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Abstract

This chapter presents propagation along the straight rectangular waveguide with
periodic rectangular and circular profiles in the cross section. The objectives in this
study are to explore the effect of the periodic rectangular and circular profiles in the
cross section of the straight waveguide on the output field and to develop the tech-
nique to calculate two kinds of the periodic profiles. The method is based on Laplace
and Fourier transforms and the inverse Laplace and Fourier transforms. The contribu-
tion of the proposed technique is important to improve the method that is based on
Laplace and Fourier transforms and their inverse transforms also for the discontinuous
periodic rectangular and circular profiles in the cross section (and not only for the
continuous profiles). The proposed technique is very effective to solve complex prob-
lems, in relation to the conventional methods, especially when we have a large num-
bers of dielectric profiles. The application is useful for straight waveguides in the
microwave and the millimeter wave regimes, with periodic rectangular and circular
profiles in the cross section of the straight waveguide.
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transmission
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1. Introduction

Review of numerical and approximate methods for the modal analysis of general optical

dielectric waveguides with emphasis on recent developments has been published [1]. Exam-

ples of interesting methods, such as the finite difference method and the finite element method

have been reviewed. The method for the eigenmode analysis of two-dimensional step-index

waveguides has been proposed [2]. The method distinguishes itself other existing interface

methods by avoiding the use of the Taylor series expansion and by introducing the concept of

the iterative use of low-order jump conditions.

The method of selective suppression of electromagnetic modes in a rectangular waveguides by

using distributed wall losses has been proposed [3]. Analytical design method for corrugated

rectangular waveguide has been proposed [4].

A Fourier operator method has been used to derive for the first time an exact closed-form

eigenvalue equation for the scalar mode propagation constants of a buried rectangular dielec-

tric waveguide [5]. Wave propagation in an inhomogeneous transversely magnetized rectan-

gular waveguide has been studied with the aid of a modified Sturm-Liouville differential

equation [6]. A fundamental and accurate technique to compute the propagation constant of

waves in a lossy rectangular waveguide has been proposed [7]. This method is based on

matching the electric and magnetic fields at the boundary and allowing the wave numbers to

take complex values.

A great amount of numerical results for cylindrical dielectric waveguide array have been

presented [8]. Dielectric cylinders have been arrayed by a rectangular mode. When the area of

dielectric cylinder in a unit cell varied from a small number to a big one and even maximum,

interactions between space harmonics firstly got stronger but finally got weaker. Full-wave

analysis of dielectric rectangular waveguides has been presented [9]. The waveguide proper-

ties of permeable one-dimensional periodic acoustic structures have been studied [10]. Analy-

sis of rectangular folded-waveguide millimeter wave slow-wave structure using conformal

transformation has been developed [11].

A simple closed-form expression to compute the time-domain reflection coefficient for a

transient TE10 mode wave incident on a dielectric step discontinuity in a rectangular wave-

guide has been presented [12]. In this paper, an exponential series approximation was pro-

vided for efficient computation of the reflected and transmitted field waveforms.

A waveguide with layered-periodic walls for different relations between the dielectric permit-

tivities of the central layer and the superlattice layers has been proposed [13]. A full-vectorial

boundary integral equation method for computing guided modes of optical waveguides has

been presented [14]. A method for the propagation constants of arbitrary cross-sectional

shapes has been described [15]. Experiment and simulation of TE10 cut-off reflection phase in

gentle rectangular downtapers has been studied [16].

The rectangular dielectric waveguide technique for the determination of complex permittivity

of a wide class of dielectric materials of various thicknesses and cross sections has been

described [17]. In this paper, the technique has been presented to determine the dielectric

constant of materials. Fourier decomposition method applied to mapped infinite domains has
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been described [18], and this method is reliable down to modal cutoff. Analysis for new types

of waveguide with Fourier’s expansion differential method has been proposed [19].

Propagation characteristics of modes in some rectangular waveguides using the finite-

difference time-domain method have been proposed [20]. Analysis of rectangular waveguide

using finite element method has been presented for arbitrarily shaped waveguide [21]. Wave

propagation and dielectric permittivity reconstruction in the case of a rectangular waveguide

have been studied [22].

Important method for the analysis of electromagnetic wave propagation along the straight

dielectric waveguide with arbitrary profiles has been proposed [23]. The mode model method

for wave propagation in the straight waveguide with a circular cross section has been pro-

posed [24]. This method in Refs. [23, 24] related to the methods based on Laplace and Fourier

transforms and the inverse Laplace and Fourier transforms.

The objectives in this chapter are to explore the effect of the periodic rectangular and circular

profiles in the cross section of the straight waveguide on the output field and to develop the

technique to calculate the dielectric profile, the elements of the matrix, and its derivatives of the

dielectric profile. The proposed technique is important to improve the mode model also for the

periodic rectangular and circular profiles and not only for the continuous profiles.

2. Periodic rectangular and circular profiles in the cross section of the

straight waveguide

In this chapter we introduce two different techniques, and the particular applications allow us

to improve the mode model so that we can solve inhomogeneous problems also for periodic

profiles in the cross section of the straight waveguide. Thus, in this chapter we introduce two

techniques to calculate the dielectric profile, the elements of the matrix, and its derivatives of

dielectric profile in the cases of periodic rectangular and circular profiles in the cross section of

the straight rectangular waveguide.

The proposed techniques are very effective in relation to the conventional methods because

they allow the development of expressions in the cross section only according to the specific

discontinuous problem. In this way, the mode model method becomes an improved method to

solve discontinuous problems in the cross section (and not only for continuous problems).

Three examples of periodic rectangular profiles are shown in Figure 1(a–c), and three exam-

ples of periodic circular profiles are shown in Figure 1(d–f) in the cross section of the straight

rectangular waveguide.

An example of periodic structure with two rectangular profiles along x-axis is shown in

Figure 1(a), where the centers of the left rectangle and right rectangle are located at the points

(0.25 a, 0.5 b) and (0.75 a, 0.5 b), respectively. An example of periodic structure with two

rectangular profiles along y-axis is shown in Figure 1(b), where the centers of the upper

rectangle and lower rectangle are located at the points (0.5 a, 0.75 b) and (0.5 a, 0.25 b).

An example of periodic structure with four rectangular profiles along x-axis and y-axis is

shown in Figure 1(c). The center of the first rectangle is located at the point (0.25 a, 0.25 b),
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the center of the second rectangle is located at the point (0.75 a, 0.25 b), the center of the third

rectangle is located at the point (0.25 a, 0.75 b), and the center of the fourth rectangle is located

at the point (0.75 a, 0.75 b).

An example of periodic structure with two circular profiles along x-axis is shown in Figure 1(d),

where the centers of the left circle and right circle are located at the points (0.25 a, 0.5 b) and (0.75

a, 0.5 b). An example of periodic structure with two circular profiles along y-axis is shown in

Figure 1(e), where the centers of the upper circle and lower circle are located at the points (0.5 a,

0.75 b) and (0.5 a, 0.25 b).

An example of periodic structure with four circular profiles along x-axis and y-axis is shown in

Figure 1(f). The center of the first circle is located at the point (0.25 a, 0.25 b), the center of the

second circle is located at the point (0.75 a, 0.25 b), the center of the third circle is located at the

point (0.25 a, 0.75 b), and the center of the fourth circle is located at the point (0.75 a, 0.75 b).

The objective of this chapter is to introduce two different techniques that allow us to improve

the model so that we can solve nonhomogeneous problems also for periodic profiles in the

Figure 1. Examples of the periodic rectangular profiles (a–c) and periodic circular profiles (d–f) in the cross section of the

straight rectangular waveguide.
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cross section of the straight rectangular waveguide. Thus, we need to introduce a technique

and a particular application for the two geometric shapes composed of rectangles or circles in

the cross section. We need to calculate the dielectric profile, the elements of the matrix, and its

derivatives of the dielectric profile in the cases of periodic rectangular profiles (Figure 1(a–c))

and periodic circular profiles (Figure 1(d–f)) in the cross section of the straight rectangular

waveguide.

It is very interesting to compare between two different techniques of the two different kinds of

the profiles (rectangular and circular) in the cross section of the rectangular straight wave-

guide.

3. The techniques to solve two different profiles in the cross section

The two kinds of the different techniques enable us to solve practical problems for the periodic

rectangular profiles (Figure 1(a–c)) and periodic circular profiles (Figure 1(d–f)) in the cross

section of the straight rectangular waveguide.

Figure 2(a) shows one rectangular profile where the center of the rectangle is located at the

point (0.5 a, 0.5 b). Figure 2(b) shows one circular profile where the center is located at the

point (0.5 a, 0.5 b). The proposed techniques to solve discontinuous problems with two

different profiles (rectangular and circular) in the cross section will introduce according to

Figure 2(a and b).

Figure 2(a) shows one rectangular profile in the cross section, and Figure 2(b) shows one

circular profile in the cross section. The dielectric profile g x; yð Þ is given according to

e x; yð Þ ¼ e0 1þ g x; yð Þð Þ. According to Figure 3(a and b) and for g x; yð Þ ¼ g0, we obtain

Figure 2. Examples of the rectangular and circular profiles in the cross section of the straight rectangular waveguide. (a)

One rectangular profile. (b) One circular profile.
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g n;mð Þ ¼
g0
4ab

ðx12

x11

dx

ðy12

y11

exp �j kxxþ kyy
� �� �

dyþ

ð�x11

�x12

dx

ðy12

y11

exp �j kxxþ kyy
� �� �

dy

(

þ

ð�x11

�x12

dx

ð�y11

�y12

exp �j kxxþ kyy
� �� �

dyþ

ðx12

x11

dx

ð�y11

�y12

exp �j kxxþ kyy
� �� �

dy

)

: (1)

If y11 and y12 are not functions of x, then the dielectric profile is given by

g n;mð Þ ¼
g0
ab

ðx12

x11

cos kxxð Þdx

ðy12

y11

cos kyy
� �

dy: (2)

The derivative of the dielectric profile in the case of y11 and y12 which are functions of x is given

by

gx n;mð Þ ¼
2

amπ

ðx12

x11

gx x; yð Þsin
ky

2
y12 � y11
� �

� �

cos
ky

2
y12 þ y11
� �

� �

cos kxxð Þdx, (3)

where gx x; yð Þ ¼ 1=e x; yð Þð Þ de x; yð Þ=dxð Þ, e x; yð Þ ¼ e0 1þ g x; yð Þð Þ, kx ¼ nπxð Þ=a, and ky ¼ mπyð Þ =b.

Similarly, we can calculate the value of gy n;mð Þ, where gy x; yð Þ ¼ 1=e x; yð Þð Þ de x; yð Þ=dyð Þ.

For the cross section as shown in Figure 2(a) and according to Figure 3(b), the center of the

rectangle is located at (0.5 a, 0.5 b), y12 = b/2 + c/2, and y11 = b/2 � c/2. Thus, for this case,

y12 � y11 = c and y12 þ y11 = b. In the same principle, the location of the rectangle should be

taken into account.

Figure 3. (a) The arbitrary profile in the cross section. (b) The rectangular profile in the cross section, as shown in Figure 2(a).
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The particular application is based on the ωε function [25]. The ωε function is used in order to

solve rectangular profile, periodic rectangular profiles, circular profile, and periodic circular

profile in the cross section of the straight waveguide. The ωε function is defined as

ωε rð Þ ¼ Cεexp �ε
2= ε

2 � rj j2
� �h i

for ∣r∣ > ε, where Cε is a constant and
Ð

ωε rð Þdr ¼ 1. In the

limit ε ! 0, the ωε function is shown in Figure 4.

The technique based on ωε function is very effective to solve complex problems, in relation to

the conventional methods, especially when we have a large number of dielectric profiles, as

shown in Figure 1(c and f). We will demonstrate how to use with the proposed technique for

all the cases that are shown in the examples of Figure 1(a–f).

3.1. The technique based on ωε function for the periodic rectangular profile

in the cross section

Figure 1(a) shows the periodic rectangular profile where the center of the left rectangle is

located at (0.25 a, 0.5 b) and the right rectangle is located at (0.75 a, 0.5 b). This dielectric profile

is given by

g xð Þ ¼

g0exp 1� q1 xð Þ
� �

a=2ð Þ � d1 � εð Þ=2 ≤ x < a=2ð Þ � d1 þ εð Þ=2

g0 a=2ð Þ � d1 þ εð Þ=2 < x < a=2ð Þ þ d1 � εð Þ=2

g0exp 1� q2 xð Þ
� �

a=2ð Þ þ d1 � εð Þ=2 ≤ x < a=2ð Þ þ d1 þ εð Þ=2

g0exp 1� q3 xð Þ
� �

3a=2ð Þ � d2 � εð Þ=2 ≤ x < 3a=2ð Þ � d2 þ εð Þ=2

g0 3a=2ð Þ � d2 þ εð Þ=2 < x < 3a=2ð Þ þ d2 � εð Þ=2

g0exp 1� q4 xð Þ
� �

3a=2ð Þ þ d2 � εð Þ=2 ≤ x < 3a=2ð Þ þ d2 þ εð Þ=2

0 else

,

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(4a)

and

Figure 4. The technique based on ωε function in the limit ε ! 0 to solve discontinuous problems.
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g yð Þ ¼

g0exp 1� q5 yð Þ
� �

b� c� εð Þ=2 ≤ y < b� cþ εð Þ=2

g0 b� cþ εð Þ=2 < y < bþ c� εð Þ=2

g0exp 1� q6 yð Þ
� �

bþ c� εð Þ=2 ≤ y < bþ cþ εð Þ=2

0 else

,

8

>

>

>

<

>

>

>

:

(4b)

where

q1 xð Þ ¼
ε
2

ε
2 � x� a=2ð Þ � d1 þ εð Þ=2½ �2

, q2 xð Þ ¼
ε
2

ε
2 � x� a=2ð Þ þ d1 � εð Þ=2½ �2

,

q3 xð Þ ¼
ε
2

ε
2 � x� 3a=2ð Þ � d2 þ εð Þ=2½ �2

, q4 xð Þ ¼
ε
2

ε
2 � x� 3a=2ð Þ þ d2 � εð Þ=2½ �2

q5 yð Þ ¼
ε
2

ε
2 � y� b� cþ εð Þ=2½ �2

, q6 yð Þ ¼
ε
2

ε
2 � y� bþ c� εð Þ=2½ �2

:

The elements of the matrix are given in this case by

g n;mð Þ ¼
g0
ab

ð a=2ð Þ�d1þεð Þ=2

a=2ð Þ�d1�εð Þ=2

exp 1� q1 xð Þ
� �

cos
nπx

a

� 	

dxþ

(

ð a=2ð Þþd1�εð Þ=2

a=2ð Þ�d1þεð Þ=2

cos
nπx

a

� 	

dxþ

ð a=2ð Þþd1þεð Þ=2

a=2ð Þþd1�εð Þ=2

exp 1� q2 xð Þ
� �

cos
nπx

a

� 	

dxþ

ð 3a=2ð Þ�d2þεð Þ=2

3a=2ð Þ�d2�εð Þ=2

exp 1� q3 xð Þ
� �

cos
nπx

a

� 	

dxþ

ð 3a=2ð Þþd2�εð Þ=2

3a=2ð Þ�d2þεð Þ=2

cos
nπx

a

� 	

dxþ

ð 3a=2ð Þþd2þεð Þ=2

3a=2ð Þþd2�εð Þ=2

exp 1� q4 xð Þ
� �

cos
nπx

a

� 	

dx

)

ð b�cþεð Þ=2

b�c�εð Þ=2

exp 1� q5 yð Þ
� �

cos
mπy

b

� �

dyþ

ð bþc�εð Þ=2

b�cþεð Þ=2

cos
mπy

b

� �

dyþ

(

ð bþcþεð Þ=2

bþc�εð Þ=2

exp 1� q6 yð Þ
� �

cos
mπy

b

� �

dyg: (5)

The derivatives of the dielectric profile are given in this case by

gx ¼

d

dx
ln 1þ g0 q1 xð Þ

� �� �

a=2ð Þ � d1 � εð Þ=2 ≤ x < a=2ð Þ � d1 þ εð Þ=2

d

dx
ln 1þ g0 q2 xð Þ

� �� �

a=2ð Þ þ d1 � εð Þ=2 ≤ x < a=2ð Þ þ d1 þ εð Þ=2

d

dx
ln 1þ g0 q3 xð Þ

� �� �

3a=2ð Þ � d2 � εð Þ=2 ≤ x < 3a=2ð Þ � d2 þ εð Þ=2

d

dx
ln 1þ g0 g4 xð Þ

� �� �

3a=2ð Þ þ d2 � εð Þ=2 ≤ x < 3a=2ð Þ þ d2 þ εð Þ=2

0 else

,

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(6a)
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and

gy ¼

d

dx
ln 1þ g0 q5 yð Þ

� �� �

b� c� εð Þ=2 ≤ y < ðb� cþ εÞ=2

d

dx
ln 1þ g0 q6 yð Þ

� �� �

bþ c� εð Þ=2 ≤ x < bþ cþ εð Þ=2

0 else

:

8

>

>

>

>

<

>

>

>

>

:

(6b)

The derivative of the dielectric profile for m = 0 in the case of the periodic profile (Figure 1(a))

in the cross section of the waveguide is given in the limit ε ! 0 by

gx n;m ¼ 0ð Þ ¼
1

a

ð a=2ð Þ�d1þεð Þ=2

a=2ð Þ�d1�εð Þ=2

cos kxxð Þ
d

dx
ln 1þ g0 q1 xð Þ

� �
 �

dx

(

þ

ð a=2ð Þþd1þεð Þ=2

a=2ð Þþd1�εð Þ=2

cos kxxð Þ
d

dx
ln 1þ g0 q2 xð Þ

� �
 �

dx

þ

ð 3a=2ð Þ�d2þεð Þ=2

3a=2ð Þ�d2�εð Þ=2

cos kxxð Þ
d

dx
ln 1þ g0 q3 xð Þ

� �
 �

dx

þ

ð 3a=2ð Þþd2þεð Þ=2

3a=2ð Þþd2�εð Þ=2

cos kxxð Þ
d

dx
ln 1þ g0 q4 xð Þ

� �
 �

dx

)

:

Similarly, we can calculate the derivative of the dielectric profile for any value of n and m.

3.2. The technique based on ωε function for one circular profile in the cross section

The dielectric profile for one circle is given where the center is located at (0.5 a, 0.5 b) (Figure 2(b))

by

g x; yð Þ ¼
g0 0 ≤ r < r1 � ε1=2

g0exp 1� q
ε
rð Þ


 �

r1 � ε1=2 ≤ r < r1 þ ε1=2
,

�

(7)

where

q
e
rð Þ ¼

ε1
2

ε1
2 � r� r1 � ε1=2ð Þ½ �2

,

else g x; yð Þ ¼ 0.

The radius of the circle is given by

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� a=2ð Þ2 þ y� b=2ð Þ2
q

:

Similarly, we can calculate the periodic circular profiles according to their location.
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Thus, the derivatives of the dielectric profile for one circle are given where the center is located

at (0.5 a, 0.5 b) (Figure 2(b)) in the region r1 � ε1=2 ≤ r < r1 þ ε1=2 by

gx ¼
�2 g0 cosθ exp 1� q

e
rð Þ


 �

r� r1 � ε1=2ð Þ½ �ε1
2

1þ g0 exp 1� q
e
rð Þ


 �� �

ε1
2 � r� r1 � ε1=2ð Þ½ �2

h i2
, (8a)

gy ¼
�2 g0 sinθ exp 1� q

e
rð Þ


 �

r� r1 � ε1=2ð Þ½ �ε1
2

1þ g0 exp 1� q
e
rð Þ


 �� �

ε1
2 � r� r1 � ε1=2ð Þ½ �2

h i2
, (8b)

else gx ¼ 0, and gy ¼ 0.

The elements of the matrices for one circle are given where the center is located at (0.5 a, 0.5 b)

(Figure 2(b)) by

g n;mð Þ ¼
g0
ab

ð2π

0

ðr1�e1=2

0

cos
nπ

a
rcosθþ

a

2

� �

� �

cos
mπ

b
rsinθþ

b

2

� 	� �

þ

(

ð2π

0

ðr1þe1=2

r1�e1=2

cos
nπ

a
rcosθþ

a

2

� �

� �

cos
mπ

b
rsinθþ

b

2

� 	� �

exp 1� q
ε
rð Þ


 �

)

rdrdθ, (9)

gx n;mð Þ ¼ �
2g0
ab

ð2π

0

ðr1þe1=2

r1�e1=2

e1
2 r� r1 � e1=2ð Þ½ �exp 1� q

e
rð Þ


 �

cosθ

e1
2 � r� r1 � e1=2ð Þ½ �2

h i2
1þ g0exp 1� q

e
rð Þ


 �
 �

8

>

<

>

:

cos
nπ

a
rcosθþ

a

2

� �

� �

cos
mπ

b
rsinθþ

b

2

� 	� ��

rdrdθ, (10a)

gy n;mð Þ ¼ �
2g0
ab

ð2π

0

ðr1þe1=2

r1�e1=2

e1
2 r� r1 � e1=2ð Þ½ �exp 1� q

e
rð Þ


 �

sinθ

e1
2 � r� r1 � e1=2ð Þ½ �2

h i2
1þ g0exp 1� q

e
rð Þ


 �
 �

8

>

<

>

:

cos
nπ

a
rcosθþ

a

2

� �

� �

cos
mπ

b
rsinθþ

b

2

� 	� ��

rdrdθ, (10b)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� a=2ð Þ2 þ y� b=2ð Þ2
q

.

Similarly, we can calculate the periodic circular profile according to the number of the circles

and the locations of their centers.

The matrix G is given by the form

G ¼

g00 g�10 g�20 … g�nm … g�NM

g10 g00 g�10 … g� n�1ð Þm … g� N�1ð ÞM

g20 g10 ⋱ ⋱ ⋱

⋮ g20 ⋱ ⋱ ⋱

gnm ⋱ ⋱ ⋱ g00 ⋮

⋮

gNM … … … … … g00

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (11)
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Similarly, theGx andGy matrices are obtained by the derivatives of the dielectric profile. These

matrices relate to the method that is based on the Laplace and Fourier transforms and their

inverse transforms [23].

The technique is important to solve discontinuous periodic rectangular and circular profiles in

the cross section of the straight waveguide. The graphical results in the next section will be

demonstrated as a response to a half-sine (TE10) input-wave profile.

4. Numerical results of periodic rectangular and circular dielectric

materials

All the graphical results are demonstrated as a response to a half-sine (TE10) input-wave profile for

the periodic rectangular profiles (Figure 1(a–c)) and the periodic circular profiles (Figure 1(d–f)) in

the cross section of the straight rectangular waveguide.

The output fields for the periodic structure with the two rectangular profiles along x-axis

(Figure 1(a)) are demonstrated in Figure 5(a and b) for er ¼ 3 and for er ¼ 10, respectively. In

this examples, the left rectangle is located at the point (0.25 a, 0.5 b), and the center of the right

rectangle is located at the point (0.75 a, 0.5 b). Figure 5(c) shows the output field as the function

of x-axis where y = b/2 = 10 mm for four values of er ¼ 3, 5, 7, and 10, respectively.

Figure 5. The output field as a response to a half-sine (TE10) input-wave profile for the periodic rectangular profiles (a–c)

that relate to cross section (Figure 1(a)) and for the periodic circular profiles (d–f) that relate to cross section (Figure 1(d)).

The results are shown for (a) er ¼ 3; (b) er ¼ 10; (c) er ¼ 3, 5, 7, and 10; (d) er ¼ 3; (e) er ¼ 10; and (f) er ¼ 3, 5, 7, and 10.
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The parameters of these examples are a ¼ 2 cm, b ¼ 2 cm, λ ¼ 3:75 cm, β ¼ 58 1=m,

k0 ¼ 167 1=m, and z ¼ 15 cm.

The output fields for the periodic structure with the two circular profiles along x-axis (Figure 1(d))

are demonstrated in Figure 5(d and e) for er ¼ 3 and for er ¼ 10, respectively. In this examples,

the left circle is located at the point (0.25 a, 0.5 b), and the center of the right circle is located at

the point (0.75 a, 0.5 b). Figure 5(f) shows the output field as the function of x-axis where

y = b/2 = 10 mm for four values of er ¼ 3, 5, 7, and 10, respectively.

It is interesting to see a similar behavior of the output results in the cases of periodic rectangu-

lar profiles (Figure 5(a–c)) that relate to Figure 1(a) and in the cases of periodic circular profiles

(Figure 5(d–f)) that relate to Figure 1(d), where er ¼ 3 and 10, respectively. The behavior is

similar, but not for every er, and the amplitudes of the output fields are different.

The output fields (Figure 5(a–f)) are strongly affected by the input-wave profile (TE10 mode), the

periodic structure with the two rectangular profiles or the two circular profiles along x-axis, and

the distance between the two centers of the rectangular or the circular profiles.

The output fields for the periodic structure with the two rectangular profiles along y-axis

(Figure 1(b)) are demonstrated in Figure 6(a–c) for er ¼ 3, 5, and 10, respectively. The centers

of the upper rectangle and the lower rectangle are located at the points (0.5 a, 0.75 b) and

Figure 6. The output field as a response to a half-sine (TE10) input-wave profile for the periodic rectangular profiles (a–c)

that relate to cross section (Figure 1(b)). The results are shown for (a) er ¼ 3; (b) er ¼ 5; (c) er ¼ 10; (d) er ¼ 3, 5, 7, and 10;

and (e) er ¼ 3, 5, 7, and 10.
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(0.5 a, 0.25 b), respectively. The output field is shown in Figure 6(d) for x-axis where y = b/2 =

10 mm and is shown in Figure 6(e) for y-axis where x = a/2 = 10 mm and for er ¼ 3, 5, 7, and 10,

respectively.

The parameters of these examples are a ¼ 2 cm, b ¼ 2 cm, c ¼ 2:5 mm, d ¼ 2:5 mm, λ ¼ 3:75 cm,

β ¼ 58 1=m, k0 ¼ 167 1=m, and z ¼ 15 cm.

By changing only the parameter er from 3 to 10, the relative profile of the output field is

changed from a half-sine (TE10) profile to a Gaussian shape profile, as shown in Figure 6(d).

The output field in Figure 6(e) demonstrates the periodic structure with the two rectangular

profiles for er ¼ 3, 5, 7, and 10.

The output fields for the periodic structure with the two circular profiles along y-axis (Figure 1(e))

are demonstrated in Figure 7(a–c) for er ¼ 3, 5, and 10, respectively. The centers of the upper

circle and the lower circle are located at the points (0.5 a, 0.75 b) and (0.5 a, 0.25 b), respectively.

The output field is shown in Figure 7(d) for x-axis where y = b/2 = 10 mm and is shown in

Figure 7(e) for y-axis where x = a/2 = 10 mm for er ¼ 3, 5, 7, and 10, respectively.

By changing only the parameter er from 3 to 10, the relative profile of the output field is

changed from a half-sine (TE10) profile to a Gaussian shape profile. The output field in Figure 7

(e) demonstrates the periodic structure with the two circular profiles for er ¼ 3, 5, 7, and 10.

Figure 7. The output field as a response to a half-sine (TE10) input-wave profile for the periodic circular profiles (a–c) that

relate to cross section (Figure 1(e)). The results are shown for (a) er ¼ 3; (b) er ¼ 5; (c) er ¼ 10; (d) er ¼ 3, 5, 7, and 10; and

(e) er ¼ 3, 5, 7, and 10.
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The parameters of these examples are a ¼ 2 cm, b ¼ 2 cm, c ¼ 2:5 mm, d ¼ 2:5 mm, λ ¼ 3:75 cm,

β ¼ 58 1=m, k0 ¼ 167 1=m, and z ¼ 15 cm. The radius of the circle is equal to 2:5 mm.

The output fields (Figure 6(a–e)) and Figure 7(a–e)) are strongly affected by the input-wave profile

(TE10 mode), the periodic structure with the two rectangular profiles (Figure 1(b)) or circular

profiles (Figure 1(e)) along y-axis, and the distance between the two centers of the profiles.

It is interesting to see a similar behavior of the output results in the cases of periodic rectangu-

lar profiles (Figure 6(a–e)) that relate to Figure 1(b) and in the cases of periodic circular profiles

(Figure 7(a–e)) that relate to Figure 1(e), for every value of er, respectively. According to these

output results, we see the similar behavior for every value of er, but the amplitudes of the

output fields are different.

The output fields for the periodic structure with four rectangular profiles along x-axis and

y-axis (Figure 1(c)) are demonstrated in Figure 8(a and b) for er ¼ 1:2 and 1:4, respectively. The

center of the first rectangle is located at the point (0.25 a, 0.25 b), the center of the second

rectangle is located at the point (0.75 a, 0.25 b), the center of the third rectangle is located at the

point (0.25 a, 0.75 b), and the center of the firth rectangle is located at the point (0.75 a, 0.75 b).

Figure 8. The output field as a response to a half-sine (TE10) input-wave profile in the case of four rectangular profiles

along x-axis and along y-axis (Figure 1(c)) for (a) er ¼ 1:2 and (b) er ¼ 1:4. The output field as a response to a half-sine

(TE10) input-wave profile in the case of four circular profiles along x-axis and along y-axis (Figure 1(f)) for (c) er ¼ 4 and

(b). er ¼ 10.
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By increasing the parameter er from 1.2 to 1.4, the output dielectric profile of the structure of

the periodic rectangular profile increased, the output profile of the half-sine (TE10) profile

decreased, and the output amplitude increased. These results are strongly affected by the

half-sine (TE10) input-wave profile and the locations of the rectangular profiles along x-axis

and along y-axis. The parameters are a ¼ 2 cm, b ¼ 2 cm, z ¼ 15 cm, k0 ¼ 167 1=m, λ ¼ 3:75 cm,

and β ¼ 58 1=m.

The output fields for the periodic structure with four circular profiles along x-axis and y-axis

(Figure 1(f)) are demonstrated in Figure 8(c and d) for er = 4 and 10, respectively. The center of

the first circle is located at the point (0.25 a, 0.25 b), the center of the second circle is located at

the point (0.75 a, 0.25 b), the center of the third circle is located at the point (0.25 a, 0.75 b), and

the center of the firth circle is located at the point (0.75 a, 0.75 b). The parameters are a ¼ 2 cm,

b ¼ 2 cm, z ¼ 15 cm, k0 ¼ 167 1=m, λ ¼ 3:75 cm, and β ¼ 58 1=m.

These results are strongly affected by the half-sine (TE10) input-wave profile, the locations of

the rectangular profiles (Figure 1(c)) or circular profiles (Figure 1(f)) along x-axis and along

y-axis, and the distance between the centers of the profiles. By increasing the parameter εr, the

Gaussian shape of the output field increased.

5. Conclusions

The main objective of this research was to understand the influence of the periodic rectangular

and circular profiles in the cross section along the straight rectangular waveguide on the

output field. The second objective was to develop the technique to calculate two kinds of the

proposed periodic profiles in the cross section. The calculations are based on using Laplace

and Fourier transforms, and the output fields are computed by the inverse Laplace and Fourier

transforms.

The contribution of the technique and the particular application is important to improve the

method that is based on Laplace and Fourier transforms and their inverse transforms also for

the discontinuous problems of the periodic rectangular and circular profiles in the cross section

(and not only for the continuous profiles). The particular application is based on the ωε

function. Thus, the proposed techniques are very effective in relation to the conventional

methods because they allow the development of expressions in the cross section only

according to the specific discontinuous problem.

All the graphical results were demonstrated as a response to a half-sine (TE10) input-wave

profile and the periodic profiles in the cross section of the straight rectangular waveguide.

Three examples of periodic rectangular profiles are shown in Figure 1(a–c), and three exam-

ples of periodic circular profiles are shown in Figure 1(d–f) in the cross section of the straight

rectangular waveguide. It is very interesting to compare between two different techniques of

the two different kinds of the profiles (rectangular and circular) in the cross section of the

rectangular straight waveguide.
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Figure 5(a–c) relates to Figure 1(a) and Figure 5(d–f) relates to Figure 1(d). The output fields

(Figure 6(a–f)) are strongly affected by the input-wave profile (TE10 mode), the periodic

structure with the two rectangular profiles or the two circular profiles along x-axis, and the

distance between the two centers of the rectangular or the circular profiles.

It is interesting to see a similar behavior of the output results in the cases of periodic rectangular

profiles (Figure 5(a–c)) that relate to Figure 1(a) and in the cases of circular profiles (Figure 5(d–f))

that relate to Figure 1(d), where er ¼ 3 and 10, respectively. The behavior is similar, but not for

every er, and the amplitudes of the output fields are different.

Figure 6(a–e) relates to Figure 1(b) and Figure 7(a–e) relates to Figure 1(e). The output fields

(Figure 6(a–e) and Figure 7(a–e)) are strongly affected by the input-wave profile (TE10 mode),

the periodic structure with the two rectangular profiles (Figure 1(b)) or circular profiles

(Figure 1(e)) along y-axis, and the distance between the two centers of the profiles.

By changing only the parameter er from 3 to 10, the relative profile of the output field is

changed from a half-sine (TE10) profile to a Gaussian shape profile, as shown in Figure 6(d)

and Figure 7(d). The output fields in Figure 6(e) and in Figure 7(e) demonstrate the periodic

structure with the two rectangular and circular profiles for er ¼ 3, 5, 7, and 10.

It is interesting to see a similar behavior of the output results in the cases of periodic rectangu-

lar profiles (Figure 6(a–e)) that relate to Figure 1(b) and in the cases of periodic circular profiles

(Figure 7(a–e)) that relate to Figure 1(e), for every value of er, respectively. According to these

output results, we see the similar behavior for every value of er, but the amplitudes of the

output fields are different.

The results of the periodic structures of the output field along x-axis and y-axis are demon-

strated in Figure 8(a–d). Figure 8(a and b) relates to Figure 1(c) and Figure 8(c and d) relates to

Figure 1(f). By increasing the parameter er, the output dielectric profile of the structure of the

periodic rectangular profile increased, the output profile of the half-sine (TE10) profile

decreased, and the output amplitude increased. The results are strongly affected by the half-

sine (TE10) input-wave profile and the locations of the rectangular or circular profiles. The

results show in general similar behavior of the output field, but not the same results, and also

the amplitudes of the output fields are different.

The application is useful for straight waveguides in the microwave and the millimeter wave

regimes, with periodic rectangular and periodic circular profiles in the cross section of the

straight waveguide.
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