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Abstract

In the last years, the demands for natural flavours have dramatically increased. To fulfil
the consumer requests, researchers are looking for new and alternative methods to obtain
qualitative aroma compounds by utilising microbiological pathways. Some microorgan-
isms like lactic acid bacteria or yeasts are capable of synthesising specific flavours
corresponding to diacetyl and acetaldehyde as secondary metabolites. By supplying the
culture media with flavour precursors and optimising the primary culture media, high
amount of specific flavours could be obtained. Also, the biosynthesis of each specific
flavour is influenced by the type of amino acids and sugars involved in the bioprocess.
Thus, by changing the ratio of amino acids and sugars in the culture media, different
amounts of flavour can be obtained. In this context, monitoring the compositions of the
culture media and fermentation conditions is crucial in obtaining high amounts of a
qualitative-specific aroma.
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1. Introduction

Generally, the first major source of flavour is the extraction from plant biomass due to consumer

preference for “clean” and “organically” produced aromas and fragrances. Taken into account

the significant differences between the price of synthetic and non-synthetic manufacturing, the

microbial flavour production is considered [1]. Consequently, in the last years, the main focus of

researchers in the field was the identification of a suitable biosynthetic pathway and the optimal

culture medium design for an efficient production.

Lactic acid bacteria (LABs) are an important class of microorganism for flavour manufacturer.

LABs are very important for the dairy industry, being extensively used in fermented food

production. During the fermentative processes, LABs influences the sensory properties of the
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final products, also including the flavour development. The flavour production is very much

substrate and strain dependent, and the presence of the flavour precursors and regulatory

responses may influence the balance of the flavour biosynthesis from a secondary metabolite

product to the main compound [2]. Strains like Lactococcus lactis subsp. lactis and Lactococcus

lactis subsp. lactis var. diacetylactis are industrially used for flavour biosynthesis as a sole

microorganism or in coculture with Streptococcus thermophilus and Lactobacillus bulgaricus [2].

At the same time, the flavour biosynthesis and the changes in metabolic pathway are linked to

environmental conditions. From a technological point of view, the metabolic changes are very

important for the volatile compound biosynthesis, as well as for the microorganism, in order to

obtain energy and to maintain the NAD+/NADH+H+ balance [3]. It is obvious that there are

major differences in flavour profiles between utilised complex and standard media. S.

thermophilus LMG18311 biosynthesize 2,3-pentanedione and acetic acid only in standard

media, but Bacillus subtilis CICC 10025 biosynthesize higher amounts of acetoin in media

consisting of acidified molasses and soybean hydrolysate, because soybean hydrolysate is a

more optimal nitrogen source for acetoin production for this strain [2]. Diacetyl is almost

exclusively synthesised by LAB and is the key flavour compound naturally produced by the

Leuconostoc sp. [4].

2. The influence of the culture medium composition on flavour

biosynthesis

2.1. The influence of nitrogen

The LAB strains are able to survive starvation due to their capacity to utilise another energy

source rather than carbon. The starvation conditions decrease the organism ability to

synthesise ATP with generation of proton motive force (PMF) and also slow down the accu-

mulation of necessary nutrients to maintain viability over time. As an additionally carbon

source, the LABs are capable to catabolise amino acids which provide building blocks, cofactor

recycling and limited energy source [5]. The LAB inability to synthesise many of the amino

acids required for protein synthesis needs the supplementation of the culture media with high

amount of essential amino acids [6], since the amino acid catabolism is a major process for

flavour formation. Proteolytic enzymes from LAB play an important role in degradation of

proteins by producing free amino acids. These amino acids contribute directly to flavour

formation being precursors for catabolic reactions [7, 8]. The conversion of amino acids to

aroma compounds by LAB is essentially initiated by a transamination reaction, which requires

α-ketoacid as the amino group acceptor, pathway demonstrated for lactococci, mesophilic

lactobacilli and thermophilic LAB [9].

By amino acid catabolism, LABs are able to synthesise flavours. In the first step of the pathway, the

amino acids are involved in dehydrogenation and transamination reactions with the formation of

α-ketoacids, compounds which have a fundamental effect on flavour type and amount. Further,

by decarboxylation reaction, α-ketoacids are transformed in aldehydes (Figure 1).
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From decarboxylation reaction, a proton is consumed in the process, and the product is

exported from the cell, resulting in an increase of the intracellular pH [10]. Additionally, the

aldehydes are transformed into alcohols or carboxylic acids by dehydrogenation, a majority of

these compounds being flavour compounds. Several enzymes, for example, α-ketoacids, can

thus be considered as intermediates involved in both biosynthesis and degradation of amino

acids. Since branched-chain amino acids (Val, Ile, Leu), aromatic amino acids (Trp, Tyr, Phe)

and sulphur-containing amino acids (Cys, Met) are important precursors of flavour com-

pounds, the genome of Lactococcus lactis IL1403 was screened for gene-encoding enzymes of

the biosynthetic pathways for these amino acids. At least 12 aminotransferases of the

Escherichia coli are found to be encoded in the L. lactis IL1403 genome sequence. By knowing

the enzyme and metabolic pathway, new potential flavours are expected to be biosynthesise

for industrial applications [11].

Theoretically, there are three pathways for the formation of α-ketoglutarate by bacteria using

glutamate, citrate and pyruvate [9].

2.1.1. Amino acids’ first specific degradation pathway

In the first step, the glutamate dehydrogenase pathway produces α-ketoglutarate directly from

oxidative deamination of glutamate, utilising NAD+, NADP or both as cofactor. NADP-

dependent activity was detected in most Lactobacillus plantarum strains and in several Lactoba-

cillus lactis, Lactobacillus paracasei and S. thermophiles strains, whereas NAD+-dependent activity

was observed in only a few L. lactis and S. thermophilus strains. Moreover, it has been demon-

strated that the ability of LAB to produce aroma compounds from amino acids is closely

related to their glutamate dehydrogenase activity [9, 12]. Literature reports showed that

conversion of amino acids to aroma compounds by LAB was limited by the lack of α-ketoacid

acceptor for transamination reactions. Indeed, the addition of α-ketoglutarate to culture

medium enhanced their aroma by increasing the amino acid catabolism (Figure 2).

α-Ketoglutarate is the best α-ketoacid acceptor for amino acid transamination by L. lactis.

Another α-ketoacid that can also be used is pyruvate, but the aminotransferase activities were

40 times lower than with α-ketoglutarate. However, for some lactobacilli strains, pyruvate

appeared to be an acceptor as efficient as α-ketoglutarate. A L. lactis strain genetically modified

overexpresses a gene encoding a catabolic glutamate dehydrogenase, which catalyses the

deamination of glutamate to α-ketoglutarate and, therefore, greatly increased the conversion

of amino acids to potent aroma compounds [9]. Pediococcus pentosaceus, Lactobacillus brevis,

Lactobacillus curvatus and Lactobacillus fermentum inoculation leads to the conversion of gluta-

mine to glutamic acid and NH3 [13].

Figure 1. The pathway for the conversion of amino acids to aldehyde.
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Different amino acids have diverse amino peptidase, with characteristic activity on amino

acids [6]. Lb. fermentum IMDO 130101 possesses an arginine deiminase pathway which is

modulated by environmental pH. This converts arginine into ornithine via citrulline while

producing ammonia and ATP [14] but at the same time has the ability to catabolise arginine

to α-ketoglutarate by glutamate formation (Figure 2).

The proline catabolism by Saccharomyces cerevisiae also leads to flavour biosynthesis, the inter-

mediary compound being glutamate, which is further degraded to aroma compounds [15].

2.1.2. Amino acids’ second specific degradation pathway

The second possible pathway is the citrate-oxaloacetate pathway, which leads to α-ketoglutarate

production from citrate and glutamate, by successive action of citrate permease, citrate lyase and

aspartate aminotransferase (AspAT). Citrate permease allows citrate uptake inside the cells with

the citrate catabolism initiation by transforming citrate to oxaloacetate. Oxaloacetate can then be

transformed into aspartate and α-ketoglutarate, in the presence of glutamate, by an aspartate

aminotransferase. For L. lactis species, only the diacetylactis subspecies possesses citrate perme-

ase and citrate lyase, but in this subspecies, oxaloacetate is mainly decarboxylated to pyruvate,

which is then transformed to lactate, acetate, and diacetyl [9] (Figure 3).

L. lactis IFPL326 strain showed the highest aminotransferase activity towards isoleucine, which

is a specific substrate for the Lactococcus branched-chain aminotransferase. This LAB in combi-

nation with other strains which has α-ketoacid decarboxylase with high specificity for

branched-chain degradation can be used for the obtaining of high yield of isoleucine-derived

volatile compounds (2-methyl-1-butanol, 2-methylbutanal and phenylacetaldehyde) in the incu-

batedmilk [12, 16]. For example, 2-methyl-1-butanol is one of the components of the black truffle

(Tuber melanosporum) aroma. Some Lactobacillus helveticus strains have been capable of diacetyl

biosynthesis from α-aceto-α-hydroxybutyrate, an intermediate of isoleucine metabolism [17].

Figure 2. The glutamate dehydrogenase pathway of the amino acids.
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Other research show that isoleucine catabolism leads to the formation of α-keto-β-methyl

valerate [10].

On the other hand, the valine catabolism by non-oxidative enzymatic decarboxylation leads to the

formation of α-ketoisovalerate in L. lactis fermentation that uses α-ketoisovalerate decarboxylase

[10, 16]. The high specificity of the L. lactis α-ketoisovalerate decarboxylase permits to be a key

controlling step in the formation of branched-chain aldehydes. Lactococcus strains combined with

L. lactis IFPL730 for incubation in milk lead to production of aldehydes, without the necessity of

exogenous α-ketoglutarate addition, and the production of different flavour compounds, like 2-

methyl-1-propanol, 2-methylpropanal (straw fragrances) and 2-methyl-1-propionic acid (rum-like

odour), was observed [12, 16].

In another study, the L. lactis aromatic aminotransferase converts aromatic amino acids but also

leucine and methionine. The methionine conversion was in lower concentration than isoleucine,

leucine and valine [16]. Aminotransferase activity requires α-ketoglutarate with the formation of

4-methylthio-2-ketobutyric acid which can be converted to methane-thiol, via a thiamine pyro-

phosphate-dependent decarboxylase that produces 3-methylthiopropanal [11], dimethyl sulphide

and dimethyl disulphide. It is important to mention that methional is a notable flavour used in

potato-based snacks, while dimethyl disulphide has a garlic-like aroma. During cheese ripening,

cystathionine β-lyase can convert methionine to various volatile flavour compounds, but in bacte-

ria its physiological function is the conversion of cystathionine to homocysteine, which is the

penultimate step of methionine biosynthesis. In other researches, beside aroma abovementioned,

obtained frommethionine catabolism, phenylacetaldehyde (with honey-like aroma) was identified

by Lb. plantarum UC1001, S. thermophilus and Lb. helveticus biosynthesis [12].

The biosynthesis of the diacetyl from aspartate by some Lactobacillus strains has been reported

by Garde and co-workers [17]. Aspartic acid under the aminotransferase action may generate

acetoin and diacetyl by Lactobacillus casei GCRL163 [5] and Lactobacillus strains. Thage and

Figure 3. The citrate-oxaloacetate pathway of the isoleucine, threonine, valine and methionine (AspAT—aspartate ami-

notransferase).
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co-workers [18] demonstrated that three Lb. paracasei subsp. paracasei strains (CHCC 2115, 4256

and 5583) had different expression of aspartate aminotransferase activities against aspartate.

Another study made by Skeie and co-workers [19] shows that all the LAB strains with citrate

metabolism can biosynthesise diacetyl and acetoin by aspartate metabolism with the formation

of the unstable α-acetolactate.

LAB protein degradation determines the formation of free amino acids that vary in their

concentration over time. Leucine has been reported to be dominant amino acid in Cheddar

cheese after 6 months of maturation [5]. Leucine catabolism leads to the formation of α-keto-

isocaproate [10] and generates aroma like 3-methylbutanal (cheesy, chocolate, malt), 3-

methylbutanoic acid (cheesy, sweaty), phenylacetaldehyde and 2-hydroxy-4-methyl pentanoic

acid methyl ester [18]. On the other hand, under Lb. plantarum UC1001, S. thermophilus and Lb.

helveticus catabolism of lysine results in hexanoic acid, with a cheesy aroma [12].

L. lactis subsp. diacetylactis and Lactococcus lactis subsp. cremoris strains used in the cheese

manufacturing are able to degrade phenylalanine and leucine in the presence of citrate and

glutamate. This is possible due to the fact that this strains use α-ketoacids (pyruvate and α-

ketoglutarate) as acceptor for transamination reaction, produced from citrate metabolism. To

balance the α-ketoglutarate biosynthesis (because this is the best acceptor for L. lactis amino-

transferase and the pyruvate is an enzyme used in many pathways), a selection of a strain with

a high aspartate aminotransferase activity and low oxaloacetate decarboxylase activity may be

introduced into co-fermentation [9]. From the phenylalanine catabolism resulted in phenylace-

taldehyde, a floral aroma and a key odour compound in hard and semihard cheese varieties

[18]. This aroma in combination with p-cresol, phenyl-ethanol, indole and skatole can result in

undesirable odour that contributes to putrid, faecal or unclean flavours in cheese. By using a

specific strain, undesirable flavours can be avoided [11]. L. lactis degrades 49% of initial

phenylalanine with the biosynthesis of phenyl-lactate, phenyl-acetate, benzaldehyde (which

has an almond-like odour) and phenyl-ethanol (with a floral odour) and 22% of initial leucine

in milk fermentation with the formation of the hydroxyl-isocaproate and isovalerate (menthol

aroma) [20]. Lb. plantarum UC1001, S. thermophilus and Lb. helveticus can produce 2-phenethyl

alcohol (rose-like aroma) and phenylacetaldehyde (floral fragrances) along with flavours

named from phenylalanine catabolism. These three strains can also produce benzaldehyde

from tryptophan catabolism [12]. Tyrosine is degraded by Brevibacterium linens 47 by phenyl-

alanine pathway [21] (Figure 4).

2.1.3. Amino acids’ third specific degradation pathway

The third pathway is the citrate-isocitrate pathway which utilises the oxidative branch of

the tricarboxylic acid cycle leading to the production of α-ketoglutarate from either pyru-

vate or citrate with the action of pyruvate dehydrogenase, pyruvate carboxylase, citrate

synthase, aconitase and isocitrate dehydrogenase. Pyruvate dehydrogenase and pyruvate

carboxylase are necessary to degrade pyruvate into acetyl-CoA and oxaloacetate, respec-

tively, both used by citrate synthase to synthesise citrate. Citrate is then transformed by

aconitase into isocitrate, which is finally oxidised to α-ketoglutarate by isocitrate dehydro-

genase [9].
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Pediococcus acidilactici and P. pentosaceus can convert alanine to pyruvate by α-ketoacid inter-

mediary pyruvate which further is converted to flavour compounds [22]. The diacetyl and

acetoin are produced via citrate metabolism by citrate-positive LAB (L. lactis, Lb. casei) through

aspartate catabolism described by the L-aspartate-L-alanine-pyruvate steps [23]. The degrada-

tion pathway of the alanine by Lb. plantarum UC1001, S. thermophilus and Lb. helveticus leads to

the production of acetic acid and ethanol, while from glycine catabolism resulted in acetic acid

[5, 12]. Other microorganisms degrade glycine to pyruvate with the formation of serine as

intermediary compound, and then the pyruvate is used as a precursor to flavour biosynthesis

(Figure 5) [24]. By oxidative deamination of the serine under the Lb. plantarum UC1001 metab-

olism, acetic acid is detected [5, 12], while P. pentosaceus and P. acidilactici are able to produce

diacetyl from pyruvate and L-serine [22].

Cysteine is catabolised by α-ketoacid enzyme with synthesis of 3-mercaptopyruvate, which by

elimination of hydrogen sulphide, lead to the obtaining of pyruvate, used as a precursor for

flavour biosynthesis.

Lb. helveticus and S. thermophilus can produce acetaldehyde from threonine by the breakdown of

the amino acid with threonine aldolase into glycine and acetaldehyde [17]. Acetaldehyde levels

increase together with threonine levels, in cheeses during ripening. Branched aldehydes are

produced from the catabolism of branched amino acids, but they do not accumulate in cheese

because they are quickly converted into the corresponding alcohols [7]. Lb. plantarum UC1001,

S. thermophilus and Lb. helveticus can produce propionic acid from threonine catabolism [12].

2.2. The influence of carbon sources

The carbon source is very important for the microbial growth because it is the principal

resource for energy production. In the same time, for aroma biosynthesis sugars with a low-

molecular weight are requested to be used, which are at the same time a flavour precursor.

Figure 4. The citrate-oxaloacetate pathway of the leucine, lysine, tyrosine, phenylalanine and tryptophan.
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The addition of sucrose in the culture media stimulates the flavour biosynthesis for yeasts and

LABs [25]. Di Cagno and co-workers [26] supplemented with sucrose the tomato juice that is

subjected to LAB fermentation in order to stimulate the flavour biosynthesis and to reduce the

intrinsic flavour acidity of tomatoes. By inoculation of six prebiotic strains in the milk culture

media, supplemented with 0.75% fructose (w/v), a desired aroma for the final product was

obtained [3].

De Figueroa and co-workers [27] demonstrated that Lactobacillus rhamnosus ATCC 7469 can

use lactate as the sole energy source and, at the same time, is able to grow with citrate as sole

energy source and to produce diacetyl and acetoin. The enzyme activity of this strain is

increasing with the increase of temperature from 22 to 37�C. Therefore, the presence of a high

pyruvate amount lied to a high production of acetolactate, diacetyl and acetoin. At the same

time, when the glucose level is high, diacetyl and acetoin in low concentration are produced by

Lb. rhamnosus ATCC 7469 [27]. Some LAB species like Lb. rhamnosus and Lb. plantarum are able

to grow on citrate as a single carbon source and consequently to produce diacetyl [19].

In sourdoughs, for example, flavour compounds are produced by LAB and yeasts individually

or by their interactions. S. cerevisiae produced more volatile compounds than Candida

guilliermondii, but quantity of volatile flavour compounds can be improved by the addition of

glucose, of sucrose and less of maltose. Addition of fructose, glucose or maltose to the dough

increases LAB contributions to volatile formation in baking [25]. Escamilla-Hurtado and co-

workers [28] prepared a semisolid maize-based culture media and grew amixed cultures formed

by P. pentosaceus MITJ-10 and Lactobacillus acidophilus Hansen 1748 obtaining 779.56 mg/kg

diacetyl after 12 h of exponential growth. Enterococcus faecium FAIR-E 198 can grow on xylose,

glucose and lactose and converted by biosynthesis the citrate in diacetyl. However, in non-

fermentable conditions, the acetoin yield is decreased in the strain fermentation [29]. Also, other

species like Leuconostoc can use xylose as a sole energy source for diacetyl biosynthesis [30]. Lb.

casei GCRL163 strain was studied in a medium supplemented with different concentrations of

Figure 5. The citrate-isocitrate pathway of the alanine, cysteine, glycine, serine and threonine.
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lactose, but the maximum growth was registered for only 1% lactose in medium with no

significant aroma biosynthesis [5].

2.3. The influence of the mineral composition of the medium

The minerals are very important in culture media of the microorganism because they are used

as a cofactor in enzymatic activity. All enzymes have a metal as a coordinative element, and the

enzyme activity depends on it. At the same time, the salt concentration is very important

because it dictates the osmotic pressure and flavour improvements [31]. Similarly, aldehydes

can also be generated by chemical oxidation of α-ketoacids catalysed by bivalent cations [16].

Manganese and magnesium sulphate enhanced both biomass and aroma development of 52

different yeasts by obtaining 96.05 mg/L acetaldehyde for Candida lipolytica and 3.58 mg/L

diacetyl for Candida globosa [4].

Recently, two manganese transport systems of Lb. plantarum have been characterised. These

systems, which are implicated in mineral uptake, convert phenylalanine to benzaldehyde by

initiation of a pyridoxal 50-phosphate-dependent aminotransferase. The phenyl-pyruvic acid

is obtained after conversion, which is further chemically transformed to benzaldehyde in the

presence of oxygen and manganese [11].

2.4. The influence of temperature

The flavour biosynthesis by microorganism is strongly influenced by the temperature of

fermentation. De Figueroa and co-workers [27] demonstrate that Lb. rhamnosus ATCC 7469

produce diacetyl and acetoin from citrate within a temperature interval of 22–45�C. The

biosynthesis amount of diacetyl increased in the temperature interval between 30 and 37�C

with maximum production at 48 h. For the fermentations made at different temperatures, as 22

and 45�C, the maximum aroma biosynthesis was reached at 24 h of incubation, and the level of

the acetoin and diacetyl was 4.1 time higher at 37�C than at 22�C. Moreover, the highest

efficiency of the conversion of citrate into diacetyl and acetoin was obtained at 37�C. At the

same time, citrate transport and incorporation in microbial system reach maximum at the

37�C. Another effect of the temperature is on the enzymatic systems. The activities of citrate

lyase and NADH oxidase reach a maximum at 37�C when the temperature is increased from

22 to 45�C [27].

On the other hand, lower incubation temperature tends to selectively promote growth rate of

the Leuconostoc and L. lactis ssp. cremoris strains, while the higher temperatures will favour Lb.

rhamnosus and L. lactis ssp. lactis strains. The inoculation concentration has also a significant

influence on the aroma production. The acetaldehyde biosynthesis by Leuconostoc or Lactoba-

cillus is not influenced by the temperature changes [32].

For the yeast fermentations (S. cerevisiae), the increased temperature from 24 to 30�C leads to

increasing of the acetaldehyde biosynthesis. Besides yeast, acetic acid bacteria can

biosynthesise acetaldehyde at concentrations up to 250 mg/L. For this fermentations type,

acetaldehyde tends to accumulate under low oxygen level and ethanol concentration higher

than 10% [33].
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2.5. The influence of aeration

The presence of oxygen strongly influences the microbial growth and the flavour biosynthesis.

The aerobic microorganism’s metabolism is oxygen dependent and is mandatory for flavour

biosynthesis pathway. For example, Lb. casei grown under aeration conditions leads to higher

diacetyl amount biosynthesise in Cheddar cheese than an anaerobic starter culture [23].

Another example is for E. faecium FAIR-E 198 strain growth which biosynthesise diacetyl only

in aerobic conditions [29].

3. Acetaldehyde biosynthesis pathway

Acetaldehyde besides being a major component of tobacco smoke is the primary metabolite of

ethanol [34]. Commercially, it is obtained by Wacker process of ethylene oxidation in strong

acid solutions using as catalysts PdCl2-CuCl2 of crude oil, but this method is not very sustain-

able. The trend demands are for obtained acetaldehyde from renewable raw materials like

sugars from biomass or synthesise from lactic acid. Due to its high reactivity derived from

containing two conjugated hydroxyls and one carboxylic group, lactic acid (LA) is an attractive

feedstock for chemical production, being in torn biosynthesise at low costs by glucose and

xylose fermentation. The acetaldehyde may be produced by decarbonylation or decarboxyl-

ation of LA in the presence of aluminium phosphates and magnesium aluminate spinels,

reaction promoted by acid catalysts [35].

Acetaldehyde represents a secondary metabolite in alcoholic fermentation of yeasts, being a

precursor of the ethanol production in beer and wine. It is the most important carbonyl

compound produced during alcoholic fermentation in concentrations between 10 and

200 mg/L depending on technological factors, such as culture medium composition, pH,

fermentation temperature, aeration and SO2 concentration and on the yeast strain used [4].

Acetaldehyde is biosynthesized from glucose by the glycolytic pathway enzyme pyruvate

decarboxylase. At the beginning, two molecules of pyruvate resulted from glucose glycoly-

sis, and by pyruvate decarboxylation, the secondary acetyl-CoA product is obtained. Fur-

thermore, two acetaldehyde molecules are resulted under alcohol dehydrogenase action on

the acetyl-CoA compound (Figure 6). The high peak value of acetaldehyde biosynthesis is

reached during the early fermentation phases, being then partly re-catabolised by yeast, or is

combined with polyphenols or other compounds in the wine being a very reactive com-

pound [36].

Another species that can produce acetaldehyde is the acetic acid bacteria (AAB) characteristic

from grape microorganism equipment. This class of microorganism has another biosynthesis

pathway, oxidising ethanol to acetaldehyde and acetic acid in concentrations up to 250 mg/L.

At ethanol concentrations higher than 10% (v/v) and under low oxygen conditions, acetalde-

hyde tends to accumulate, in other conditions being oxidised to acetic acid. The yeasts

reported to biosynthesize acetaldehyde in high amounts are S. cerevisiae with 0.5–286 mg/L

and Kloeckera apiculata with 9.5–66 mg/L [33].
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Taken into account that lactic acid bacteria are also responsible for acetaldehyde biosynthesis,

being a typical flavour component of yoghurt responsible for pungent and fruity flavour [37],

this microorganism has attracted the researcher attention. By using recombinant microbial

processes for biotransformation approach, Balagurunathan and co-workers [38] engineered

an E. coli strain for acetaldehyde production from glucose. They introduced the pyruvate

decarboxylase from Zymomonas mobilis and NADH oxidase from L. lactis in the E. coli strain

genome, and the results confirmed that around 37% of the glucose consumed could be

redirected towards acetaldehyde biosynthesis under anaerobic conditions. The mass yield of

acetaldehyde obtained is 0.18 g/g glucose, this being the highest mass reported for microbial

acetaldehyde production. The main disadvantage of biosynthesise acetaldehyde is the high

toxicity on the microbial cells.

4. Diacetyl biosynthesis pathway

Diacetyl (2,3 butanedione) is the typical butter flavour/aroma, commonly found in fermented

dairy products, such as butter, sour cream and yoghurt, and important for cheese aroma [39].

Moreover, L. lactis is a safe flavour production microorganism [40]. The precursor for diacetyl

and acetoin biosynthesis is citric acid, while cow milk is a good substrate which contains

1750 mg citrate/L [41]. Genera as Enterococcus, Lactobacillus, Leuconostoc, Weissella and others

have citrate metabolism property, regulated by different gene expression adapted to the spe-

cific microorganism. Different transcriptional factors belonging to DeoR and GntR family

mediate transcriptional activation in the presence of the substrate [10].

Citrate metabolism is the principal generator of sensory characteristics of the milk final prod-

ucts. One of the LAB used globally as starter fermentation is L. lactis biovar diacetylactis where

citrate and acetoin/diacetyl pathway increases the intracellular level of pyruvate and is coordi-

nated and expressed at low pH [10].

For LAB, citrate fermentation is involved in cheese flavour and quality. In the first step of

citrate metabolism catalysed by citrate lyase, oxaloacetate is obtained. The oxaloacetate is

Figure 6. Acetaldehyde biosynthesis pathway. PDC, pyruvate decarboxylase; ADH, alcohol dehydrogenase.

Natural Flavours Obtained by Microbiological Pathway
http://dx.doi.org/10.5772/intechopen.76785

43



decarboxylated via oxaloacetate decarboxylase generating pyruvate. In L. lactis, genes associ-

ated with citrate metabolism are organised in two operons. One operon, citQRP, is involved in

citrate transport, and the other operon, citM-citI-citCDEFXG, which is encoded for citrate

lyase, is involved in citrate conversion to pyruvate [10, 42]. In this step, the proton motive

force is generated (PMF). In LAB enzymatic equipment, two types of oxaloacetate decarboxyl-

ase are presented. One type is a soluble oxaloacetate decarboxylase belonging to the malic

enzyme family. This enzyme is present in L. lactis and Weissella mesenteroides and other LAB

strains, catalysing the conversion of oxaloacetate from citrate to pyruvate in the presence of

divalent metals. The second type is an oxaloacetate decarboxylase membrane complex, which

is a biotin-dependent decarboxylase. This consists of four polypeptides and is found in Entero-

coccus faecalis and Lb. casei [10].

The pyruvate obtained is condensed by α-acetolactate synthase with the formation of α-

acetolactate which is chemically unstable [40]. The α-acetolactate formed by the action of α-

acetolactate decarboxylase can be converted to acetoin or diacetyl in a non-enzymatic oxida-

tive decarboxylation reaction, the biosynthesis being more evident at pH 4.5. This pathway

could be also completed with additional enzymes such as acetoin/diacetyl reductase and

butanediol dehydrogenase (Figure 7) [10, 23].

There have been many attempts to redirect the metabolism of various microorganisms for

improving diacetyl formation, by classical mutagenesis or directed genetic engineering trying

the improvement of by-product formation [43], but the results were not very promising [40].

Liu and co-workers [40] successfully achieved to convert the homo-lactic bacterium L. lactis

into a homo-diacetyl producer with high titre (8.2 g/L) and high yield (87% of the theoretical

maximum) by complete redirection of the metabolism, metal-ion catalysis and respiration

activation using glucose as a substrate. In the experiments, they found that almost 90% of the

glucose was converted to α-acetolactate without detectable lactate, acetate or ethanol, imply-

ing that the glucose flux was successfully redirected to the α-acetolactate formation pathway.

Figure 7. Diacetyl biosynthesis pathway. CL, citrate lyase; OAD, oxaloacetate decarboxylase; ALS, α-acetolactate

synthase; ALD, α-acetolactate decarboxylase; DAR, acetoin/diacetyl reductase; BDH, butanediol dehydrogenase.
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5. Flavour determination and quantification

The flavour determination was made by different instrumental analytical methods. The com-

mon one is the solid-phase micro-extraction analysis, in which different substrates are used for

solid phase, Table 1.

Other analysis techniques of flavours are (i) by purge and trap method and (ii) GC-MS

separation and identification [7, 52, 53] or (iii) by proton transfer reaction mass spectrometry

using PTR-MS [54, 55]. In some cases, the flavour determination was made enzymatically [36,

56] or by derivatisation with dinitrophenylhydrazine (DNPH)-acetonitrile reagent, and then

the compounds are analysed by HPLC analysis with detection at 360 nm [34, 57].

6. Applications of natural flavours

Flavour release from food during consumption in the mouth is important in flavour perception

and influenced by food matrix [58]. Since food matrix changes biochemically and physically

during eating, the food flavour microencapsulation results in controlled release for specific

situations. Different natural and synthetic polymers were used for microcapsule fabrication, of

which alginate-whey protein compounds have been found to be suitable as vehicle for diacetyl

flavour delivery [59].

Solid-phase material GC column Reference

Carboxen/polydimethylsiloxane, 85 μm film

thickness, 220�C work temperature

Zebron ZB-624, D-0.25 mm; 1.4 μm film thickness;

composition, 94% dimethyl polysiloxane; 6%

cyanopropyl-phenyl; 60 m long

[44]

Polydimethylsiloxane with 10% embedded activated

carbon phase (PDMS/AC), 50 μm film thickness,

250�C work temperature

HP-5MS capillary column, 5% phenyl methyl

silicone, 320 μm � 1.0 μm, 60 m long

[45]

Polyacrylate bonded to silica core, 85 μm film

thickness, 220�C work temperature

HP-INNO-WAX polyethylene glycol capillary

column, 250 μm � 0.5 μm, 60 m long

[16]

Polydimethylsiloxane fibre, 250�C work temperature DB5 capillary column, 0.32 μm internal diameter,

1 μm film thickness, 60 m long

[26, 46]

StableFlex divinylbenzene/carboxen/

polydimethylsiloxane (DVB/CAR/PDMS) coated

fibre, 250�C work temperature

ZB-WAXplus polyethylene glycol capillary column,

0.25 mm internal diameter; 0.50 μm film thickness,

60 m long

[47, 48]

Silica fibre covered by Carboxen

Polydimethylsiloxane (CAR-PDMS), 75 μm film

thickness, 250�C work temperature

CP-Wax 52 CB polyethylene glycol coated, 0.32 mm,

1.2 mm film thickness, 50 m long

[49, 50]

Polydimethylsiloxane divinylbenzene (PDMS_DVB)

SPME fibre, 250�C work temperature

SUPELCOWAX™ 10 capillary column, 0.1 mm,

0.1 μm film thickness, 10 m long

[51]

Table 1. The solid-phase micro-extraction conditions for flavour analysis.
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Nowadays, the delivering of antimicrobial volatiles from polymeric systems, in a controlled

manner, gained an increasing interest. In food industry, diacetyl is used not only as an approved

food additive but also for food preservation, due to its antimicrobial activities. Diacetyl has been

shown to be bactericidal against E. coli and Staphylococcus aureus at a concentration as low as

100 ppm [60]. The effects of diacetyl on the quality of ground beef were evaluated when diacetyl

was used in modified-atmosphere packaging in conjunction with 20% CO2. A delayed spoilage

of ground beef and the maintenance of the fresh colour and odour were observed for this

product [61]. The inhibitory effects of diacetyl combining with reuterin, against E. coli, Salmonella

enteritidis and Listeria monocytogenes in milk, suggested that these LAB metabolites are potential

for pathogen control in dairy products [62].

Strains of Lactobacillus and bifidobacteria could produce diacetyl in concentrations up to

30 mg/mL suggesting its potential to exhibit dermal antimicrobial activities [63], with greater

sensitivity against Gram-negative bacteria (such as Pseudomonas aeruginosa, Pasteurella

multocida, Borrelia burgdorferi, Salmonella typhi, Bartonella sp., Klebsiella rhinoscleromatis, Vibrio

vulnificus and Helicobacter pylori) and fungi as compared to Gram-positive bacteria [60].

Another direction of diacetyl utilisation is related to active packaging systems. Thus, the

controlled release of different volatile antimicrobial compounds was tested for packaging

obtained from two or more poly(ethylene glycol) polymers of different molecular weights

and/or a mixture of poly(lactic acid) and poly(ethylene oxide) [64].

7. Conclusions

In this chapter, data regarding the conditions for flavour obtained by microbial fermentations

were presented. The flavour biosynthesis is strongly influenced by growth medium and

fermentation conditions and, in addition, is strain dependent. One of the most important

factors is the carbon source, which in some cases is flavour precursor. The nitrogen source

influences the flavour biosynthesis by the metabolites generated from catabolic degradation

pathway. The impact of aeration on the flavour production is significant due to the fact that

almost all microorganism strains are aerobic ones and flavour is obtained in the presence of

oxygen. The temperatures modulate the amount of flavour biosynthesis, while the mineral

composition influences the microbial yield. The knowing of the metabolic pathway leads to the

possibility to interfere on the type and the amount of flavour biosynthesised.

The natural aromas obtained by biotechnological routes offer an alternative to the synthetic

ones, which appear to be one of the most promising manufacturing techniques for the future.
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