
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

Scheduling under Unavailability Constraints to
Minimize Flow-time Criteria

Imed Kacem
Institut Charles Delaunay, Université de Technologie de Troyes

France

1. Introduction

In this chapter, we consider some practical scheduling problems under unavailability
constraints (breakdown periods, maintenance durations and/or setup times). Such
problems can be met in different industrial environments and be associated to numerous
real-life applications. This explains why many researchers have become interested in this
subject. We aim to present the recent approaches proposed to solve these problems and to
discuss their performances. This family of scheduling problems, addressed in this chapter,
has been intensively studied (Kacem [8], Lee [17], Schmidt [24]). The studied criteria in this
chapter are related to the flowtime minimization (the weighted and unweighted cases). The
chapter is organized in two main parts. The first part focuses on the single machine
scheduling problem (see Section 2). The second part is devoted to the parallel machine
scheduling problem (see Section 3). In each part, we present the main contributions and
explain their principles (complexity results, heuristic algorithms and their worstcase
performance, existing approximation schemes, exact methods, branch-and-bound
algorithms, dynamic programming, integer linear models, lower bounds. . .). Finally, Section
4 concludes the paper.

2. The single machine case

The minimization of the total completion time on a single machine with a fixed non-
availability interval (denoted 1,), is NP-Hard according to Adiri et al. [1]

and Lee and Liman [18]. Several references proposed exact and heuristic methods (a sample
of these papers includes Adiri et al. [1]; Lee and Liman [18]; Sadfi et al. [21] and Breit [3]).
Numerous researchers addressed the problem of scheduling jobs and maintenance tasks
together on a single machine (a sample of them includes Qi et al. [20] and Chen [4] who
addressed the total flow-time minimization). Others recent references focused on the shop
scheduling problems (parallel-machine, flow shop and job shop problems) and designed
exact and heuristic approaches to solve them (Lee and Liman [19]; Lee [16]; Schmidt [24];
Lee [17]).
This first part of this chapter addresses the following problem. We have n jobs {J1, J2, ..., Jn} to
schedule on a single machine. To every job i it is associated a processing time pi and a
weight wi. The machine is unavailable during a fixed interval [T1, T2) and it can process at
most one job at a time. We assume that all data are integers and that jobs are sorted

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Multiprocessor Scheduling: Theory and Applications 48

according to the WSPT rule (i.e.,). It is well-known that the WSPT

order is dominant (i.e., every optimal solution is composed of two sequences such that jobs
are scheduled in the WSPT order in each sequence). The objective function to minimize is
the total weighted completion time (flow-time).
It is easy to verify that the studied problem (noted) can be solved optimally by the WSPT
rule (Smith [25]) if the total processing time is less than T1.

In the remainder of this chapter, *() represents the minimal weighted flow-time for the

problem and () is the weighted flow-time of sequence for problem . We also

define the non-availability interval length as follows: T = T2 – T1.
Moreover, we define as the critical job in the WSPT sequence, i.e.,

and . Finally, let Qk and be the variables defined as follows:

(1)

(2)

Theorem 1 ([1]-[18]) The problem 1, is NP-Hard.

Theorem 2 [18] The problem 1, can be optimally solved using the Shortest Remaining
Processing Time rule.

Theorem 3 [18] The problem 1, is NP-Hard.

2.1 Mixed Integer Programming (Kacem, Chu and Souissi [12])

Kacem, Chu and Souissi proved that the problem can be formulated using the following
mixed integer model:

Subject to:

(3)

(4)

(5)

where xi {0, 1} i {1, 2, .., n}. Note that xi = 1 if job i is scheduled before T1 and xi = 0 if
job i is scheduled after T2.

Scheduling under Unavailability Constraints to Minimize Flow-time Criteria 49

The first constraint (3) determines the completion time Ci of job i if it is performed after T2.
Constraint (4) gives this completion time if job i is performed before T1. Finally, constraint
(5) represents the workload constraint for processing jobs before the fixed non-availability
interval.

2.2 Branch-and-bound procedures ([12]- [13]-[21])

The first branch-and-bound algorithm was proposed by Sadfi et al. [22] for solving the
unweighted case (wi = 1 for every job i). The algorithm is based on the SRPT lower bound
and the MSPT heuristic proposed by Sadfi et al. [21]. As it is mentioned before, the problem
consists to find two subsets: the subsets of jobs to be scheduled before and after the non-
availability interval. Each subset respects the SPT order. Therefore, the branching scheme is
based on considering the two possibilities of assignment for every job.
Kacem and Chu [13] and Kacem et al. [12] considered the weighted case. Similarly, the
problem is also reduced to determine if every job has to be scheduled before or after the
unavailability period. Obviously, in the optimal solution, the subset of jobs scheduled before
T1 and the subset of jobs scheduled after T2 are performed in the WSPT order. Consequently,
every node is represented by the following elements:

• the number of scheduled jobs denoted by k,

• a partial assignment vector: PA = {a1, a2, ..., ak} with ai {0, 1} i k and ai = 1 if job i is
performed before T1 and ai = 0 otherwise,

• a lower bound LB formulated in Equation 11.
The upper bound UB is obtained by taking the best result yielded by some heuristics
(described later in this chapter). At each new branching step, one explore two possibilities;
the first one is to perform job (k + 1) before T1 (ak+1 = 1) and the second possibility is to
schedule it after T2 (ak+1 = 0). If the lower bound is greater than the current upper bound,
then the corresponding node is removed.
In the remainder of this subsection, we present the major results (i.e., the lower bounds)
proposed in the above branch-and-bound algorithm. The heuristics used in such an
algorithm will be described later in this section.
Theorem 4 (Wang et al. [26], Lee [16]) Let ’ denote the resumable scenario of problem .

Therefore, the following relation holds: wg+1 T WSRPT (’) - *() where WSRPT (Weighted
Shortest Remaining Processing Time) is the rule that consists in scheduling jobs according to the
WSPT order under the resumable scenario.
Example 1 We consider the following four-job instance: p1 = 2; w1 = 4; p2 = 3; w2 = 5; p3 = 2; w3 =
3; p4 = 1; w4 = 1; T1 = 6; T = 2. Given this instance, we have: + 1 = 3. Figure 1 shows the
schedules obtained by using the WSPT and the WSRPT rules.

Multiprocessor Scheduling: Theory and Applications 50

J1

0 2 6 8

WSPT schedule

J2 J3 J4

5 10 11

WSRPT schedule

J1

 2 6 8

J2

5 9 10

J4J3J3

0

=1

Figure 1. Illustration of the rules WSPT and WSRPT

From Theorem 4, we can show the following proposition.
Proposition 1 ([26], [16]) Let

(6)

The quantity lb1 is a lower bound on the optimal weighted flow-time for problem .
Theorem 5 (Kacem, Chu and Souissi [12]) Let

(7)

The quantity lb2 is a lower bound on the optimal weighted flow-time for problem and it
dominates lb1.
Theorem 6 (Kacem and Chu [13]) For every instance of , the lower bound lb2 is greater than lb0

(lb0 denotes the weighted flow-time value obtained by solving the relaxation of the linear model by

assuming that xi [0, 1]).
In order to improve the lower bound lb2, Kacem and Chu proposed to use the fact that job

 must be scheduled before or after the non-availability interval (i.e., either

 or must hold). By applying a clever lagrangian relaxation, a

stronger lower bound lb3 has been proposed:
Theorem 7 (Kacem and Chu [13]) Let

(8)

with

and .

Scheduling under Unavailability Constraints to Minimize Flow-time Criteria 51

The quantity lb3 is a lower bound on the optimal weighted flow-time for problem and it dominates
lb2.
Another possible improvement can be carried out using the splitting principle (introduced
by Belouadah et al. [2] and used by other authors [27] for solving flow-time minimization
problems). The splitting consists in subdividing jobs into pieces so that the new problem can
be solved exactly. Therefore, one divide every job i into ni pieces, such that each piece (i, k)

has a processing time and a weight (1 k ni), with and

.

Using the splitting principle, Kacem and Chu established the following theorem.

Theorem 8 (Kacem and Chu [13]) Index z1 denotes the job such that and

and index z2 denotes the job such that and

. We also define and . Therefore,

the quantity lb4 = min (1, 2) is a lower bound on the optimal weighted flow-time for and it
dominates lb3, where

 (9)

and

 (10)

By using another decomposition, Kacem and Chu have proposed another complementary
lower bound:
Theorem 9 (Kacem, Chu and Souissi [12]) Let

The quantity lb5 is a lower bound on the optimal weighted flow-time for problem and it dominates
lb2.
In conclusion, these last two lower bounds (lb4 and lb5) are usually greater than the other
bounds for every instance. These lower bounds have a complexity time of O(n) (since jobs
are indexed according to the WSPT order). For this reason, Kacem and Chu used all of them
(lb4 and lb5) as complementary lower bounds. The lower bound LB used in their branch-and-
bound algorithm is defined as follows:

(11)

Multiprocessor Scheduling: Theory and Applications 52

2.3 Approximation algorithms

2.3.1 Heuristics and worst-case analysis

The problem (1,) was studied by Kacem and Chu [11] under the non-

resumable scenario. They showed that both WSPT1 and MWSPT2 rules have a tight worst-
case performance ratio of 3 under some conditions. Kellerer and Strusevich [14] proposed a
4-approximation by converting the resumable solution of Wang et al. [26] into a feasible
solution for the non-resumable scenario. Kacem proposed a 2-approximation algorithm
which can be implemented in O(n2) time [10]. Kellerer and Strusevich proposed also an
FPTAS (Fully Polynomial Time Approximation Scheme) with O(n4/ 2) time complexity [14].
WSPT and MWSPT These heuristics were proposed by Kacem and Chu [11]. MWSPT
heuristic consists of two steps. In the first step, we schedule jobs according to the WSPT
order (is the last job scheduled before T1). In the second step, we insert job i before T1 if pi

 (we test this possibility for each job i { + 2, + 3, ..., n} and after every insertion, we

set).

To illustrate this heuristic, we consider the four-job instance presented in Example 1. Figure
2 shows the schedules obtained by using the WSPT and the MWSPT rules. Thus, it can be
established that: WSPT ()= 74 and MWSPT ()= 69.
Remark 1 The MWSPT rule can be implemented in O (n log (n)) time.
Theorem 10 (Kacem and Chu [11]) WSPT and MWSPT have a tight worst-case performance
bound of 3 if t . Otherwise, this bound can be arbitrarily large.

J1

0 2 6 8

WSPT schedule

J2 J3 J4

5 10 11

MWSPT schedule

J1

 2 6 8

J2

5 10

J3J4

0

=1

Figure 2. Illustration of MWSPT

MSPT: the weighted and the unweighted cases The weighted case of this heuristic can be
described as follows (Kacem and Chu [13]). First, we schedule jobs according to the WSPT
order (is the last job scheduled before T1). In the second step, we try to improve the WSPT

solution by testing an exchange of jobs i and j if possible, where i =1,…, and j = +1,…, n.

The best exchange is considered as the obtained solution.

Remark 2 MSPT has a time complexity of O (n3).
To illustrate this improved heuristic, we use the same example. For this example we have:

1 WSPT: Weighted Shortest Processing Time
2 MWSPT: Modified Weighted Shortest Processing Time

Scheduling under Unavailability Constraints to Minimize Flow-time Criteria 53

+ 1 = 3. Therefore, four possible exchanges have to be distinguished: (J1 and J3), (J1 and J4),

(J2 and J3) and (J2 and J4). Figure 3 depicts the solutions corresponding to these exchanges. By
computing the corresponding weighted flow-time, we obtain MSPT ()= WSPT ().
The weighted version of this heuristic has been used by Kacem and Chu in their branch-
and-bound algorithm [13]. For the unweighted case (wi = 1), Sadfi et al. studied the worst-
case performance of the MSPT heuristic and established the following theorem:
Theorem 11 (Sadfi et al. [21]) MSPT has a tight worst-case performance bound of 20/17 when
wi=1 for every job i.
Recently, Breit improved the result obtained by Sadfi et al. and proposed a better worst-case
performance bound for the unweighted case [3].

J1

0 2 6 8

WSPT schedule

J2 J3 J4

5 10 11

Exchange J1 and J3

=1

J1

0 3 6 8

J2 J3 J4

5 10 11

0 3 6 8

J2 J3J4

4 10 12

Exchange J1 and J4

J1

Exchange J2 and J3

J3 J2 J4

0 2 4

J1

0 2 6 8

J3J2J4

3 11 13

Exchange J2 and J4

J1

6 8 11 12

Figure 3. Illustration of MSPT for the weighted case

Multiprocessor Scheduling: Theory and Applications 54

Critical job-based heuristic (HS) [10] This heuristic represents an extension of the one
proposed by Wang et al. [26] for the resumable scenario. It is based on the following
algorithm (Kacem [10]):

i. Let l = 0 and = .
ii. Let (i, l) be the ith job in J – according to the WSPT order. Construct a schedule l =

 (1, l) , (2, l), ..., (g (l) , l), , ((l) + 1, l), ..., (n –| |, l) such that

 and where jobs in

are sequenced according to the WSPT order.

iii. If , then: ; go

to step (ii). Otherwise, go to step (iv).

iv. .

Remark 3 HS can be implemented in O (n2) time.
We consider the previous example to illustrate HS. Figure 4 shows the sequences h (0 h
l) generated by the algorithm. For this instance, we have l = 2 and HS () = WSPT ().

J1

0 2 6 8

Schedule 0

J2 J3 J4

5 10 11

Schedule 1

=1

J1

0 2 6 8

J2J3 J4

 4 11 12

Schedule 2

J1

0 3 6 8

J2 J3 J4

5 10 11

Figure 4. Illustration of heuristic HS

Theorem 12 (Kacem [10]) Heuristic HS is a 2-approximation algorithm for problem S and its
worst-case performance ratio is tight.

2.3.2 Dynamic programming and FPTAS

The problem can be optimally solved by applying the following dynamic programming
algorithm AS, which is a weak version of the one proposed by Kacem et al [12]. This
algorithm generates iteratively some sets of states. At every iteration k, a set k composed of
states is generated (1 k n). Each state [t, f] in k can be associated to a feasible schedule
for the first k jobs.

Scheduling under Unavailability Constraints to Minimize Flow-time Criteria 55

Variable t denotes the completion time of the last job scheduled before T1 and f is the total
weighted flow-time of the corresponding schedule. This algorithm can be described as
follows:
Algorithm AS
i. Set 1 = {[0, w1(T2 + p1)] , [p1, w1p1]}.

ii. For k {2, 3, ..., n},
For every state [t, f] in k –1:

1) Put in k

2) Put in k if t + pk T1

Remove k –1

iii. *() = min[t, f] n {f}.
Let UB be an upper bound on the optimal weighted flow-time for problem (). If we add
the restriction that for every state [t, f] the relation f UB must hold, then the running time
of AS can be bounded by nT1UB (by keeping only one vector for each state). Indeed, t and f
are integers and at each step k, we have to create at most T1UB states to construct k.

Moreover, the complexity of AS is proportional to .

However, this complexity can be reduced to O (nT1) as it was done by Kacem et al [12], by
choosing at each iteration k and for every t the state [t, f] with the smallest value of f.
In the remainder of this chapter, algorithm AS denotes the weak version of the dynamic
programming algorithm by taking UB = HS (), where HS is the heuristic proposed by
Kacem [10].
The algorithm starts by computing the upper bound yielded by algorithm HS.
In the second step of our FPTAS, we modify the execution of algorithm AS in order to
reduce the running time. The main idea is to remove a special part of the states generated by
the algorithm. Therefore, the modified algorithm AS becomes faster and yields an
approximate solution instead of the optimal schedule.
The approach of modifying the execution of an exact algorithm to design FPTAS, was initially
proposed by Ibarra and Kim for solving the knapsack problem [7]. It is noteworthy that
during the last decades numerous scheduling problems have been addressed by applying
such an approach (a sample of these papers includes Gens and Levner [6], Kacem [8], Sahni
[23], Kovalyov and Kubiak [15], Kellerer and Strusevich [14] and Woeginger [28]-[29]).

Given an arbitrary > 0, we define

and . We split the interval [0, HS ()] into m1 equal subintervals

 of length 1. We also split the interval [0, T1] into m2 equal

subintervals of length 2. The algorithm AS generates

reduced sets instead of sets k. Also, it uses artificially an additional variable w+ for

every state, which denotes the sum of weights of jobs scheduled after T2 for the
corresponding state. It can be described as follows:
Algorithm AS

i. Set ,

ii. For k {2, 3, ..., n},

For every state [t, f,w+] in :

Multiprocessor Scheduling: Theory and Applications 56

1) Put in

2) Put in if t + pk T1

Remove

Let [t, f,w+]r,s be the state in such that f and t with the smallest possible

t (ties are broken by choosing the sate of the smallest f). Set =

.

iii. .

The worst-case analysis of this FPTAS is based on the comparison of the execution of
algorithms AS and AS . In particular, we focus on the comparison of the states generated by
each of the two algorithms. We can remark that the main action of algorithm AS consists in

reducing the cardinal of the state subsets by splitting into m1m2

boxes and by replacing all the vectors of k belonging to by a single

"approximate" state with the smallest t.
Theorem 13 (Kacem [9]) Given an arbitrary > 0, algorithm AS can be implemented in O (n2/ 2)

time and it yields an output such that: / * () 1 + .

From Theorem 13, algorithm AS is an FPTAS for the problem 1, .

Remark 4 The approach of Woeginger [28]-[29] can also be applied to obtain FPTAS for this
problem. However, this needs an implementation in O (|I|3 n3/ 3), where |I| is the input size.

3. The two-parallel machine case

This problem for the unweighted case was studied by Lee and Liman [19]. They proved that
the problem is NP-complete and provided a pseudo-polynomial dynamic programming
algorithm to solve it. They also proposed a heuristic that has a worst case performance ratio
of 3/2.
The problem is to schedule n jobs on two-parallel machines, with the aim of minimizing the
total weighted completion time. Every job i has a processing time pi and a weight wi. The
first machine is available for a specified period of time [0, T1] (i.e., after T1 it can no longer
process any job). Every machine can process at most one job at a time. With no loss of
generality, we consider that all data are integers and that jobs are indexed according to the
WSPT rule: . Due to the dominance of the WSPT order, an optimal

solution is composed of two sequences (one sequence for each machine) of jobs scheduled in
non-decreasing order of their indexes (Smith [25]). In the remainder of the paper, ()
denotes the studied problem, * (Q) denotes the minimal weighted sum of the completion
times for problem Q and S (Q) is the weighted sum of the completion times of schedule S
for problem Q.

3.1 The unweighted case

In this subsection, we consider the unweighted case of the problem, i.e., for every job i, we
have wi = 1. Hence, the WSPT order becomes: p1 p2 ... pn.
In this case, we can easily remark the following property.
Proposition 2 (Kacem [9]) If , then problem () can be optimally solved in

O(nlog (n)) time.

Scheduling under Unavailability Constraints to Minimize Flow-time Criteria 57

Based on the result of Proposition 2, we only consider the case where .

3.1.1 Dynamic programming

The problem can be optimally solved by applying the following dynamic programming
algorithm A, which is a weak version of the one proposed by Lee and Liman [19]. This
algorithm generates iteratively some sets of states. At every iteration k, a set composed of
states is generated (1 k n). Each state [t, f] in can be associated to a feasible schedule
for the first k jobs. Variable t denotes the completion time of the last job scheduled on the
first machine before T1 and f is the total flow-time of the corresponding schedule. This
algorithm can be described as follows:
Algorithm A

i. Set .

ii. For k {2, 3, ..., n},
For every state [t, f] in :

1) Put in

2) Put in if t + pk T1

Remove
iii. * () = .

Let UB be an upper bound on the optimal flow-time for problem (). If we add the
restriction that for every state [t, f] the relation f UB must hold, then the running time of A
can be bounded by nT1UB. Indeed, t and f are integers and at each iteration k, we have to
create at most T1UB states to construct . Moreover, the complexity of A is proportional to

.

However, this complexity can be reduced to O (nT1) as it was done by Lee and Liman [19],
by choosing at each iteration k and for every t the state [t, f] with the smallest value of f. In
the remainder of the paper, algorithm A denotes the weak version of the dynamic
programming algorithm by taking UB = H (), where H is the heuristic proposed by Lee
and Liman [19].

3.1.2 FPTAS (Kacem [9])

The FPTAS is based on two steps. First, we use the heuristic H by Lee and Liman [19]. Then,
we apply a modified dynamic programming algorithm. Note that heuristic H has a worst-
case performance ratio of 3/2 and it can be implemented in O(n log (n)) time [19].
In the second step of our FPTAS, we modify the execution of algorithm A in order to reduce
the running time. Therefore, the modified algorithm becomes faster and yields an
approximate solution instead of the optimal schedule.

Given an arbitrary > 0, we define and

. We split the interval [0, H ()] into q1 equal subintervals

of length 1. We also split the interval [0, T1] into q2 equal subintervals

 of length 2.

Our algorithm A generates reduced sets instead of sets . The algorithm can be

described as follows:

Multiprocessor Scheduling: Theory and Applications 58

Algorithm A

i. Set

ii. For k {2, 3, ..., n},

For every state [t, f] in

1) Put in

2) Put in if t + pk T1

Remove

Let [t, f]r,s be the state in such that f and t with the smallest possible t (ties are

broken by choosing the state of the smallest f).

Set = .

iii. .

The worst-case analysis of our FPTAS is based on the comparison of the execution of
algorithms A and A . In particular, we focus on the comparison of the states generated by
each of the two algorithms. We can remark that the main action of algorithm A consists in

reducing the cardinal of the state subsets by splitting into q1q2 boxes

and by replacing all the vectors of belonging to by a single

"approximate" state with the smallest t.
Theorem 14 (Kacem [9]) Given an arbitrary > 0, algorithm A can be implemented in O (n3/ 2)

time and it yields an output such that: .

From Theorem 14, algorithm A is an FPTAS for the unweighted version of the problem.

3.2 The weighted case

In this section, we consider the weighted case of the problem, i.e., for every job i, we have an
arbitrary wi. Jobs are indexed in non-decreasing order of pi/wi.
In this case, we can easily remark the following property.
Proposition 3 (Kacem [9]) If , then problem () has an FPTAS.

Based on the result of Proposition 3, we only consider the case where .

3.2.1 Dynamic programming

The problem can be optimally solved by applying the following dynamic programming
algorithm AW, which is a weak extended version of the one proposed by Lee and Liman
[19]. This algorithm generates iteratively some sets of states. At every iteration k, a set
composed of states is generated (1 k n). Each state [t, p, f] in can be associated to a
feasible schedule for the first k jobs. Variable t denotes the completion time of the last job
scheduled before T1 on the first machine, p is the completion time of the last job scheduled
on the second machine and f is the total weighted flow-time of the corresponding schedule.
This algorithm can be described as follows:
Algorithm AW
i. Set .

ii. For k {2, 3, ..., n},
For every state [t, p, f] in :

Scheduling under Unavailability Constraints to Minimize Flow-time Criteria 59

1) Put in

2) Put in if t + pk T1

Remove

iii. .
Let UB be an upper bound on the optimal weighted flow-time for problem (). If we add
the restriction that for every state [t, p, f] the relation f UB must hold, then the running
time of AW can be bounded by nPT1UB (where P denotes the sum of processing times).
Indeed, t, p and f are integers and at each iteration k, we have to create at most PT1UB states

to construct . Moreover, the complexity of AW is proportional to .

However, this complexity can be reduced to O(nT1) by choosing at each iteration k and for
every t the state [t, p, f] with the smallest value of f.
In the remainder of the paper, algorithm AW denotes the weak version of this dynamic
programming algorithm by taking UB = HW (), where HW is the heuristic described later
in the next subsection.

3.2.2 FPTAS (Kacem [9])

Our FPTAS is based on two steps. First, we use the heuristic HW. Then, we apply a modified
dynamic programming algorithm.
The heuristic HW is very simple! We schedule all the jobs on the second machine in the
WSPT order. It may appear that this heuristic is bad, however, the following Lemma shows
that it has a worst-case performance ratio less than 2. Note also that it can be implemented
in O(n log (n)) time.
Lemma 1 (Kacem [9]) Let (HW) denote the worst-case performance ratio of heuristic HW.
Therefore, the following relation holds: (HW) 2.
From Lemma 3, we can deduce that any heuristic for the problem has a worst-case
performance bound less than 2 since it is better than HW.
In the second step of our FPTAS, we modify the execution of algorithm AW in order to
reduce the running time. The main idea is similar to the one used for the unweighted case
(i.e., modifying the execution of an exact algorithm to design FPTAS). In particular, we
follow the splitting technique by Woeginger [28] to convert AW in an FPTAS.
Using a similar notation to [28] and given an arbitrary > 0, we define

 and .

First, we remark that every state [t, p, f] verifies

Then, we split the interval [0,T1] into L1+1 subintervals .

We also split the intervals [0, P] and [1, HW ()] respectively, into L2+1 subintervals

 and into L3 subintervals .

Our algorithm AW generates reduced sets instead of sets . This algorithm can be

described as follows:
Algorithm AW

i. Set

ii. For k {2, 3, ..., n},

Multiprocessor Scheduling: Theory and Applications 60

For every state [t, p, f] in

1) Put in

2) Put in if t + pk T1

Remove

Let [t, p, f]r,s,l be the state in such that t , p and f with the smallest

possible t (ties are broken by choosing the state of the smallest f).

Set = .

iii.

3.2.3 Worst-case analysis and complexity

The worst-case analysis of the FPTAS is based on the comparison of the execution of
algorithms AW and AW . In particular, we focus on the comparison of the states generated
by each of the two algorithms.

Theorem 15 (Kacem [9]) Given an arbitrary > 0, algorithm AW yields an output

such that: and it can be implemented in O(|I|3 n3/ 3) time,

where |I| is the input size of I.
From Theorem 15, algorithm AW an FPTAS for the weighted version of the problem.

4. Conclusion

In this chapter, we considered the non-resumable version of scheduling problems under
availability constraint. We addressed the criterion of the weighted sum of the completion
times. We presented the main works related to these problems. This presentation shows that
some problems can be efficiently solved (as an example, some proposed FPTAS have a
strongly polynomial running time). As future works, the idea to extend these results to other
variants of problems is very interesting. The development of better approximation
algorithms is also a challenging subject.

5. Acknowledgement

This work is supported in part by the Conseil Général Champagne-Ardenne, France (Project
OCIDI, grant UB902 / CR20122 / 289E).

6. References

Adiri, I., Bruno, J., Frostig, E., Rinnooy Kan, A.H.G., 1989. Single-machine flow-time
scheduling with a single breakdown. Acta Informatica 26, 679-696. [1]

Belouadah, H., Posner, M.E., Potts, C.N., 1992. Scheduling with release dates on a single
machine to minimize total weighted completion time. Discrete Applied Mathematics
36, 213- 231. [2]

Breit, J., 2006. Improved approximation for non-preemptive single machine flow-time
scheduling with an availability constraint. European Journal of Operational Research,
doi:10.1016/j.ejor.2006.10.005 [3]

Chen, W.J., 2006. Minimizing total flow time in the single-machine scheduling problem with
periodic maintenance. Journal of the Operational Research Society 57, 410-415. [4]

Scheduling under Unavailability Constraints to Minimize Flow-time Criteria 61

Eastman, W. L., Even, S., Issacs, I. M., 1964. Bounds for the optimal scheduling of n jobs on
m processors. Management Science 11, 268-279. [5]

Gens, G.V., Levner, E.V., 1981. Fast approximation algorithms for job sequencing with
deadlines. Discrete Applied Mathematics 3, 313—318. [6]

Ibarra, O., Kim, C.E., 1975. Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of the ACM 22, 463—468. [7]

Kacem, I., 2007. Approximation algorithms for the makespan minimization with positive
tails on a single machine with a fixed non-availability interval. Journal of
Combinatorial Optimization, doi : 10.1007/s10878-007-9102-4. [8]

Kacem, I., 2007. Fully Polynomial-Time Approximation Schemes for the Flowtime
Minimization Under Unavailability Constraint. Workshop Logistique et Transport, 18-
20 November 2007, Sousse, Tunisia. [9]

Kacem, I., 2007. Approximation algorithm for the weighted flowtime minimization on a
single machine with a fixed non-availability interval. Computers & Industrial
Engineering, doi: 10.1016/j.cie.2007.08.005. [10]

Kacem, I., Chu, C., 2006. Worst-case analysis of the WSPT and MWSPT rules for single
machine scheduling with one planned setup period. European Journal of Operational
Research, doi:10.1016/j.ejor.2006.06.062. [11]

Kacem, I., Chu, C., Souissi, A., 2008. Single-machine scheduling with an availability
constraint to minimize the weighted sum of the completion times. Computers &
Operations Research, vol 35, n 3, 827 844, doi:10.1016/j.cor.2006.04.010. [12]

Kacem, I., Chu, C., 2007. Efficient branch-and-bound algorithm for minimizing the weighted
sum of completion times on a single machine with one availability constraint.
International Journal of Production Economics, 10.1016/j.ijpe.2007.01.013. [13]

Kellerer, H., Strusevich, V.A., Fully polynomial approximation schemes for a symmetric
quadratic knapsack problem and its scheduling applications. Working Paper,
Submitted. [14]

Kovalyov, M.Y., Kubiak, W., 1999. A fully polynomial approximation scheme for weighted
earliness-tardiness problem. Operations Research 47: 757-761. [15]

Lee, C.Y., 1996. Machine scheduling with an availability constraints. Journal of Global
Optimization 9, 363-384. [16]

Lee, C.Y., 2004. Machine scheduling with an availability constraint. In: Leung JYT (Ed),
Handbook of scheduling: Algorithms, Models, and Performance Analysis. USA, FL, Boca
Raton, chapter 22. [17]

Lee, C.Y., Liman, S.D., 1992. Single machine flow-time scheduling with scheduled
maitenance. Acta Informatica 29, 375-382. [18]

Lee, C.Y., Liman, S.D., 1993. Capacitated two-parallel machines sceduling to minimize sum
of job completion times. Discrete Applied Mathematics 41, 211-222. [19]

Qi, X., Chen, T., Tu, F., 1999. Scheduling the maintenance on a single machine. Journal of the
Operational Research Society 50, 1071-1078. [20]

Sadfi, C., Penz, B., Rapine, C., Blaÿzewicz, J., Formanowicz, P., 2005. An improved
approximation algorithm for the single machine total completion time scheduling
problem with availability constraints. European Journal of Operational Research 161, 3-
10. [21]

Multiprocessor Scheduling: Theory and Applications 62

Sadfi, C., Aroua, M.-D., Penz, B. 2004. Single machine total completion time scheduling
problem with availability constraints. 9th International Workshop on Project
Management and Scheduling (PMS’2004), 26-28 April 2004, Nancy, France. [22]

Sahni, S., 1976. Algorithms for scheduling independent tasks. Journal of the ACM 23, 116—
127. [23]

Schmidt, G., 2000. Scheduling with limited machine availability. European Journal of
Operational Research 121, 1-15. [24]

Smith, W.E., 1956. Various optimizers for single stage production. Naval Research Logistics
Quarterly 3, 59-66. [25]

Wang, G., Sun, H., Chu, C., 2005. Preemptive scheduling with availability constraints to
minimize total weighted completion times. Annals of Operations Research 133, 183-
192. [26]

Webster, S.,Weighted flow time bounds for scheduling identical processors. European Journal
of Operational Research 80, 103-111. [27]

Woeginger, G.J., 2000. When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS) ?. INFORMS
Journal on Computing 12, 57—75. [28]

Woeginger, G.J., 2005. A comment on scheduling two machines with capacity constraints.
Discrete Optimization 2, 269—272. [29]

Multiprocessor Scheduling, Theory and Applications

Edited by Eugene Levner

ISBN 978-3-902613-02-8

Hard cover, 436 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A major goal of the book is to continue a good tradition - to bring together reputable researchers from different

countries in order to provide a comprehensive coverage of advanced and modern topics in scheduling not yet

reflected by other books. The virtual consortium of the authors has been created by using electronic

exchanges; it comprises 50 authors from 18 different countries who have submitted 23 contributions to this

collective product. In this sense, the volume can be added to a bookshelf with similar collective publications in

scheduling, started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and

Punnen (2002), and Leung (2004). This volume contains four major parts that cover the following directions:

the state of the art in theory and algorithms for classical and non-standard scheduling problems; new exact

optimization algorithms, approximation algorithms with performance guarantees, heuristics and metaheuristics;

novel models and approaches to scheduling; and, last but least, several real-life applications and case studies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Imed Kacem (2007). Scheduling under Unavailability Constraints to Minimize Flow-time Criteria,

Multiprocessor Scheduling, Theory and Applications, Eugene Levner (Ed.), ISBN: 978-3-902613-02-8, InTech,

Available from:

http://www.intechopen.com/books/multiprocessor_scheduling_theory_and_applications/scheduling_under_una

vailability_constraints_to_minimize_flow-time_criteria

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

