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Abstract

In this chapter, we propose a method for the analytical description of the porous powder
materials’ (PPMs) pore distribution based on the pore structure data obtained by mercury
porosimetry. The mercury porosimetry method is mostly informative and reliable when
speaking about the recurrence of results as compared with other methods of pore distri-
bution investigation. In this chapter, we present a calculation method of correcting exper-
imental data of mercury porosimetry, based on the presentation of a porous body by a
statistical model of a serial type.

Keywords: porous powder material, pore volume distribution on size, average hydraulic
pore size, mercury porosimetry, statistical model of porous body

1. Introduction

Consistent with the multiple functions performed by porous powder materials (PPMs) in

various technical devices, a variety of computational methods were developed to assess the

effectiveness of the PPMs’ varying pore structure. The relevant calculations use characteristics

of the pore structure of the PPMs determined experimentally. The pore volume distribution on

size and the average hydraulic pore size are considered as main, most common, characteristics

of the pore structure. In this chapter, we propose a method for the analytical description of the

PPMs’ pore distribution based on the pore structure data obtained by mercury porosimetry.

The mercury porosimetry method is mostly informative and reliable when speaking about

recurrence of results as compared with other methods of pore distribution investigation.

However, a pore distribution function provided by this method has a distorted character. It

increases the volume of small pores that is provided by the narrowing and widening of pore
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channels on the way of mercury travel. In this chapter, we present a calculation method of

correcting experimental data of mercury porosimetry, based on the presentation of a porous

body by a statistical model of a serial type.

2. Analytical description of the pore structure

Mercury porosimetry is the most accurate and informative method of studying the pore

volume distribution on size. The essence of this method consists of measuring the quantity of

mercury pressed in the pre-evacuated porous material, depending on the applied external

pressure [1].

Mercury porosimeter operates as follows. The test sample is placed in a sealed cell which is

evacuated; simultaneously the sample is degassed. Then, mercury is introduced into the cell so

that mercury completely closes the sample. The mercury is automatically subjected to a predete-

rmined pressure, which is left for a certain time so that the mercury fills all the pores that have

the size larger than the critical value. At each table pressure value, the volume of mercury, which

went down in the pores of the sample, is measured with a permittance method. According to the

experimental data, the integral

F dð Þ ¼
V dð Þ

V0
(1)

and the differential

f dð Þ ¼ �
1

V0

dV dð Þ

dd
(2)

functions of pore volume distribution on size are calculated. Here V(d)—the volume of mer-

cury—went down into the sample at the pressure corresponding to the critical pore size d; V0—

the total amount of mercury—went down into the sample at the maximal pressure.

For processing the experimental data, the following technique was developed. Because usually

the minimum and maximum pore sizes of the PPMs differ by 1–2 orders of magnitude; the

logarithmically uniform pressure table is pre-assigned that corresponds to the logarithmically

uniform sequence of pore size values d0
T, d1

T, …, dN
T:

di
T

di�1
T
¼ const, i ¼ 1,…, N: (3)

However, because the automatically applied pressure is not exactly equal to the table value,

and may differ from it by 1.5%, the real critical pore sizes di coincide with the table values with

the same deviation:

di ¼ di
T � 0:015di

T , i ¼ 0,…, N: (4)
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According to the obtained values of the volume of mercury which went down into the sample

V0, V1, …, VN, integral function of pore distribution is approximated by a finite Fourier series

[2]. As a first approximation, the volume Vi is deemed as related to the values of pore size

distributed logarithmically evenly between d0 and dN and equal to d0(dN/d0)
i/N, i = 0, …, N.

Assuming

V2N�i ¼ V i, i ¼ 1, …, N, (5)

the volume values are calculated in the points di by the approximating function:

V i
jð Þ ¼

a0
jð Þ

2
þ
X

N�1

k¼1

ak
jð Þcos

πkln di
d0

ln dN
d0

þ �1ð ÞN
aN

jð Þ

2
, i ¼ 0, …, N, (6)

where

ak
jð Þ ¼

1

N

X

2N�1

m¼0

ym
jð Þcos

πmk

N
, k ¼ 0, …, N; j ¼ 1, …, J: (7)

In the last expression in the first approximation, as it was said,

ym
1ð Þ ¼ Vm, m ¼ 0, …, 2N � 1, (8)

and successive approximation of the volume values in the points di is given by the approxi-

mating function to the experimental values provided by the next iteration:

ym
jð Þ ¼ ym

j�1ð Þ þ Vm � Vm
j�1ð Þ, m ¼ 0, …, 2N � 1; j ¼ 2, …, J: (9)

A satisfactory accuracy of the approximation of the experimental results (deviation less than

1%) is usually achieved when the number of iterations is J = 5. Obtained values of the expan-

sion coefficients ak
(J) allow one to calculate the approximating function of pore volume distri-

bution on size for any values of the pore size d0 ≤ d ≤ dN by the expression:

F dð Þ ¼
1

V0

a0
jð Þ

2

� �

þ
X

N�1

k¼1

ak
jð Þcos

πkln d
d0

ln dN
d0

þ �1ð ÞN
aN

jð Þ

2
: (10)

It is easy to obtain the expression for the approximating differential function by differentiating

the last expression:

f dð Þ ¼
1

V0

π

dln dN
d0

X

N�1

k¼1

kak
jð Þsin

πkln d
d0

ln dN
d0

: (11)

Figures 1 and 2 show the processed, accordingly described, technique data on the experimen-

tal study of pore volume distribution on size of the PPMs obtained by sintering a freely poured

copper powder PMS-N with a particle size from �315 to 200 μm.
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The average hydraulic pore size characterizes the transport and evaporative capacity of the

PPMs at full saturation of its pore space with working fluid. Experimental determination of the

average hydraulic pore size is based on the use of Laplace’s law. The test sample in the form of

a tablet is placed in the sleeve so that the rubber gasket is tightly compressed on the side

Figure 1. The results of the experimental investigation of volume pore distribution on size of sintered copper PMS-N.

Particle size (�315 to +200) mm, sample weight 1.7 g.

Figure 2. The approximating differential function of pore volume distribution on size of sintered copper.
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surface of the sample (Figure 3). At the bottom of the sleeve is a socket, connected to a hose of

sufficient length, filled with a liquid which completely wets the sample. The lower end of the

hose is placed in a vessel containing the same liquid. A slow rise of the sample is produced. At

the moment of separation of the liquid in the hose from the sample, the height of the sample

over the liquid level in the vessel h is recorded. The average hydraulic pore size d is calculated

by the expression:

d ¼

4σ

rgh
, (12)

where σ is the surface tension, r is the density of the liquid, and g is the acceleration of free fall.

In case of partial draining of the pore space (e.g., with intense evaporation of the liquid inside

the PPMs, the action of the mass forces, etc.), the pore size distribution becomes significant.

The question arises about the relationship between the function of pore distribution and

average pore size of PPMs. Special experiments and subsequent calculations showed that for

the PPMs, fabricated with the same technology from different fractions of one powder, such a

relationship exists. If the integral function of pore distribution of PPMs with the average

Figure 3. Experimental determination of the average hydraulic pore size.
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hydraulic pore size of d1 is F1(d), then the integral function of pore distribution of PPMs with

the average hydraulic pore size of d2 can be calculated from the function F1(d) by the coordi-

nate transformation d ! d0 = d d1/d2:

F2 dð Þ ¼ F1 d
d1
d2

� �

; (13)

respectively, for the differential pore distribution function:

f 2 dð Þ ¼ �
dF2 dð Þ

dd
¼ �

dF1 d0ð Þ

dd0
dd0

dd
¼ f 1 d

d1
d2

� �

d1
d2

: (14)

Express provision is illustrated in Figure 4, where the experimental data for a porous bronze

material BrOF10-1 depicts in the conventional coordinates (f, d) (a) and in the coordinates

normalized by the average hydraulic pore size (fn,
d
di
) (b). As shown, in the normalized coordi-

nates the experimental points lie almost on the same curve.

3. Method to correct the data of mercury porosimetry

It is known [1] that pore distribution function, derived from the method of mercury porosimetry,

is of a distorted character. It raises the volume of small pores that is caused by narrowing and

widening porous channels on the way of mercury travel. Therefore, to use the data of mercury

porosimetry in calculations of operational properties of porousmaterials, a correction of this data

is necessary.

Figure 4. Experimental data on pore distribution of the porous bronze in conventional coordinates (a) and the normalized

coordinates (b): 1, particle size <63 μm, d1 = 8.1 μm; 2, 63–100 μm, d2 = 15.2 μm; 3, 160–100 μm, d3 = 24.2 μm; 4, 200–160

μm, d4 = 33 μm.
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The developed method of correction of mercury porosimetry data is based on using a statisti-

cal model of a porous body of a serial type [3, 4]. In this model, a porous body is presented as a

block of parallel capillaries, each of which consists of a number of successively disposed

cylindrical elements. The diameter ζ and the length ξ of each element are random values,

which do not depend on adjacent elements and are distributed with the probability density

Ψ(ζ,ξ). Such a model is very similar to a real PPM structure and discloses the corrugateness of

channels, as well as the accidental character of narrowing and widening.

Let us consider a process of mercury pressing into a model porous body. Let the mercury be on

the left from the plane x = 0; on the right there is a porous body as a layer with the thickness l0. If

mercury pressure is p, it penetrates in the elements with the diameter, exceeding the critical one

ζp = 4γ cosΘ/p, where γ is a coefficient of the mercury surface tension and Θ is an angle of

moistening with the mercury of the porous body material. Thereby, mercury will enter the ν first

zν ¼
X

ν

i¼1

ξi: (15)

elements, if ζ1, …, ζν > ζp, and ζν+1 < ζp. Then the length of the mercury part of the given

capillary is

Let the function of the mercury capillary part length be P(z). If suppressing in k-element, a

corresponding distribution function is Pk(z), and a probability density is Ψk(z):

Pk zð Þ ¼

ð

z

0

Ψk xð Þdx, (16)

then

P zð Þ ¼
X

∞

k¼1

ωkPk zð Þ, (17)

where ωk is the probability of mercury suppression in the k-element, distributed as per a

geometrical law:

ωk ¼ μk�1 1� μ
� �

, (18)

μ is the relative number of elements with the diameter exceeding a critical one.

μ ¼

ð

∞

ςp

dς

ð

∞

0

Ψ ς; ξð Þdξ: (19)

Under pressure p all the ξi are distributed in the same may with the probability density:

Φp ξð Þ ¼

ð

∞

dp

Ψ ς; ξð Þdς=

ð

∞

0

dξ

ð

∞

dp

Ψ ς; ξð Þdς: (20)
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Ψk(x) is calculated via Ψk � 1(x) as follows:

Ψk xð Þ ¼

ð

x

0

Ψk�1 x0ð ÞΦp x� x0ð Þdx0: (21)

Substituting Eq. (21) in Eq. (16), we shall get:

Pk zð Þ ¼

ð

z

0

Φp xð ÞPk�1 z� xð Þdx: (22)

Next, substituting Eq. (22) in Eq. (17):

P zð Þ ¼ 1� μ
� �

P1 zð Þ þ
X

∞

k¼2

μk�1 1� μ
� �

ð

z

0

Φp xð ÞPk�1 z� xð Þdx ¼

ð

z

0

Φp xð Þ 1� μþ μP z� xð Þ
� �

dx: (23)

Thereby, we derived an equation to find a function of the length z distribution of the mercury

capillary part under the pressure in the mercury p, which is an integral Volterra equation of the

second gender:

P zð Þ ¼

ð

z

0

Φp xð Þ 1� μþ μP z� xð Þ
� �

dx: (24)

Thereafter we shall consider a model, in which all the elements have the same length ξ0, that is,

the density of the distribution probability ξi is equal to the δ-function under any pressure p:

Φp ξð Þ ¼ δ ξ� ξ0ð Þ: (25)

Justifying such a simplification is based on a smooth-changing a pore diameter. When the

value of ξ0 is rather small, a transversal size of the pore part, the length of which is ξ0, may be

considered as constant. Substituting Eq. (25) in (24), we derive an equation for P(z):

pðzÞ ¼ 1� μþ μpðz� ξ0Þ, (26)

giving a step-by-step solution:

ð27Þ

where n = l0/ξ0 is the number of elements in one capillary.

The derived solution for P(z) must be connected with an experimental value of the entered

mercury volume. If in the given capillary the length of the mercury part is z, the mercury

volume in it is
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v1p zð Þ ¼ v1z

ð

∞

dp

f ςð Þdς, (28)

where f(ζ) is the true density of pore volume distribution on sizes and v1 is a medium volume

of capillary length unit. A total volume of mercury, entered under the pressure p, is

v pð Þ ¼

ð

l0

0

N0
dP

dz
v1p zð Þdzþ v1l0

ð

l0

N0
dP

dz
dz

ð

∞

ςp

f ςð Þdς, (29)

where N0 represents a total quantity of the capillaries. In the expression (29), the first compo-

nent considers the volume of partially filled capillaries, and the second component considers

the volume of fully filled ones. Convert the expression (29), considering V0 = v1N0l0 (V0 is the

total volume of the porous area):

v pð Þ ¼ V0 1�
1

l0

ð

l0

0

P zð Þdz

0

@

1

A

ð

∞

dp

f ςð Þdς: (30)

Using the solution (27), we may make a calculation:

1

l0

ð

l0

0

P zð Þdz ¼ 1�
μ

n

1� μn

1� μ
: (31)

Substituting Eq. (31) into Eq. (30):

v pð Þ ¼ V0
μ

n

1� μn

1� μ

ð

∞

dp

f ςð Þdς: (32)

A dependence exists between the functions μ(ζ) and f(ζ):

dμ

dς
¼

f ςð Þ

sς2
, (33)

where we use the designation, s ¼

ð

∞

0

f ςð Þ

ς2
dς:

Using Eq. (33), let us convert an integral in Eq. (32) (later on for convenience of writing let us

consider v = v(d)):
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ð

∞

ς

f ςð Þdς ¼ �s

ð

∞

ς

dμ

dς
ς2dς ¼ s μς2 þ 2

ð

∞

ς

μςdς

0

@

1

A, (34)

Substituting Eq. (34) in Eq. (32), we get:

bv

μ

1� μ

1� μn
� μς2 ¼ 2

ð

∞

ς

μςdς, (35)

where there is marked b=n/(sV0). Differentiating the expression (35) on d, we get the following

equation after converting:

dμ

dς
¼

b dv
dςμ 1� μ

� �

1� μn
� �

μ2ς2 1� μn
� �2

� bv 1� μ
� �

nμn � 1þ μn
� �

, (36)

which forms the Cauchy problem together with a boundary condition

μ ςminð Þ ¼ 1 (37)

to determine a true function of pore quantity distribution on sizes μ(ζ). In Eq. (21), the values b

and n are indefinite and are connected with the desired function μ(ζ). Therefore, to solve the

Cauchy problem there is an iterative method as follows.

Zero approximation μ0(ζ) is obtained, considering:

f 0 ςð Þ ¼ �
1

V0

dv

dς
; s0 ¼

ð

∞

0

f 0 ςð Þ

ς2
dς; ξ00 ¼

ð

∞

0

ςf 0 ςð Þdς; n0 ¼
l0
ξ00

; b0 ¼
n0
s0V0

, (38)

where l0 is the size of the porous material sample being investigated in the direction of

mercury travel. The following approximations μi(ζ) are obtained using the following calcula-

tions:

f i ςð Þ ¼

dμi�1

dς

2
Ð

∞

0

μi�1ςdς

; si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

si�1
1

2
Ð

∞

0

μi�1ςdς

v

u

u

u

t

; ξ0i ¼

3
Ð

∞

0

μiς
2dς

2
Ð

∞

0

μi�1ςdς

; ni ¼
l0
ξ0i

; bi ¼
ni
siV0

: (39)

Calculation of μi(ζ) on each step of the iteration is made by the Runge-Kutta method [5];

therewith, the initial value of the calculated function is μ(ζmin) = 1, and the derivative is

calculated using the equality

lim
μ!1

1� μ

1� μn
¼

1

n
, (40)
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with which it is possible to obtain:

lim
μ!1

dμ

dς
¼

b dv

dς

nς2 � n�1
2 bv

: (41)

In Figure 5 the results of calculating the functions of pore volume on size distribution from

Eq. (36) and—for comparison—directly from the experimental data are given. It is seen that as

a result of data correction of mercury porosimetry, the curves of pore distribution displace

considerably in the direction of large pores.

4. Conclusions

The relationship between the function of pore distribution and average hydraulic pore size,

eliminating the need for a time-consuming set of experiments to determine the function of pore

distribution of porous powder material, allowing to calculate the pore distribution function of

porous powder material with any hydraulic average pore size from the known pore distribu-

tion function of the reference porous powder material with the fixed average hydraulic pore

size, is explained.

The true function of pore distribution, obtained as a result of correcting mercury porosimetry

data, enables to improve considerably the accuracy of calculations of processes and facilities

parameters, where porous powder materials are used.

Figure 5. Function of pore volume distribution on sizes, calculated by the developed methodic (1) and directly from

experimental data (2).
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