

expression is derived from the coordinate transformation of the spherical coordinate to the 

Cartesian coordinate as follows: 

 
i

iyix

iix

yxuyxu
yxu

ϕ

φφ

sin

sin),(cos),(
),(

+
= , (5) 

 iyixiiy yxuyxuyxu φφ cos),(sin),(),( += . (6) 

4. Basic sensing characteristics 

4.1 Experimental apparatus 
We developed a loading machine shown in Fig. 6 that includes an x-stage, a z-stage, 

rotary stages, and a force gauge (FGC-0.2B, NIDEC-SIMPO Co.) to detect the sensing 

characteristics of normal and shearing forces. The force gauge has a probe to measure 

force and can detect force ranging from 0 to 2 N with a resolution of 0.001 N. The 

positioning precisions of the y-, the z-, and rotary stages are 0.001 mm, 0.1 mm, and 0.1° , 
respectively.  

Output of the present tactile sensor is processed by the data processing system shown in Fig. 

6. The system is composed of an image processing board (Himawari PCI/ S, Library, Co.) 

and a computer. Image data acquired by the image processing board are processed by 

software made in-house. The image data acquired by the CCD camera are divided into 41 

sub-regions, as shown in Fig. 7. The dividing procedure, digital filtering, integrated 

grayscale value and centroid displacement are processed on the image processing board. 

Since the image warps due to projection from a hemispherical surface, as shown in Fig. 7, 

software installed on the computer modifies the obtained data. The motorized stage and the 

force gauge are controlled by the software. 
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Fig. 6. Loading machine and tactile data processing system 

 
Fig. 7. Address of sensing elements 

4.2 Sensing normal force 
Because the present tactile sensor can detect not only normal force but also shearing force, we 
must confirm the sensing capability of both forces. In normal-force testing, by applying a normal 
force to the tip of a sensing element using the z-stage after rotating the attitude of the tactile 
sensor, it is easy to test the specified sensing element using the rotary stage. Since the rotary 

stage’s center of rotation coincides with the center of the present tactile sensor’s hemispherical 
dome, testing any sensing element aligned along the hemisphere’s meridian is easy. 
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To evaluate the sensing characteristics of sensing elements distributed on the hemispherical 

dome, we need to measure the variation within the integrated grayscale values generated by 

the sensor elements. Figure 8 shows examples of variation in the integrated grayscale value 

caused by increases in the normal force for sensing element No. 0, 1, 5, 9, 17, 25, and 33. In 

these experiments, normal force is applied to a tip of each tactile element. As the figure 

indicates, the gradient of the relationship between the integrated grayscale value and 

applied force increases with an increase in ϕ ; that is, sensitivity depends upon the latitude 

on the hemisphere. Dome brightness is inhomogeneous because the edge of the dome is 

illuminated and light converges on its parietal region. Brightness is represented as a 

function of latitude ϕ , and since sensitivity is uniquely determined by latitude, it is easy to 

modify the sensitivity according to ϕ . 

 

Fig. 8. Relationship between applied force and grayscale value  

However, sensing elements located at the same latitude show different sensing 

characteristics. For example, the sensitivities of element No. 9 and 17 should coincide since 

they have identical latitude; however, as Fig. 8 clearly indicates, they do not. The difference 

reflects the inhomogeneous brightness of the acrylic dome. Therefore, we need to obtain the 

sensitivity of every sensing element. 

When generating the shearing-force component, both the rotary and x-stages are controlled 

to specify the force direction and sensing element. First, the rotary stage is operated to give 

force direction θ . The x-stage is then adjusted to the applied tilted force at the tip of the 

specified sensing element. The inserted figure in Fig. 9 shows that the sensing element 

located on the parietal region can be assigned based on the procedure described above. 

After that, a force is loaded onto the tip of the sensing element using the z-stage. Regarding 

the manner of loading, since the force direction does not coincide with the axis of the 

sensing element, slippage between the probe and the tip of the sensing element occurs. To 

eliminate this problem, a spherical concave portion is formed on the probe surface to mate 

the concave portion with the hemispherical tip of the tactile element. Normal force FN  and 

www.intechopen.com



Optical Three-axis Tactile Sensor for Robotic Fingers 

 

111 

shearing force FS applied to the sensing elements are calculated using the following 

formulas, when force  F is applied to the tip of the tactile element: 

 

Fig. 9. Generation of shearing force component 

 θcosFFN = , (7) 

 θsinFFS = . (8) 

To show that under combined loading condition normal force component was 

independently obtained with Eq. (3), we applied inclined force to the tip of the tactile 

element to examine the relationship between the normal component of applied force 

obtained by Eq. (7) and integrated grayscale value. Figure 10 displays the relationship for 
 

 
Fig. 10. Relationship between integrated grayscale value and applied normal force at several 

inclinations 
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No. 0. Even if the inclination is varied from -30  to 30 c , the relationship coincides within a 

deviation of 3.7%. Therefore the relationship between the normal component of applied 

force and the integrated grayscale value is independent of inclination θ . 

 

Fig. 11. Relationship between centroid displacement and applied shearing force 

 
Fig. 12. Precision of two-dimensional shearing force detection 
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4.2 Sensing shearing force 
When force is applied to the tip of the sensing element located in the parietal region under 

several  θ s, the relationships between the displacement of the centroid and the shearing-

force component calculated by Eq. (8) are obtained, as shown in Fig. 11. Although the 

inclination of the applied force is varied in a range from 15 to 60°, the curves converge into a 

single one. Therefore, the applied shearing force is obtained independently from centroid 

displacement.  

When the tactile element accepts directional forces of 45, 135, 225, and 315°, centroid 

trajectories are shown in Fig. 12 to examine shearing force detection under various 

directions except for the x- and y-directions. If the desired trajectories shown in Fig. 12 are 

compared to the experimental results, they almost trace identical desired trajectories. The 

present tactile sensor can detect various detections of applied force. 

4.3 Repeatability 
Figure 13 shows repeatability of relationship between centroid displacement and applied 

shearing force. The relationship between the integrated grayscale value and applied force 

has high repeatability. Experimental results from 1,000 repetitions on No. 8 are 

superimposed in Fig. 13 and show that all the curves coincide. The deviation among them is 

within 2%. 

 

Fig. 13. Repeatability of relationship between integrated grayscale value and applied force 

Contrary to normal force detection, deviation extension for shearing force is higher than for 

normal force, as shown in Fig. 14. The relationship between centroid movement and 

shearing force depends on the number of times applied force is repeated. However, if we 

compare the 1st to the 100th cycles, the 200th to the 500th cycles, and the 750th to the 1,000th 

cycles, the difference between cycles decreases with an increase of repetitions. It appears 

that centroid displacement is more easily disturbed and displaced by a slight change in 
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loading direction than the integrated grayscale value, even if the probe tip has a concave 

portion mated with the tip of the sensing element. Increasing the number of repetitions 

reduces the disturbance and stabilizes the state. 
 

 

Fig. 14. Repeatability of shearing force detection 

5. Robotic finger equipped with the three-axis tactile sensor 

5.1 Robotic finger driven by dual computer system 
A robotic finger equipped with the three-axis tactile sensor is developed to verify the 

present tactile sensor as shown in Fig. 15. Experiments using the finger are performed also 

as the first step of a series of studies on a dexterous multi-fingered hand. Since the present 

tactile sensor is based on image processing required heavy calculation time, a computer is 

used to only process image data acquired by the CCD camera. Toward a dexterous robotic 

hand equipped with the present tactile sensors, we develop tentatively a system of a robotic 

finger shown in Fig. 15, which possesses two computers; one is for tactile information 

processing; the other is for controlling the robotic finger; these computers are connected 

with a local area network. 

After tactile data are obtained by the aforementioned process, they are sent to the computer 

for robotic finger control through the local area network. In the computer, signals applied to 

joint motors of the robotic finger are calculated to make the fingertip follow a trajectory 

according to an algorithm of Resolved Motion Rate Control (Whitney, 1969; Muir & 

Neuman, 1990). The signals are sent to the motor driver through the digital I/ O board to 

drive the micro actuators. 

In order to verify the robotic hand, experiments are carried out on basic motions such as 

surface scanning and object manipulation, which are performed in object recognition and 

stable grasping. Results of scanning test and object manipulation using are described in the 

following section. 
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Fig. 15. Overview of the present system comprised of robotic hand and tactile data 

processing systems 

5.2 Scanning test on flat surfaces 
In scanning on a flat surface, sensing element located on the vertex of the tactile sensor is 

made to perpendicularly contact with a flat table by adjusting angles 2θ   and 3θ  in Fig. 16. 

After that, a z-stage equipped with a robotic finger is adjusted to obtain appropriate contact 

force (0.1 N). Precision abrasive paper (produced by Sumitomo 3M) is mounted on the table. 

In this experiment, three kinds of abrasive paper, 1, 30, and 60 μ m, were adopted as 

specimens. To examine the dependence of friction coefficient on scanning speed, we chose 

three speeds: 1.4, 6.2, and 25 mm/ sec. 

Variations in normal force, shearing force, and friction coefficient obtained during scanning 

are shown in Fig. 17 to examine the dynamic characteristics of the tactile sensor for the case 

of 1 μ m and 6.2 mm/ sec. Shearing force starts at zero because it is not applied at zero 

speed. After the start, it increases abruptly to reach a constant value. Normal force almost 

shows a constant value. The coefficient of friction almost shows a constant value except near 

the origin. The mean value of the friction coefficient is 0.39. Friction coefficients for 30 and 

60 μ m abrasive paper are 0.40 and 0.53, respectively. 

Next, variation in friction coefficient against variation in scanning velocity is shown in Fig. 

17. In this experiment, 1 μ m abrasive paper is adopted as a specimen and eight trials are 

performed for each scanning speed. As shown in Fig. 18, variation in friction coefficient 

decreases slightly with an increase of scanning velocity. Since cutting resistance decreases 

with an increase of cutting speed in grinding theory, it is assumed that this cutting effect 

will arise in this experiment. 
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Fig. 16. Robotic finger equipped with a three-axis tactile sensor  
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Fig. 17. Variation in force components and friction coefficient during scanning test (abrasive 

paper of 1  m and velocity of 6.2 mm/ sec) 
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Fig. 18. Dependence of friction coefficient on scanning velocity 

6.3 Object manipulation test 
If slippage occurs between a finger and an object, a robotic hand cannot manipulate the 

object without any control based on acquired slippage information. Object manipulation 

tests check its capability to acquire slippage information using one-finger manipulation. 

The robotic finger moves the parallelepiped object, which is put on the acrylic table (Fig. 19). 

Since the object is only put on the table, it is moved based on finger movement. During this 

manipulation, if the time derivative of the shearing force caused on the tactile sensor 

exceeds a specified threshold, slippage is assumed, and the finger moves slightly downward 

to increase compressive force. Since the sensing element is made of silicone rubber, friction 

between the finger and the object can be increased without considerably increasing friction 

between the object and the table. In this experiment, the robotic finger moves along a 

rectangular trajectory, and the object’s movement is measured by a position sensitive 

detector (PSD; PS1100, Toyonaka Kenkyusyo, Co.). 

Figure 20 shows the trajectory and attitude of the manipulated object. To see the attitude 

easier, the parallelepiped object is shown as 1/ 10 size in Fig. 20. As shown in Fig. 20, the 

object moves along the desired trajectory with considerable deviation. To analyze slippage 

phenomenon, variations in normal force and shearing force derivatives are shown in Fig. 21. 

In this experiment, since sensor elements No. 0 and 7 emit rather large signal compared to 

elements No. 1, 3 and 5, which touch the surface, their variations are shown in Fig. 21. 

Where elements such as element No. 0, 1, 3 and 5 are shown in Fig. 18.  To show the 

relationship between the representative points of Figs. 20 and 21, corresponding points are 

shown in both figures as identical characters. 
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Fig. 19. Set up for object manipulations 

 

Fig. 20. Manipulation of parallelepiped object  
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Fig. 21. Time derivative of shearing force in object manipulation 

 In this experiment, since finger moving starts when the compressive force exceeds 0.5 N at 

point A, normal force abruptly decreases just after point A in terms of the inclination of the 

sensing element. Since the present robotic finger only possesses three degrees of freedom 

and cannot control its inclination, the contact point is changed. Consequently, just after 

point B’s normal force of element No. 0 decreases, the normal force of element No. 7 

increases. 

Next, we examine the time derivative of the shearing force in Fig. 21. If the derivative 

vibration is examined on the segments, the derivative on AB is smaller than on others. This 

result means that slippage on others is more considerable than on AB. Consequently, 

deviation after point C becomes considerable in terms of the slippage. 

Through the above experimental results, the present robotic finger possesses sensing ability 

for acquiring the friction coefficients of the object surface and the slippage phenomenon, 

which are useful bits of information for a multi-fingered hand. 

7. Conclusion 

A new three-axis tactile sensor to be mounted on multi-fingered hands is developed based 

on the principle of an optical waveguide-type tactile sensor comprised of an acrylic 

hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. 

The sensing element of the present tactile sensor includes one columnar feeler and eight 

conical feelers. A three-axis force applied to the tip of the sensing element is detected by the 

contact areas of the conical feelers, which maintain contact with the acrylic dome. Normal 

and shearing forces are calculated from integration and centroid displacement of the 

grayscale value derived from the conical feeler’s contacts.  
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A series of experiments is conducted using a y-z stage, rotational stages, and a force gauge 

to evaluate the present tactile sensor. Although the relationship between the integrated 

grayscale value and normal force depended on the sensor’s latitude on the hemispherical 

surface, it was easy to modify sensitivity based on the latitude. Sensitivity to normal and 

shearing forces was approximated with bi-linear curves. The results revealed that the 

relationship between the integrated grayscale value and normal force converges into a 

single curve despite the inclination of the applied force. This was also true for the 

relationship between centroid displacement and shearing force. Therefore, applied normal 

and shearing forces can be obtained independently from integrated grayscale values and 

centroid displacement, respectively. Also, the results for the present sensor had enough 

repeatability to confirm that the sensor is sufficiently sensitive to both normal and shearing 

forces. 

Finally, the three-axis tactile sensor was mounted on a robotic finger of three degrees of 

freedom to evaluate the tactile sensor for dexterous hands. The robotic hand touched and 

scanned flat specimens to evaluate its friction coefficient. Subsequently, it manipulated a 

parallelepiped case put on a table by sliding it. Since the present robotic hand can perform 

the abovementioned tasks with appropriate precision, it is applicable to the dexterous hand 

in subsequent studies. 
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