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Abstract

This chapter deals with the advances in polymeric waveguide gratings for filtering and
integrated optics applications. Optical polymer materials are widely used for planar and
corrugated micro-optical waveguide grating structures ranging from down a microm-
eter to several hundred micrometers. Light in a polymeric waveguide is transmitted in
discrete modes whose propagation orders depend on incident wavelength, waveguide
dimensional parameters, and material properties. Diffracted optical structures are permit-
tivity-modulated microstructures whose micro-relief surface profiles exhibit global/local
periodicity. The resonant nature and location of such globally periodic structures (diffrac-
tion gratings) excite leaky waveguide modes which couple incident light into reflected/
transmitted plane wave diffraction orders. It describes design & analysis, fabrication, and
characterization of sub-wavelength polymer grating structures replicated in different
polymeric materials (polycarbonate, cyclic olefin copolymer, Ormocomp) by a simple,
cost-effective, accurate, and large scale production method. The master stamp (mold) for
polymer replication is fabricated with an etchless process with smooth surface profile.

Keywords: resonant waveguide gratings, polymeric materials, nanoimprint lithography

1. Introduction

Conventional optical waveguides work on the principle to guide waves in a material sur-
rounded by other material media, the refractive index of the material should be slightly higher
than that of surrounded media such that light can bounce along the waveguide by means of
total internal reflections at the boundaries between different media. The indefinite guiding
progress the waves from successive boundaries which must interfere constructively to gener-
ate a continuous and stable interference pattern along the waveguide. If the interference pat-
tern in not fully constructive, the waves cancel, owing to the self-destruction. The conventional
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optical waveguides are primarily the most common type of thin film optical filters used widely
as narrowband filters in laser cavities, optical telecommunications, and light modulators [1].
However, the realization of sub-nanometer narrowband filters with thin film technique require
hundreds of optical thin-films stack with stringent tolerances over thicknesses and refractive
index variations [2]. Resonant Waveguide Gratings (RWGs) are a new class of narrowband fil-
ters and are widely used in applications such as polarizers [3], laser cavity reflectors [3, 4], light
modulators [5], biosensors [6], and wavelength division multiplexing [7]. Such narrowband
reflectance/transmittance spectral characteristics can be observed by sub-wavelength grating
structures in terms of resonance anomalies [8, 9] with numerous potential applications. RWG
operates with resonance effects with relatively simpler structure of few layers. Owing to the
resonant nature of the sub-wavelength grating, the leaky modes are supported by the struc-
ture (waveguide layer and a grating layer) [10]. In the absence of the grating layer, waveguide
layer supports a true bound mode. This bound mode becomes leaky when a grating layer is
added with the waveguide layer. Eventually, optical energy is coupled out of the waveguide
into radiation modes. On the other hand, the incident plane wave energy is coupled to the
waveguide. The incident plane wave energy is coupled into leaky modes and then back to one
or more radiation modes. This coupling mostly depends on the wavelength, angle of incidence
and other structural parameters of the grating layer. At resonance a sharp peak in reflected/
transmitted light might be observed at a specific combination of these parameters.

Large scale demands for cost-effective yet reliable and efficient photonic components have
led many researchers to consider polymer materials. Polymeric materials become widely use-
ful and increasingly attractive in the fabrication of various micro and nanostructures with
the potential replacement of conventional inorganic materials such as 5iO, and LiNbO, or
semiconductors. Novel polymers have been introduced for replication of nanostructure RWG
through inexpensive and mass-production process [11]. The polymeric materials offer high
thermal expansion coefficient (almost an order of magnitude) in comparison to traditional
inorganic materials as well as thermo-optic coefficient which enable them to use as fast rate
switches. Investigations to fabricate RWG in polymeric materials have been actively pursued
throughout over the past two decades [12, 13].

The capability to fabricate precise novel structures at micro to nanoscale with a wide variety
of materials imposes great challenges to the advancement of nanotechnology and the nanosci-
ences. The semiconductor industry continues pushing to lower structural size and to manu-
facture smaller transistors and high density integrated circuits. The demanding industrial
processes through newly developed lithographic methodologies need to address some critical
issues such as speed, reliability, overlay accuracy, etc. Many alternative approaches have been
used to manufacture nanostructures in past two decades, despite of using expensive tools such
as deep-UV projection lithography and electron beam lithography techniques. These techniques
include micro-contact printing, scanning probe based techniques, dip-pen lithography, and
Nanoimprint Lithography (NIL) [14]. NIL can not only fabricate nanostructures in resists but
can also imprint functional devices in many polymers through ease and cost-effective processes
in a number of applications such as photonics, data storage, biotechnology, and electronics [15].

In this chapter we present details of design, fabrication, and characterization of polymeric RWG
employing affordable techniques and mass production processes. The fabrication of master
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stamp by electron beam lithography and subsequent replication in polymer materials by NIL
is presented to target a number of applications in thermoplastics and UV curable polymers.

2. Theory of resonant waveguide gratings

The grating structure to enhance the resonance anomalies of a periodic profile (periodic
modulation of refractive index) by coupling illuminating plane wave to the leaky modes of
the waveguide of the grating is known as resonant waveguide gratings. Diffraction grating
splits incident plane wave to propagate in different directions so-called diffraction orders.
The periodic structure undergo complete interference and resonates with no transmission at a
particular wavelength and incident angle [16]. As a result, light couples out of the waveguide,
propagates up to smaller distances, and appears in the form of narrower reflectance peaks
whose power varies from 0 to 100% over a range of structural parameters [10, 16, 17].

The propagation constant of a leaky mode is complex quantity and expressed as,

B = Bytir (1)

where g and y are pure real numbers while the imaginary part (y) of the propagation constant
represents the propagation loss of the leaky modes [18]. Generally, the spectral width of a
resonance curve is proportional to this propagation loss and the full width at half maximum
is approximated by.

My = AL, 2)

FWHM

where 1 is the resonant wavelength, d is the periodicity.

In 1994, researchers used Effective Medium Theory (EMT) to model stratified media as a thin-
film stack possessing some effective index. The attempts were made to achieve symmetric
spectral response with low sidebands by varying thicknesses of thin-film stacks. This approach
results in to design an effective thin-film layer to be antireflective at resonant wavelength
[19, 20]. Several researchers considered thin-film model for the design of symmetric filters
and suggested numerical solutions based on rigorous modeling methods [21]. To design grat-
ing layer, the effective index model was suggested for thin-film method [19]. In 1956, Rytov
developed a transcendental equation based on EMT to correlate effective refractive index of a
stratified medium to physical parameters and wavelength of light [22]. This equation can be
applied to grating problems and written as for a TE-polarized light:

2 )% « (1 _f)d],

d
(1 - n2 2 tan [ (1 -2 2] = (2= 22 a2 - )

(3)
where n,, n,, n_, are the high, low, and effective indices of the grating, respectively, fis the fill
factor, d is the grating periodicity, and A is the wavelength of the light. In the long wavelength
limit (% > 0), (Eq. (3)) can be solved in terms of an analytic relation:
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N = [fng+(1-Hni" (4)

Eq. (3) is referred as the exact effective index model whereas (Eq. (4)) as zeroth order effective
index model.

The fundamental structure of a RWG is shown in Figure 1. The waveguide grating consist of
a substrate material with refractive index 1, a coupled grating layer with refractive index dis-
tribution 7,(x) along x-direction and a superstrate layer (generally air) with refractive index
n. When light of wavelength A illuminates the grating at an incident angle 0, it results in
generation of various propagated diffraction orders through one-dimensional grating which
can be calculated by fundamental grating equation, given as:

. . A
n,sin@ = nsin6, +m-_ (5)

where A is the wavelength, 0. is the incident angle of light, d is the periodicity of the grating
structure, 0 _ is the diffraction order, m = 0, +1, #2, £3,... is the index of diffraction order, n,
and n, are the indices before and after the interface. For reflection gratings n, is replaced by n,
and for transmission gratings by n,.

Narrow reflection or transmission peaks can be achieved by understanding the physics of the
structure which depends on the excitation of leaky waveguide modes. Consider a reflection
grating with periodicity smaller than the wavelength of light used to allow only zeroth-order
diffraction under plane wave illumination as shown in Figure 2. The resulted reflecting fields
from the gratings may be assumed to produce from two contributions, namely: a direct reflec-
tion and a scattered field reflection [22]. The inherent direct reflection from upper interface is
primary reflection so-called Fresnel reflection whereas the secondary reflection from the grat-
ing structure is due to excitation and rescattering of leaky waveguide modes whose phase
vary continuously to fulfill the coupling relation given below:

R_Z.‘ R:1 Ro R R,

nz(X )

Figure 1. Schematic representation of resonant waveguide Grating’s structure with forward and backward propagated
diffraction orders.
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Figure 2. Schematic view of RWG with refractive index distributions and coated high index cover layer.

vy = kanif ©)
where d is periodicity of the grating, y  is propagation constant of fundamental mode and
k _is wave vector associated with the illuminating plane wave. At the resonance regime the
rapidly varying phase of the secondary field with respect to the incident field (wave number)
becomes similar in phase which gives rise resonance in the form of narrow reflected peak with
wavelength or angle of incidence [23]. In Figure 1, the leaky waveguide modes in lateral direc-
tion are represented by propagation constant y. Due to the leaky nature of propagated modes,
they are shown to possess both real and imaginary parts and form a plane, so-called complex
y-plane. A leaky mode is described by a pole on this complex y-plane. A planar waveguide
supports at least one mode, the pole of which is represented by the real value on this y-plane.
Owing to the introduction of periodicity in the planar structure, such single mode splits into
an infinite number of spatially diffracted orders whose poles are represented by complex
values on this complex y-plane with a separation of 27”. Thus, the leaky waveguide modes are
primarily associated with the periodicity of grating structure and much more closely spaced
poles can be observed for sufficiently small periodic structure compared to incident wave-
length. The magnitudes of real and imaginary parts of such complex poles show the extent
of leaky modes excited by the input plane wave i.e., the coupling of the real part of modes
(poles) with input filed and the associated coupling loss, respectively [24].

3. Selection of polymer materials for optical waveguide

Polymeric materials have become potential candidate with versatility optical device perfor-
mance and functionality. In comparison to inorganic materials, polymeric materials pos-
sess many attributable characteristics. The properties of polymer materials can be changed
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Figure 3. (a) Schematic representation of originally proposed NIL process by Chou. (b) Scanning Electron Microscopy (SEM)
image of a mold possessing pillar array diameter of 10 nm. (c) Replicated structure of mold in PMMA polymer material
with hole array of size 10 nm. Reproduced with permission from [27]. Copyright 1997, American Institute of Physics.

chemically after modifying the chemical structure of the monomers, polymer backbones,
addition of functional groups or chromophores. Polymer materials can be made to manipu-
late easily by many conventional or unconventional fabrication methods such as reactive
ion etching (dry etching), wet etching, soft lithography etc. [25]. Polymer materials offer a
simple, low-cost, and reliable fabrication process irrespective to fragile silica or expensive
semiconductor materials. Functional polymeric materials provide interesting properties for
integrating several diversified materials with different functionalities.

Optical waveguide structures can be fabricated directly by electron beam lithography which is
the most effective method to fabricate micro- and nanostructures [25]. Alternatively, soft lithog-
raphy technique has been extensively developed during past 20 years and improving optical
waveguide manufacturing by the use of a master stamp to generate several soft molds to repro-
duce its replicas [25, 26]. Figure 3 shows schematic of the originally NIL process proposed by
Chao almost two decades before [27, 28]. The master stamp or mold containing nanoscale sur-
face relief features is pressed against a polymeric material on a substrate with tightly controlled
temperature and pressure to create a thickness contrast in polymer material. Furthermore, a
thin residual layer is made beneath the stamp protrusions as a cushioning layer to protect
nanoscale structure on mold surface from a direct impact of mold on the substrate. However,
this residual layer can be removed at the end of the process by an anisotropic O, plasma etch-
ing. Figure 3b and ¢ shows Scanning Electron Microscopy (SEM) images of a mold with pillar
array of diameter 10 nm and replicated hole array in poly (methyl methacrylate) (PMMA) [28].

4. RWG modeling tool

In this chapter the RWG structures are designed and modeled using most efficient method
which is based on the Fourier expansion, commonly known as Fourier Modal Method
(FMM) or the coupled wave method (CWM) [29]. FMM determines eigen-solution values
of Maxwell’s equations in a periodic or piecewise continuous medium by expanding the
electromagnetic fields and permittivity functions to Fourier series and applying the bound-
ary conditions to show fields inside the grating by an algebraic eigenvalue problem [30].
Employing FMM to periodic-modulated region, the modulated region sections in slabs
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where solution of Maxwell’s equations is determined at each slab. Such solutions appear
in the form of forward and backward propagated fields consisting of modal fields. These
fields are pseudoperiodic in nature and expressed in the ¢ *, where f§ is the eigenvalue of a
mode. The eigenvalue problem is shown in matrix form which expresses a set of allowed f
values and transverse field distributions for each polarization of light. The emerging fields
from each slab are combined at each interface by applying boundary values. This compu-
tation shows an overall field inside the modulated region which is then matched with the
fields in homogeneous regions surrounding the modulated region. At the end the problem
is expressed in a matrix form to calculate complex transmission and reflection field ampli-
tudes [31].

5. Cost-effective master stamp fabrication process by electron beam
lithography (EBL) and hydrogen silsesquioxane (HSQ) resist

The properties of stamping material play a significant role in replication process to achieve
a well-defined replicated features. In this section, patterns are defined on a resist material

HSQ resist
Hot embossing

e
EESE

Si wafer

<+ @
<+ O
+— O
<+ O

e
Electron exposure ¢

Grating patterns
on Si

Silane layer ALD layer

Polycarbonate

Figure 4. Schematic representation of fabrication and replication process of HSQ mold and polymeric binary grating
structures with nanoscale surface-relief features. Reproduced with permission from [11]. Copyright 2012, SPIE.
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which is coated on a silicon substrate and written by electron beam lithography (EBL)
without reactive ion etching (RIE) of silicon. Moreover, accurate control to pattern depth is
challenging and inaccuracies in depth profiles are inherent with different width structures.
Furthermore, the associated EBL proximity effect increases with the pattern depths and
become more pronounced when beam size becomes comparable to the pattern size. The line
edge variations occurred due to incomplete suppression of resist after development process
resulted in polymer molecule agglomerate formation at pattern line edges [20]. Hydrogen
silsesquioxane (HSQ) is a high resolution, inorganic, negative tone EB resist material with
small linewidth variations in comparison to positive EB resists such as PMMA and ZEP. To
fabricate structures with high resolutions, the molecular size of resist material need to be
smaller than the nanoscale features to be replicated for which HSQ resist possesses domi-
nating properties with slight line roughness and high etch resistance in addition [32].

In this Chapter we show replication of nanoscale structures in thermoplastic thin films and UV
curable polymers by using an HSQ mold. The mold is fabricated by spin coating HSQ resist layer
on silicon substrate, direct e-beam writing followed by development process without reactive ion
etching. The HSQ resist thickness is adjusted to obtain structure design height h. Additionally,

200nm EHT = 5,00 kV Signal A= InLens Date :23 Dec 2011 ] EHT = 5.00 kV Signal A=InLens Date :23 Dec 2011
Mag = 100.00 KX [——] WD= 4mm Photo No. = 6105 Time :14:23:03 Mag = 150.00 K X |—| WD= 4mm Photo No.= 6113 Time :14:29:35

200nm EHT = 5,00 kV Signal A= InLens Date :23 Dec 2011 100nm Signal A=InLens Date :23 Dec 2011
Mag =200.00 KX || WD= 4mm Photo No. = 6108 Time :14:25:37 Mag = 250.00 KX |—— Photo No. = 6099  Time :14:16:00

Figure 5. SEM images of top view of HSQ resist master stamp on silicon substrate with periodicity (d = 325 nm) at
different magnifications: (a) 100.00 KX, (b) 150.00 KX, (c) 200.00 KX, and (d) 250.00 KX.



Polymer Resonant Waveguide Gratings
http://dx.doi.org/10.5772/intechopen.76917

the formed structure is heat treated to improve mechanical properties of the resist for 180 min
at 300°C temperature. Such thermal treatment improves density and hardness of HSQ resist to
enable it for the use of hard stamp with high imprint pattern fidelity. The heat treated mold(s) are
surface treated in nitrogen environment to deposit a silane layer to act as an antiadhesive layer
for imprinting. Finally, the imprinted polymeric gratings with several periodicities are coated
with high index amorphous TiO, thin films by atomic layer deposition. Spectral characteristics of
the replicated structures are investigated by a variable angle spectroscopic ellipsometer. Figure 4
depicts schematic representation of complete process flow of HSQ mold fabrication and imprint-
ing into polymeric materials (thermoplastics and UV curable) with high index TiO, thin layer.

Figure 5 shows SEM images of top view of HSQ resist molds (grating structures) at different
magnifications on silicon substrate with period d of 325 nm. Figure 6a and b shows cross-
sectional view of SEM images of HSQ binary molds with period 425 nm and Figure 6¢c and d
with period 325 nm [33].

Figure 7 shows imprinted sub-wavelength grating structures in thermoplasticand UV curable
plastic materials by NIL tool. Figure 8 shows various thin films of amorphous TiO, coated on
polycarbonate, cyclic olefin copolymer and UV curable Ormocomp by atomic layer deposition

400 nm

100nm EHT = 5.00 kV Signal A= InLens  Date :29 Aug 2011 200nm EHT = 5.00 kV Signal A= InLens  Date :29 Aug 2011
Mag = 150.00 KX |—] WD= 3mm Photo No. = 3429 Time :12:01:27 Mag = 150.00 KX |——] WD= 3mm Photo No. = 3433  Time :12:10:21

200 nm

200nm EHT = 2.00kV Signal A = InLens  Date :18 Jan 2012 200nm EHT = 5.00 kv Signal A= InLens  Date :6 Jan 2012
Mag = 15000 KX | —————| WD= 4mm Photo No. = 6579 Time :13:24:27 Mag = 150.00 KX |——] WD= 3mm Photo No. = 6368 Time :14:55:20

Figure 6. SEM images of cross-sectional view of HSQ resist master stamp on silicon with periodicities: (a and b)
d =425 nm and (c and d) d = 325 nm. Reproduced with permission from [33]. Copyright 2013, NUST.
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EHT = 5.00 kV Signal A =InLens  Date :7 Jul 2011 100nm EHT = 5,00 kV Signal A=InLens Date :21 May 2012
: ] 21 May
WD= 4mm Photo No. = 3008 Time :14:05:07 Mag=17500 KX |—| WD= 4mm PhotoNo.= 9117  Time :15:25:48

300n: EHT = 3.00 kV Signal A =InLens  Date :9 Feb 2012 100nm EHT = 5.00kV Signal A=InLens Date :3 Jan 2012
Mag = 200.31 K X |—l WD= 4mm Photo No. = 7214 Time :16:36:18 Mag = 200.00 K X }_{ WD= 2mm Photo No. = 6233 Time :11:18:20

Figure 7. SEM images of cross-sectional view of imprinted structures in: (a and b) polycarbonate with period d =368 nm,
(c) cyclic olefin copolymer with period d = 325 nm and (d) UV curable material Ormocomp with period 4 = 325 nm.
Reproduced with permission from [33]. Copyright 2013, NUST.

as a waveguide layer [30]. The details of conformal growth of amorphous TiO, thin films by
atomic layer deposition is described in Refs. [34, 35].

Figure 9 shows the ellipsometric measurement setup when a linearly polarized plane wave
(electric field vector is parallel called TE or perpendicular called TM to the grating lines)
incident on the sample at an incident angle ® with respect to normal of the RWG sample. The
light-matter interaction results in specular reflectance/transmittance of the resonant gratings.
The polarization state (TE or TM) of the illuminated light is selected by a polarizer stage which
transforms the unpolarized light beam into a linearly polarized light beam. The polarization
stage composed of a polarizer mounted on a continuously rotated stepper motor with high
accuracy. The rotating polarizer changes the intensity of the light. The phase and amplitude of
the modulated light represents the polarization state of the beam entering the analyzer/detec-
tor. In general, ellipsometer predicts the ellipticity of the polarization state of the light, optical
constants (1 and k) of optical materials, and the thickness of the thin film. The ellipsometric
measurement uses two parameters which are connected by Eq. (7) [36].
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Figure 8. SEM images of amorphous TiO, coated replicated gratings: (a) polycarbonate with period d = 368 nm and TiO,
thickness t = 80 nm, (b) polycarbonate with period d = 368 nm and TiO, thickness ¢ = 60 nm, (c) cyclic olefin copolymer
with period d = 325 nm and TiO, thickness ¢ = 50 nm, and (d) UV curable material Ormocomp with period d = 325 nm
and TiO, thickness t = 50 nm. Reproduced with permission from [33]. Copyright 2013, NUST.
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Figure 9. Experimental setup of an ellipsometer to measure specular reflectance or transmittance.
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Where R and R are the complex-amplitude reflectance coefficients for p- and s-polarization
state of light, W represents elliptical state of polarization and A is the relative phase of the
vibrations along x- and y-directions which can vary from zero to 2.

6. Results and discussion

Figure 10 shows designed and experimentally predicted spectral response (specular
reflectance) of replicated grating structures in polycarbonate (PC), cyclic olefin copolymer
(COC), and UV curable polymer Ormocomp [33]. The measured specular reflectance of PC,
COC, and Ormocomp show reflectance peaks at 698.6 nm, 631.4 nm, and 630.4 nm with
peak reflectance efficiencies 0.71, 0.94, and 0.65, respectively as shown in Figure 10d-f.
The resonance peaks occur at different spectral positions with lower diffraction efficien-
cies than those calculated theoretically as shown in Figure 10a—c. The spectral shifts might
occur due to inaccuracies in the dimensional profile of the replicated structures includ-
ing rounding of grating edges rather completely rectangular as shown in ideal profile
of Figures 1 and 2. The reduction of measured peak efficiencies are most likely caused
by scattering of light from surface roughness, slight irregularities in the straightness of
the grating lines, porosity and volume variations in polymers that cause refractive index
changes in microscopic scale.

The observed variations may also be explained by molecular orientations of the polymer
chains. The stress induction during mold filling may result in a partial orientation and con-
figuration of polymeric chain along principal stress directions. Such molecular orientations
may relax in thermal environment over a certain length of time. If however, temperature
environment is kept constant, for example, for a UV curable material, the molecular orienta-
tions can be frozen up in the glassy state of the polymers. Such frozen-in-stresses in the newly
molecular chain orientations may lead to generate an anisotropic behavior in the refractive
index and cause peak shift.

Figure 11a and b shows specular reflectance of two designed replicated gratings in polycar-
bonate (with periodicities d = 425 nm and d = 368 nm), illuminated with TE-polarized light
(electric field is parallel to grating lines) at three different angles of incidence (18°, 19°, and
20°) with Full Width Half Maximum (FWHM) of about 11 nm. Figure 11c and d shows mea-
sured spectral reflectance of designed gratings (with periodicities d = 425 nm and d = 368 nm)
with FWHM of 13.5 nm and 11 nm, respectively. The experimentally predicted spectra is in
close agreement to that of calculated, however, the wavelength shifts may be attributed due
to slight variations of refractive indices of materials interacted with light. Figure 11e shows
the simulated reflectance efficiency variations of two gratings with TiO, thicknesses of 60 nm
and 75 nm. Figure 10f shows experimentally measured spectral efficiencies verses calculated
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Figure 10. Theoretically calculated and experimentally measured specular reflectance of replicated gratings with grating
height & =120 nm and TiO, thickness t = 50 nm: a) polycarbonate with periodicity (4 = 368 nm), b) cyclic olefin copolymer
with periodicity (d = 325 nm), c) Ormocomp with periodicity (d = 325 nm); measured reflectance spectra of all three
designed gratings: d) polycarbonate, e) cyclic olefin copolymer, and f) ormocomp. Reproduced with permission from
[37]. Copyright 2013, Elsevier.

ones with two TiO, thicknesses. Both experimentally measured and calculated spectra are in
agreement, provided few spectral shifts occur due to reasons described above.

For replication by thermal NIL, the temperature of the polymer materials are raised above glass
transition temperature (T ) of polymers. At such a condition (T > T) both Young’s modulus
and viscosity of polymers reduce by several orders of magnitude in comparison to their values
at room temperatures. Moreover, below T the value of Young’s modulus of glassy polymers
remains constant for many polymers, approximately 3 x 10° Pa in comparison to their respective
values at room temperature. In general practice, the temperature rise for thermal NIL is 60-90°C
above T so that polymer transform into a viscous flow to fill micro and nanocavities, however,
after imprinting process polymer is cooled down below T to preserve imprinted pattern. In
fact, T, is onset temperature for molecular motion in polymers. There are many factors which
increase energy for molecular motion, such as, intermolecular forces, interchain steric hindrance
(branching or cross-linking, bulky and stiff side groups). In some processes, it is desirable to use
lower temperature values, which is then compensated by corresponding increase in the pro-
cess pressure and time to obtain perfect imprinting. The requirement of high temperature and
pressure for NIL process may restrict the production of NIL technology. Furthermore, the mis-
match of thermal expansion coefficient between the mold material and substrate may impose
limitations for pattern overlay for large substrates. Alternatively, liquid precursors having low
Young’s modulus and viscosity can be cured by UV light at ambient temperatures. Due to low
viscosity of the fluid the imprinting process is facilitated and minimize pattern density effects.
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7. Conclusions

The replication of nanophotonic components with sub-wavelength features in polymeric
materials is demonstrated and described as the most promising technology to produce nar-
row band-pass filters which are efficient, reliable, cost-effective, environmentally stable and
effective at bulk scale production. Nanoimprint lithography is an economic process which
initially requires the manufacturing of a master stamp (mold) which is fabricated commonly
by EBL and reactive ion etching (RIE) processes. These processes enhance cost, inaccuracies
and a reduction in efficiency and device performance. This work presented the manufactur-
ing of master stamp by EBL using a negative tone binary electron beam resist HSQ without
RIE process. The sub-wavelength replicated structures’ profile height was adjusted by the
thickness of resist layer on silicon substrate by spin coating process. A direct pattern writing
on HSQ resist was performed by EBL followed by development for sufficient time. The RIE
process step was replaced by HSQ pattern resist heat treatment to improve the mechanical
and physical properties such as hardness and density of HSQ resist, respectively. The simple
etchless process of mold formation brings fast prototyping of nano-optical devices with rapid
processing time and high pattern fidelity, superior optical performance and wide applicabil-
ity to mass production.

In NIL two important steps performed are mold release and pattern transfer. The imprinting
process lead strong adhesive forces between the mold and the resist at large contact area. A
perfect mold release keeps both resist shape integrity and a complete mold-resist separation
as well as suitable plasma-etching resistance for pattern transfer into substrate. This means,
nanoimprint resists which give rise both mold-release, etch-resist properties and allow fast
and precise nanoimprinting are highly desirable.

The replicated grating structures in polymer materials further coat by thin dielectric films of
TiO, as waveguide layer to support optical modes. Theoretically simulated results agree with
the experimentally measured for the RWG in a number of polymers such as polycarbonate,
cyclic olefin copolymer and Ormocomp.
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