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Abstract

Among the various computational methods in materials science, only first-principles cal-
culation based on the density functional theory has predictability for unknown material. 
Especially, density functional perturbation theory (DFPT) can effectively calculate the 
second derivative of the total energy with respect to the atomic displacement. By using 
DFPT method, we can predict piezoelectric constants, dielectric constants, elastic con-
stants, and phonon dispersion relationship of any given crystal structure. Recently, we 
established the computational technique to decompose piezoelectric constants into each 
atomic contribution, which enable us to gain deeper insights to understand the piezo-
electricity of material. Therefore, in this chapter, we will introduce the computational 
framework to predict piezoelectric properties of polar material by means of DFPT and 
details of decomposition technique of piezoelectric constants. Then, we will show some 
case studies to predict and discover new piezoelectric material.

Keywords: density functional perturbation theory, ferroelectricity, piezoelectricity,  
first-principles calculation

1. Introduction

In this chapter, we will introduce how recent computational techniques can successfully pre-
dict response properties, represented as piezoelectricity, by means of perturbation method. 

Piezoelectricity is the polarization change in response to external mechanical force. Inversely, 

if electrical field is applied to piezoelectric material, mechanical strain is induced (inverse 
piezoelectric effect). Therefore, piezoelectric materials are widely used as vibrational censors, 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



surface acoustic wave devices, and actuators. Only the material having no inversion symmetry 

shows piezoelectricity. For example, Figure 1 shows schematic illustration of the piezoelectric 

effect. Positions of positively charged ion (cation) and negatively charged ion (anion) are rep-
resented as plus and minus symbols. Figure 1a shows the paraelectric phase, where ions are 

orderly located with inversion symmetry. On the other hand, ions are slightly displaced by δ 
with respect to those in paraelectric phase, as shown in Figure 1b. Such small displacement 

induces microscopic polarization P
s
 along the ionic displaced direction.

Because ferroelectric phase is energetically more stable than paraelectric phase under low 

temperature, P
s
 is frequently referred as the spontaneous polarization. Above Curie tempera-

ture, ferroelectric properties are disappeared since paraelectric phase becomes more stable 

than ferroelectric one. Figure 1c shows the schematic illustration of the principal of piezo-
electricity, where external stress (red-colored arrows) increases the ionic displacement and 
resultant polarization. In this case, external stress increases the spontaneous polarization by 

ΔP
s
 = P

s
’−P

s
. Therefore, piezoelectric constant is defined as the derivative of the spontaneous 

polarization with respect to the external field. More detailed and comprehensive description 
of piezoelectricity is reviewed by Martin [1].

First-principles calculation based on density functional theory (DFT [2, 3]) has been widely 

utilized as the computational method to predict the electronic properties of material under the 

ground state. Ideally, required information to conduct the first-principles calculation is only 
the crystal structure, including atomic species and position of periodic/nonperiodic struc-
ture unit. The most significant advantage of first-principles calculation is its predictability.  
Since King-Smith and Vanderbilt showed the theoretical methodology to calculate change in 
polarization per unit volume ΔP [4], dielectric and piezoelectric properties of wide range of 

materials in which electronic correlations are not too strong [5–7] have been accurately pre-
dicted. The derivative of total energy determines various properties. For example, determined 

forces, stresses, dipole moment (first-order derivatives), dynamical matrix, elastic constants, 
dielectric and piezoelectric constants (second-order derivative), nonlinear dielectric suscep-
tibility, phonon–phonon interaction and Grüneisen parameters (third-order derivative), and 

Figure 1. Ionic configuration of (a) paraelectric phase and (b) ferroelectric phase. (c) Ionic displacement according to the 
external force.
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so on. Thus, first-principles calculation has been made use of calculating the perturbed total 
energy of materials because of its accuracy. Although perturbations were made by hand up to 

the early 1980s, sophisticated methodology of density functional perturbation theory (DFPT) 

was proposed in 1987 by Baroni et al. [5]. They showed general formulation of total energy 

change with respect to atomic displacement and opened the way to efficiently compute the 
energy derivative with respect to the perturbation [5]. DFPT can compute response proper-
ties directly arising from the perturbations of strain, atomic displacement, and electric field 
by making use of linear response theory [8–11]. Numbers of ferroelectric materials are theo-
retically investigated on the origin of their ferroelectric properties (including piezoelectricity 

and dielectric properties) by using DFPT. Because of technological importance, such theo-
retical researches have been focused on Pb-based perovskite material (e.g., PbTiO

3
, PbZrO

3
, 

and their solid solution [12–15]) because they have excellent piezoelectric properties and are 

widely applied for actuators. However, due to the restriction of hazardous substance (RoHS) 

directive, researches on lead-free ferroelectric materials have gathered great attraction. By tak-
ing advantage of the predictability of DFPT, various lead-free ferroelectric oxide and nitride 
materials were theoretically investigated on their piezoelectric properties [16–25]. Moreover, 
DFPT calculations showed that piezoelectricity can be greatly enhanced by imposing isotro-
pic stress for PbTiO

3
 [26, 27], uniaxial stress for SrHfO

3
 [28], uniaxial and biaxial strain for 

AlN-GaN solid solution alloy [29], and two-dimensional epitaxial strain for doped ZnO [30]. 

As latterly explained, those enhancements of piezoelectric constant are thought to be closely 
related to the phase transition. In the next section, we will show the definition of piezoelectric 
constants within the framework of DFPT.

2. Formulation of piezoelectric constants

Formulation and calculation methodologies to obtain response properties of materials in 

the framework of DFPT have been developed in a step-by-step manner, because degrees of 
freedom by perturbations of atomic displacement, homogeneous electric fields, and strain 
are often strongly coupled. For example, piezoelectricity affects elastic and dielectric proper-
ties. Therefore, special care must be paid for the calculation of coupled properties. In 2005, 

Hamann et al. demonstrated that elastic and piezoelectric tensors can be efficiently calcu-
lated by treating homogeneous strain within the framework of DFPT [31]. At the same time, 

Wu et al. systematically formulated response properties with respect to displacement, strain, 

and electric fields [32]. In this section, we will briefly introduce how piezoelectric properties 
are formulated in the framework of DFPT. In each formulation, Einstein implied-sum nota-
tion is used. Cartesian directions {x, y, z} are represented as α and β. Subscription of j and 

k = 1, …, 6 is the standard Voigt notation (represents directions of xx, yy, zz, yz, zx, and xy). 

The subscripts m and n are the degrees of freedom in the cell. They range from 1 to 3i, where 

i is the number of irreducible atoms because each atom has three degree of freedom along x, 

y, and z directions.

Total energy of material under perturbation of atomic displacement u, electric field σ, and 

strain η, E(u,σ,η), is defined as follows:
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  E (u, σ, η)  =   1 ___ 
 Ω  

0
  
   [ E   0  − Ωσ ∙ P]   (1)

where E0 is the total energy of material under the ground state, Ω
0
 is volume of the unit cell (small-

est repeat unit of crystal), Ω is deformed volume of the unit cell, and P is the electric polarization. 
Following response functional tensor can be obtained by second-order differential of Eq. (1):

  Force constant matrix :  K  
mn

   =    Ω  
0
      ∂   2  E ______ 
∂  u  

m
   ∂  u  

n
    |   
σ,η

    (2)

  Clamped − ion term of electric susceptibility :   χ ̄    
𝛼𝛽

   = −      ∂   2  E ______ 
∂  σ  α   ∂  σ  β  

  |   
u,η

    (3)

  Clamped − ion term of elastic tensor :   C ¯    
jk
   = −      ∂   2  E ______ 

∂  η  
j
   ∂  η  

k
    |   
u,σ

    (4)

  Born effective charge tensor :  Z  
m𝛼

   =   −  Ω  
0
      ∂   2  E ______ 
∂  u  

m
   ∂  σ  α  

  |   
η
    (5)

  Force − response internal − strain tensor :  Λ  
mj

   =   −  Ω  
0
      ∂   2  E ______ 
∂  u  

m
   ∂  η  

j
    |   
σ

    (6)

  Clamped − ion piezoelectric tensor :   e ̄    
𝛼j
   =      ∂   2  E ______ 

∂  σ  α   ∂  η  
j
    |   
u

    (7)

Clamped-ion term is a frozen quantity, which indicates that atomic coordinates are not 
allowed to relax as the homogeneous electric field or strain. Therefore, dynamical term should 
be added into the clamped-ion term in order to obtain proper response properties.

Simplest and physically well-understandable piezoelectric constant can be expressed as 
follows:

   e  
𝛼j
   =   

∂  P  α   ___ 
∂  η  

j
      (8)

In this expression, it is easily understood that piezoelectric e constant eαj is a measure of the 

change in polarization induced by the external strain. As the atomic positions are changed 

according to the strain, change of the polarization includes both electronic contribution 

(clamped-ion term) and dynamical contribution (internal-strain term). The internal-strain 
term of piezoelectric constant is represented as follows:

    e ̂    
𝛼j
   =   1 ___ 

 Ω  
0
  
    Z  
m𝛼

     ( K   −1 )   
mn

    Λ  
nj
    (9)
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Thus, proper piezoelectric constant can be obtained by Eqs. (7) and (9):

   e  
𝛼j
   =      ∂   2  E ______ 

∂  σ  α   ∂  η  
j
    |   
u

   +   1 ___ 
 Ω  

0
  
    Z  
m𝛼

     ( K   −1 )   
mn

    Λ  
nj
    (10)

Here, the first and second terms on the right-hand side in Eq. (10) are the clamped-ion term 
and internal-strain term, respectively. The former shows the electronic contribution ignoring 
the atomic relaxation effect, and the latter shows the ionic contribution including the response 
of the atomic displacement to the strain. The Born effective charge Zmα, force-constant matrix 
K
mn

, and internal-strain tensor Λ
nj
 are the second derivatives of the energy with respect to the 

displacement and electric field, pairs of displacements, and displacement and strain, respec-
tively. The internal-strain term of the piezoelectric stress constants can be further decom-
posed into the individual atomic contributions when the above second-derivative tensors are 
fully obtained.

On the other hand, the internal-strain term of the piezoelectric stress constant eαj is frequently 

described by the following equation, using the Born effective charge Zαβ and displacement uβ 

of each atom in the calculation cell:

    e ̂    
𝛼j
   =  Z  

𝛼𝛽
     
∂  u  β  

 ___ 
∂  η  

j
      (11)

where  ∂  u  
β
   / ∂  η  

j
    shows the response of the first-order atomic displacement to the first-order 

strain. In this expression, the meaning of the piezoelectric stress constant, i.e., e
j
 is a measure 

of the change in polarization induced by the external strain, is much more visible than in Eq. 

(9). In the DFPT formalism,  ∂  u  
β
   / ∂  η  

j
    is implicitly calculated as a displacement-response internal-

strain tensor Γ as follows [32]:

   Γ  
nj
   =  Λ  

mj
     ( K   −1 )   

mn
    (12)

Because the subscript n in Γ
nj
 indicates the degrees of freedom, Γ

nj
 can be decomposed into 

the individual atomic components, which also enables to calculate individual contribution of 

each atom for total piezoelectric constant.

Here, piezoelectric e constant defined as Eq. (9) is frequently referred as “piezoelectric strain 
constant.” On the other hand, it is much more natural and easy to control the stress (electric 

field) than to control the strain in any case. In this case, the piezoelectric strain constant dαj is 

usually measured. It can be obtained from piezoelectric strain constant eαj using the following 

relation:

   d  
𝛼j
   =  s  

jk
    e  

𝛼k
    (13)

where s
jk
 is the elastic compliance, which is given by the inverse matrix of the elastic con-

stants Cjk.
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Those formulations are implemented in specific first-principles simulation packages such as 
ABINIT [33] and Vienna ab initio simulation package (VASP) [34], and piezoelectric constants 

can be calculated on a daily basis. From the next section, we will show how DFPT calculation 

precisely gives piezoelectric properties of ferroelectric materials.

3. Introduction of target material

In this chapter, we selected LiNbO
3
 as a target material to show the predictability of DFPT 

calculation. LiNbO
3
 is one of ferroelectric materials and widely used as surface acoustic wave 

(SAW) and optical waveguide elements. Crystal structure of LiNbO
3
, which belongs to the 

space group of R3c, is frequently referred as “strained perovskite structure.” Schematic illus-
trations of crystal structure of ABO

3
 perovskite and LiNbO

3
 are shown in Figure 2.

Crystal structures shown in the present chapter was visualized by using VESTA software [35]. 

Curie temperature of LiNbO
3
 is quite high and ranges from 1140 [36] to 1210°C dependent 

on the quality of sample (variation of Li/Nb relation can shift Curie temperature [37]). Below 

Curie temperature, ferroelectric phase with R3c symmetry (crystal structure can be classified 
into 230 types of space group according to the symmetry group) shown in Figure 2a is stable. 

Paraelectric phase with R   ̄  3  c symmetry, shown in Figure 2b, becomes stable above Curie tem-
perature. In the paraelectric phase, it can be seen that both Li and oxygen is positioned with 

Figure 2. Crystal structures of (a) ferroelectric phase with R3c symmetry and (b) paraelectric phase with R   ̄  3  c symmetry 

LiNbO
3
. Yellow green-, green-, and red-colored balls represent Li, Nb, and oxygen atoms, respectively. Bonding 

structures between Nb and surrounding oxygen atoms are represented as green-colored polyhedron. Two orthogonal 
crystallographic directions are shown as both a- and c-axes.

Perturbation Methods with Applications in Science and Engineering6



the same height along c-axis, and the position of Nb is just the center between two oxygen 
layers along c-axis. On the other hand, both Li and Nb are shifted in ferroelectric R3c phase 

along downward direction of c-axis with respect to those in paraelectric R   ̄  3  c phase.

Due to the different bonding nature between Li-O and Nb-O, atomic positions of Li and Nb 
are off-centered within oxygen layers along c-axis. This structural characteristic is the fer-
roelectric nature of LiNbO

3
. One of the notable properties of LiNbO

3
 is its high-curie tem-

perature (~1400 K). However, piezoelectric properties of LiNbO
3
 are not so much superior as 

compared with Pb-based perovskites. Crystal structure of piezoelectric ABO
3
 perovskite is 

based on the cubic structure (of Pm3m symmetry), shown in Figure 3a.

Cubic lattice is symmetric and usually high-temperature phase, same as LiNbO
3
. The “strained 

perovskite structure” expression for LiNbO
3
 means that LiO

6
 and NbO

6
 polyhedron are 

largely rotated with respect to the cubic perovskite structure. However, because of the simple 

atomic configuration of cubic structure, atoms can be displaced along various directions and 
change crystalline symmetry as shown in Figure 3a. Crystalline lattice is vibrated (referred as 
phonon) under finite temperature. Some lattice vibrations along specific directions are unsta-
ble. This specific phonon is called as soft mode with imaginary frequency. In such case, atoms 
are displaced along unstable phonon mode to lower the total energy. For example, coop-
erative atomic displacement along [001] direction shown in Figure 3b (referred as Γ

15
 mode) 

changes symmetry from cubic to tetragonal (of P4mm symmetry), which leads polarization 

along [001] direction. Thus, polarization direction of perovskite is not restricted and allowed 
to be changed. This characteristic rotational polarization direction is favorable for piezoelec-
tricity because grains in polycrystalline material are oriented along various directions. Thus, 

careful controlling of crystal structure is essential to obtain superior piezoelectric properties.

The most convenient way to control and drastically change the crystal structure is imposing high 

pressure. Many compounds have found to be possible to form LiNbO
3
-type structure under the 

high-pressure synthesis [38], and some of them were quenchable phase. For example, LiNbO
3
-

Figure 3. (a) Crystal structure of cubic ABO
3
 perovskite and possible polarization directions. (b) Representative unstable 

vibrational mode of cubic ABO
3
 perovskite showing as arrows.

Density Functional Perturbation Theory to Predict Piezoelectric Properties
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type structured ZnSbO
3
 was successfully synthesized [39] under high pressure, and improve-

ment of the spontaneous polarization is suggested by enhancement of the covalency of Sn site 

from first-principles simulation [40]. Moreover, high-pressure synthesized research on LiNbO
3
-

type structure is now extended to more complex compounds such as oxynitrides [41, 42].

The crystal structure of ABO
3
 compound is generally determined by the balance between the 

ionic radius of A and B element, which is frequently referred as tolerance factor. Due to the 

small size of the Li ion with respect to the tolerance factor of LiNbO
3
, this compound cannot 

form stably the popular perovskite structure under the ambient condition. On the other hand, 

we predicted the crystal structures of high-pressure phase of LiNbO
3
 [43], which were not com-

pletely elucidated by experimental study [44]. Revealed structures are NaIO
3
-type structure 

(Pnma) as room temperature high-pressure phase and apatite-like structure (P6
3
/m) as high-

temperature high-pressure phase. It should be noted that the NaIO
3
-type structure is closely 

related with the popular GdFeO
3
-type perovskite structure. The only difference between these 

structures is that A-site position and B-site position are inter-exchanged. Therefore, there 
seems to be a possible way to connect the perovskite structure and LiNbO

3
-type structure.

In our previous theoretical study on high-pressure phase, analysis was mainly concerned 
with phase transition mechanism only from the viewpoint of subgroup symmetry and energy 

barrier [43]. It will be instructive to deal with this phase transition phenomenon from the 

viewpoint of lattice instability as discussed in the field of the ferroelectric instability analysis. 
In the following section, we will show investigation on the potential piezoelectric properties 

of LiNbO
3
 with various hypothetical crystal structures by the method of DFPT, and possible 

phase transition mechanism will be discussed from the viewpoint of soft mode.

4. Computational methodology

First-principles calculation was performed by using VASP code [34]. Interactions between ion 

and electron were treated by projector augmented wave (PAW) method [45]. PBEsol functional 

[46] was used to approximate exchanges and correlate interactions of electrons, which can be 

used to reproduce the lattice constants of various materials [45]. Precise calculation on the lat-
tice constant is essential to predict piezoelectric properties because they depend on volume of 

unit cell Ω as shown in Eq. (1). The kinetic energy cutoff for plane waves was set at 500 eV, and 
the k-point mesh was set at ~0.03/Å intervals to obtain the converged total energy at less than 
0.1 meV/atom. Before calculating the piezoelectric constants, atomic positions and cell param-
eters were optimized until the forces on each atom and cell converged at below 5 × 10−4 eV/Å.

Since VASP does not directly calculate Eq. (12), we added routine to calculate displacement-
response internal-strain tensor Γ

nj
 and decompose piezoelectric constants into each atom. The 

sum of the decomposed piezoelectric constants was confirmed to accurately reproduce the 
total piezoelectric constants. Careful convergence tests with a higher energy cutoff and denser 
k-point mesh showed that the numerical accuracy of the calculated Γ

nj
 was less than 0.01. It 

was confirmed that this error does not influence our discussion and conclusion. Moreover, it 
was confirmed that the values of Γ

nj
 obtained by the DFPT method were consistent with those 

Perturbation Methods with Applications in Science and Engineering8



calculated by the direct method, in which the strain-displacement relation of each ion was 
explicitly calculated.

On the basis of cubic Pm3m phase, lattice instability analysis was performed by phonon calcu-
lation utilizing phonopy code [47]. Force constant matrix shown in Eq. (2) was constructed by 

DFPT calculation implemented in VASP code combined with supercell approach. Supercell 
was constructed by using unit cell so that orthogonal three axes of the supercell exceed 10 Å. 
Note that although supercell is not required in DFPT approach, the present VASP code imple-
ments perturbation at the zone center.

5. Calculated piezoelectric properties of LiNbO
3

Calculated piezoelectric properties of LiNbO
3
 in ferroelectric phase are summarized in Table 1.  

Some experimentally measured values are also shown in Table 1. All properties are confirmed 
to be well reproduced by calculation. In a technological importance, 33 components are the 

most important because C-axis of LiNbO
3
 is polarization direction. Calculated values of e

33
, 

C
33

, and ε
33

 are especially well reproduced. It should be mentioned here that chemical com-
position of LiNbO

3
 used for experiment is congruent and includes Li vacancy. On the other 

hand, calculation was performed by using stoichiometric LiNbO
3
.

Calculated value Experimental value

Piezoelectric stress constant (C/m2)

e
15

3.73 3.655 ± 0.022 [48], 3.7 [49]

e
22

2.51 2.407 ± 0.015 [48], 2.5 [49]

e
31

0.21 0.328 ± 0.032 [48], 0.2 [49]

e
33

1.69 1.894 ± 0.054 [48], 1.3 [49]

Elastic constant (GPa)

C
11

190.7 198.86 ± 0.033 [48], 203 [49]

C
12

58.3 54.67 ± 0.04 [48], 53 [49]

C
13

62.4 67.99 ± 0.55 [48], 75 [49]

C
14

13.5 7.83 ± 0.02 [48], 9 [49]

C
33

220.0 234.18 ± 0.75 [48], 245 [49]

C
44

49.2 59.85 ± 0.01 [48], 60 [49]

Dielectric constant

ε
11

40.6 44.9 ± 0.4 [48], 44 [49]

ε
33

24.1 26.7 ± 0.3 [48], 29 [49]

Table 1. Piezoelectric constant, elastic constant, and dielectric constant calculated by DFPT and experimentally measured 

values.

Density Functional Perturbation Theory to Predict Piezoelectric Properties
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Decomposed e
33

’ (C/m2) Born effective charge Z
33

 (e) Displacement-response internal-strain constant Γ
33

Li Nb O Li Nb O Li Nb O

0.1 0.05 0.16 1.03 6.77 −2.6 0.67 −0.05 −0.21

Table 2. Decomposed piezoelectric constants of LiNbO
3
.

Thus, Li vacancy is considered to have negligible influence on the piezoelectric properties. 
Decomposed ionic contribution of piezoelectric strain constant e

33
 is summarized in Table 2. 

Although the Born effective charge of Nb is larger than its formal charge +5e, displacement-
response internal-strain constant of Nb is negative value. This indicates that piezoelectric-
ity of LiNbO

3
 is mainly dominated by displacement of Li. Born effective charge indicates a 

degree of polarization induced by atomic displacement and dominated by the change in the 

orbital hybridization. Although anomalously large Born effective charge is crucial for supe-
rior piezoelectric properties of perovskite ABO

3
 materials [50], the present study of decom-

position of piezoelectric constant shows that coupling degree between external strain and 

atomic displacement is also indispensable to understand the piezoelectric properties.

6. Piezoelectric properties of perovskite-LiNbO
3

Next, we will show how piezoelectric properties are affected by crystal structure, while 
chemical composition is kept as LiNbO

3
. Various hypothetical crystal structures common for 

perovskite-type structure were constructed, and their energetic stabilities were examined by 
calculating enthalpy H = U + PV (U is total energy obtained by first-principles calculation, P 

is external pressure, and V is equilibrium volume under pressure P) as a function of external 

pressure. Imposing high pressure is most convenient method to modify crystal structure and 

find unexpected stable phase. The following eight types of phases were considered:

Cubic, Pm-3 m; tetragonal, P4mm; and rhombohedral, R-3 m.

LiNbO
3
-ferroelectric phase, R3c, and LiNbO

3
-paraelectric phase, R-3c.

Orthorhombic, Amm2 and Cmmm, and high-pressure phase, P63/m.

where names of space groups are used to distinguish each structure. Crystal structure of each 

phase is shown in Figure 4a. Polyhedra shown in Figure 4a correspond to Nb-centered bond-
ing structure of Nb-O bondings. Figure 4b shows the enthalpy difference of each phases as a 
function of external pressure. Here, external pressure is assumed to be isotropic. Standard of 

enthalpy was set to be the enthalpy of most stable R3c phase under ambient condition. At the 

positive (compressive) pressure region, P6
3
/m phase becomes stable above 21 GPa, which is 

close to the experimental phase transition pressure of 25 GPa [43]. Details of the phase transi-
tion behavior under high pressure are theoretically investigated in our previous work [44]. 

Unfortunately, P6
3
/m phase is highly symmetric and shows no piezoelectricity. At the nega-

tive (expansive) pressure region, enthalpy difference becomes smaller as there is an increase 
of negative pressure except for R   ̄  3  c and P6

3
/m phases.

Perturbation Methods with Applications in Science and Engineering10



Imposing negative pressure can be achieved by solid solution with parent phase of larger lat-
tice constant. At −6 GPa, P4mm phase becomes stable, while R3m and Amm2 phases become 

stable at −9 GPa. However, bond breaking occurs in Nb-O bonding above −6 GPa for P4mm 

phase. The same bond breaking occurs in Amm2 and R3m phases at −11GPa and −14 GPa, 
respectively. Thus, those phase transitions occur just before bond breaking.

Within the eight phases shown in Figure 4a, only P4mm, R3m, R3c, and Amm2 phases show 

piezoelectricity. Piezoelectric stress constant, elastic constant, and dielectric constant of P4mm, 

R3m, and Amm2 phases are compared with those of R3c phase in Table 3. Various piezoelec-
tric properties are observed by each phase. Especially for P4mm and Amm2 phases, high e

33
 

and relatively low C
33

 values are predicted, which are advantageous for large piezoelectric 

strain constant d
33

. On the other hand, R3m phase was found to be unstable because following 

mechanical stability conditions of rhombohedral symmetry:

    C  
11

   +  C  
12

   > 0,  C  
33

   > 0,   ( C  
11

   +  C  
12

  )    ∗   C  
33

   > 2  C  
13

  ,  C  
11

   −  C  
12

   > 0,  C  
44

   > 0,   ( C  
11

   −  C  
12

  )    ∗   C  
44

   > 2  C  
14

       (14)

are broken because of C
44

 < 0.

Figure 5a and b show piezoelectric properties of P4mm phase as a function of pressure and cor-
responding volume of unit cell. Dotted lines indicate zero pressure states. Piezoelectric stress 
constant e

33
 of P4mm phase shows parabolic behavior and maximum value at zero pressure 

state. On the other hand, elastic constant C
33

 of P4mm phase continuously decreases as volume 

increases, because orbital hybridization of Nb-O bonding along polarization direction decreases 
as bond length increases. At the pressure of −6 GPa, C

33
 of P4mm phase shows almost zero value. 

This indicates that Nb-O bonding is broken. Piezoelectric stress constant d
33

 shown in Figure 5b  

increases as volume, because of increase of elastic compliance. Especially at the pressure of 

−5 GPa just before bond breaking, d
33

 shows maximum value or approximately 1000 pC/N.

This giant piezoelectric constant is almost comparable to that of PZT material [51]. Giant 

piezoelectric constant is understood as a result of phase instability in morphotropic phase 

boundary [52]. The same as P4mm phase of LiNbO
3
, we revealed that ZnO also showed anom-

alously large piezoelectric constant just before phase transition [30].

Figure 4. (a) Schematic illustration of eight types of perovskite-structured LiNbO
3
 and their space groups. (b) Enthalpy 

differences of each phase measured from the enthalpy of R3c phase as a function of pressure.
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Figure 5. (a) Piezoelectric stress constant e
33

 and elastic constant C
33

 and (b) piezoelectric strain constant d
33

 of P4mm 

phase as a function of pressure and corresponding volume of unit cell.

Finally, we would like to show phase transition path between cubic perovskite structure and 

LiNbO
3
 structure. Figure 6a shows the energy change of Pm3m phase as a function of Li dis-

placement along <001>, <011>, and <111> directions. Pm3m phase is paraelectric phase. Because 

ferroelectricity and piezoelectricity of LiNbO
3
 are dominated by off-centering and displace-

ment of Li, respectively, phase transition from Pm3m phase is also expected to be occurred by 

R3c P4mm R3m Amm2

Piezoelectric stress constant (C/m2)

e
15

3. 73 1.14 5.10 0.64

e
22

2.51 — 1.19 —

e
31

0.21 0.46 0.24 0.80

e
33

1.69 3.28 1.92 2.99

Elastic constant (GPa)

C
11

190.7 297.2 203.0 321.8

C
12

58.3 48.9 169.0 91.6

C
13

62.4 77.7 90.6 92.8

C
14

13.5 — −42.1 —

C
33

220.0 157.7 206.6 176.4

C
44

49.2 39.5 −29.6 32.5

Dielectric constant

ε
11

40.6 56.2 36.6 28.2

ε
33

24.1 12.3 16.2 13.3

Table 3. Piezoelectric constant, elastic constant, and dielectric constant of R3c, P4mm, R3m, and Amm2 phases calculated 

by DFPT.
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Li displacement. Li displacement along <001>, <011>, and <111> directions induces tetragonal, 

orthorhombic, and rhombohedral phase transition from cubic phase. Figure 6a clearly shows 

that tetragonal phase transition from Pm3m phase to P4mm phase is the most energetically 

advantageous. Figure 6b shows the phonon dispersion curve of cubic Pm3m phase of LiNbO
3
. 

Horizontal axis corresponds to sampling path along high symmetric reciprocal point (q-point). 
Within the whole Brillouin zone of reciprocal space, unstable phonon modes with imaginary 

phonon frequencies are observed. Here, imaginary phonon frequency is represented as nega-
tive value for convenience. Therefore, cubic Pm3m phase of LiNbO

3
 is thermodynamically 

unstable and considered to show phase transition in accordance with specific phonon mode of 
imaginary frequency (referred as soft mode). Thus, modulated structures were constructed by 

imposing atomic displacement along normal modes at each symmetric q-points. Modulated 
structures were structurally relaxed, and their space group and energy change from cubic 

P4mm phase were investigated. Summary of such modulated structures are shown in Table 4.  

At Γ point, tetragonal phase transition along with Γ
15

 soft mode of cubic phase shown in 

Figure 3b shows energy gain of −0.422 eV/formula unit (f.u.). On the other hand, it was found 
that modulation at R point gives more stable energy gain of −0.682 eV/f.u. In this case, R

25
 soft 

mode induces phase transition from cubic Pm3m phase to R   ̄  3  c phase shown in Figure 2b.

Figure 6. (a) Energy change of Pm3m phase as a function of li displacement along <001>, <011>, and <111> directions. (b) 

Phonon dispersion curve of Pm3m phase.

q-point Frequency (THz) Structure Space group Energy gain (eV/f.u.)

Γ −7.22 Tetragonal P4mm −0.422

X −5.38 Orthorhombic Pmma −0.220

M −6.56 Orthorhombic Pmma −0.125

R −5.51 Rhombohedral R-3c −0.682

“Structure” indicates Bravais lattice of modulated structure from P4mm phase. Space group of the relaxed modulated 

structure and energy gain is also shown.

Table 4. Summary of imaginary phonon frequency at each symmetric q-point in P4mm phase of LiNbO
3
 and 

corresponding structural phase transition.
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Figure 7. Phase transition path between cubic perovskite structure (Pm3m) and LiNbO
3
-structure. Unit cell of LiNbO

3
 is 

enclosed with blue lines.

Figure 7 shows schematic illustration of phase transition mechanism from cubic perovskite 

structure to LiNbO
3
 structure. On the contrary to the result of Figure 6a, R

25
 soft mode is 

represented as rotation of NbO
6
 polyhedra. Then, Γ

15
 soft mode of R   ̄  3  c phase leads R3c phase, 

which is ground state of LiNbO
3
. Although the present study shows that perovskite-struc-

tured LiNbO
3
 is thermodynamically unstable while its piezoelectricity is excellent, it can be 

possible to control phase transition behavior by dopant substitution.

7. Summary and conclusion

In this chapter, we briefly introduced sophisticated method of density functional perturbation 
theory. DFPT can effectively calculate the second derivative of the total energy with respect 
to the atomic displacement within the framework of first-principles calculation. By using 
DFPT method, we can predict piezoelectric constants, dielectric constants, elastic constants, 

and phonon dispersion relationship of any given crystal structure. Moreover, we showed our 
established computational technique to decompose piezoelectric constants into each atomic 

contribution, which enable us to gain deeper insights to understand the piezoelectricity of 

material. By using LiNbO
3
 as a model material, we showed the predictability of DFPT for 

piezoelectric properties. In addition, we showed that superior piezoelectric properties are hid-
den in perovskite-structured LiNbO

3
. Structural relationship and possible phase transition 

path between LiNbO
3
 structure and perovskite structure were discussed and concluded that 

perovskite-structured LiNbO
3
 is thermodynamically unstable. Further studies are expected to 

control relative phase stability between perovskite and LiNbO
3
 structure by dopant substation 

and solid solution.
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