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Abstract

Electrospun polymeric nanofibers with flexible three-dimensional porous structures and
high surface-to-volume ratio are potential resources for several novel applications in the
fields of micro- and nanoscale filtration, water desalination, drug delivery, life sciences,
catalysis, and energy harvesters. Functionalized polymeric fibers with enhanced molecu-
lar orientation, surface textural morphologies, and piezo-, pyro-, and ferroelectric proper-
ties are of technical and commercial interest around the world. Several emerging
technologies including electrical polarization, vacuum plasma treatment, corona dis-
charge, surface fluorination, and chemical treatments to functionalize the polyvinylidene
fluoride nanofibers are discussed as potential applications of electroactive materials.

Keywords: electrospinning, polarization, aerosol filtration, salt absorption, catalysis

1. Polyvinylidene fluoride (PVDF) and its crystalline phases

Polyvinylidene fluoride (PVDF) is a semicrystalline, dielectric polymer with very high break-

down strength that offers long-duration surface charge retention, due to its unique dipole

molecular structure with CH2-CF2 repeated monomer units [1]. PVDF is regarded as one of

the most suitable polymeric materials to study polarizability in dielectric polymers. The dipole

monomer structure of PVDF is favored in converting electromechanical coupling behavior

with variance in thermomechanical processing. Although the piezoelectric coefficient of PVDF

and its copolymers PVDF-HFP and PVDF-TrFE are less than piezoelectric ceramics like PBZ

and BaTiO3, their elasticity and mechanical stretchability make them more reliable materials

for several emerging applications [2]. Moreover, PVDF exhibits higher piezoelectric response
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voltage, good thermal stability, and chemical resistance suitable for sensors, aerosol filters,

actuators, fuel cells, energy harvesters, and other applications [3–7].

Depending on the crystalline conformations, PVDF exhibits five different molecular morphol-

ogies labeled as α, β, γ, δ, and ε. The composition and distinctive character of individual and

binary phases are studied using Fourier transform infrared spectrometry (FTIR) and X-ray

diffractometry (XRD) analysis. The α-phase consists of a non-centrosymmetric crystal struc-

ture with CH2-CF2 dipoles oriented in the same direction and has an all-trans (TTTT) planar

zigzag conformation [8]. The β-phase follows a trans-gauche-trans-gauche’ (TGTG’) atomic

arrangement of a centrosymmetric unit cell. In this atomic configuration, the CH2 dipoles are

perpendicular to CF2 repeat units, and this produces a permanent electric dipole perpendicular

to the axis with corresponding strong and ferroelectric and piezoelectric charges. The γ-phase

has T3GT3G’ conformations where the CH2-CF2 dipoles are oriented parallel to each other to

form a non-centrosymmetric polar crystal. In general, the γ- and δ-phases form as a result of

high-pressure crystallization [8, 9], are not commonly observed in the electrospun fibers, and

hence are not considered further here.

Phase transformations among the crystal orientations take place under various postprocessing

such as heat treatment, uniaxial stretching, and electrical poling [9–11]. Phase transformational

mechanisms caused by polarization are interpreted in terms of vibrational motions around the

individual atomic bonds in the PVDF molecule. Two distinct motions, known as flip-flop

(segmental) and inversion motions (macromolecular), were observed during transformation

of phases in polarization treatments. The segmental flip-flop motions usually occur at about

150�C (the Curie temperature) and result in a gradual change in the molecular conformations.

Higher temperatures above 170�C are usually needed to produce inversion motions but can be

achieved near the Curie temperature by subjecting the PVDF fibers with simultaneous electro-

mechanical effects. Heat treatment in the presence of high electric fields and elevated ambient

pressures can produce transformations from α- to β-phase and β- to γ-phase (<280�C,

<4000 atm). The reverse transformations from β- to α-phase and γ- to α-phase typically require

higher temperature and pressure (>290�C, >4500 atm). The transformation from β- to α-phase

has so far only been studied in the unoriented state. The γ-phase PVDF melting temperature is

about 15�C higher than the α- and β-phase materials. In this chapter, we reported several

phase conversion techniques with primary focus on enhancing the amount of β-phase in PVDF

fibers using different functionalization routes.

2. Electrospinning

Electrospinning is well documented and is considered an easy laboratory method for produc-

ing submicron and nanofibers [12, 13]. Electrospun polymer fibers are widely used in filtration

[14, 15], catalysis [16–22], biomedical materials [23–26], and electrolytes [7, 27].

The application of electrical forces to produce polymer filaments began in the early 1930s. A

brief summary of the early electrospinning literature is provided by Huang et al. [28]. A highly

cited reference describing the mechanisms of electrospinning is by Reneker et al. [29].
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The electrospinning process is driven by the electrical forces on the surface or inside the

polymer solution. The free charges (ions) inside the polymer solution move in response to the

electrical field and transfer a force to the solution [29]. When the electrically induced forces

exceed the surface tension force, a liquid jet is ejected from the surface [30].

A schematic diagram of a typical laboratory electrospinning setup is shown in Figure 1. The

components are high-voltage power supply, a syringe pump that delivers polymer solution

through a tube to a small diameter needle, and a grounded rotating drum collector surface.

The high voltage creates the electrical charge in the solution, and a jet is driven by the potential

between the needle and the collector. As the jet travels to the collector, the solvent evaporates,

and the jet solidifies into small fibers that deposit on the collector surface.

Figure 1. Schematic of a typical electrospinning setup used in this work.

MW Conc. (%) Solvent Electrospun gap (volts) Application Ref.

107 K 20 DMF:DMA (1:1) 20 cm, 20 kV Flat ribbons [33]

12–18 Ac:DMA (7:3) Batteries [31]

25 DMA 15 cm, 10 kV Electrolyte or separator [37]

107 K DMF:Ac (7:3) (v:v) 20 cm, 25 kV Batteries [34]

15 DMF:Ac (2:8) (v:v) 8–15 kV Metal cells [38]

DMF:Ac (6:4) (w:w) 12 cm, 25 kV

15 cm, 28 kV

Distillation [39]

20 DMF:Ac (7:3) (w:w) 15 cm, 25 kV Separator [40]

14–24 DMF:Ac (3:7, 4:6, 5:5, 6:4, 7:3) 15 cm, 15–18 kV Filtration [41]

16–20 DMS:Ac (1:1) 10–16 kV Energy harvester [42]

DMF water (50:3) (w:w) 40 cm, 22.5 kV Electrode [43]

DMF, dimethylformamide; DMA, dimethylacetamide; DMS, dimethyl sulfoxide; Ac, acetone.

Table 1. Electrospinning of PVDF literature summary.
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Many natural and synthetic polymers have been electrospun to produce fine fibers, such as

polyacrylonitrile (PAN), polyvinyl alcohol (PVA), poly(methyl methacrylate) (PMMA), polyeth-

ylene oxide (PEO), polyethylene (PE), and polypropylene (PP) [31]. In comparison, PVDF has

attracted much attention due to its properties and molecular structure. Table 1 summarizes

solution and spinning conditions for electrospinning PVDF fibers reported in literature. In

addition, some researchers have modified the properties of the PVDF fiber mats by blending

with other polymers [32]. As an example Gopalan et al. [34] mixed PVDF with varying amounts

of PAN to fabricate fiber mats for use in lithium batteries. Ding and coworkers mixed PVDFwith

PMMA for same purpose, Guo et al. [35] prepared the PU/PVDF electrospun scaffolds for

wound healing, and Dong et al. [36] electrospun PVDF/PTFE membranes for distillation.

3. Functionalization of polyvinylidene fluoride nanofibers

Properties of nanofibers, such as electrical, textural, optical, adhesive, and tensile strength, are

highly dependent on the inherent polymeric properties and internal molecular structure. The

chemical modification of polymer nanofibers introduces new characteristics to the materials that

extend and enhance the scope of their industrial applications over several orders of magnitude.

Hence, enhancement of molecular orientation of the PVDF nanofibers has attracted interest of

the scientific community. A number of functionalization techniques are available in pilot and

commercial scale operations. These functionalization processes can be economical, profitable,

environmentally friendly, and long-term reliable [44, 45].

Fiber stretching during the electrospinning process causes dipoles to align perpendicular relative

to each other [44]. Piezoresponse force microscopy (PFM) was used to analyze piezoelectric

responses and ferroelectric domains in individual electrospun nanofibers with diameters 70,

170, and 400 nm [45]. The β-phase compositions of individual fibers were estimated in the

80–87% range using Beer-Lambert’s law, confirming that fibers with smaller diameters experi-

enced higher oriented conformational changes consistent with stronger elongational forces such

as those produced with near-field electrospinning (NFES) due to short tip to collector distances.

Liu et al. [46] studied processing and solution conditions to obtain the highest β-content when

PVDF was electrospun together with multiwalled carbon nanotubes (MWCNTs). Distinct

oriented crystalline structures of the MWCNT/PVDF in aligned nanofibers were obtained.

Due to the nucleation of highly oriented fibers and extended molecular crystallites at the

interface, NFES techniques showed 28% increase in β-phase with 0.05% wt% of MWCNTs.

Served et al. [11] subjected a pre-stretched 100-μm-thick PVDF film containing exclusively α-

phase with 5% head-to-head- and tail-to-tail-type (HHTT) defects to electrical poling at 80 and

170�C (Tm-178
�C). Aluminum electrodes were placed on either side of the film, and a DC

electric field of 1 MV/cm was used for charging. At 170�C the film changed from nonpolar α-

phase to polar β-phase with TGTG molecular conformations. The β-phase polarized films

showed a strong piezoelectric coefficient, d33 = 8.5pC/N, and was validated with XRD and

FTIR analysis. Salimi et al. [47] analyzed β-content in compression-molded PVDF films made

of two different grades of raw polymer (Kynar® 720, Hylar® MP10). A maximum of 74%

β-phase was observed for films that were 38–40% crystalline at 90�C and stretched at a ratio
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between 4.5 and 5. A similar study of nanoscale domain imaging and spatial distribution of d33

on single electrospun fibers concluded that the d33 distribution was more uniform along the

length of the fibers compared to cross-sectional diameter [48].

Real-time piezoelectric responses were observed by manipulating the operational voltages of a

PFM at a spring constant of 0.11 Nm�1, with cantilever resonating frequency of 135 kHz and the

amplitude changing stepwise from �30 to +30 V. The highest deflection in the piezoresponse

hysteresis loop at 3.3 nm was observed at a Vdc of -30 V. XRD patterns decrypted using a curve

deconvolution technique revealed 72.7% β-phase at plane (110,200) and 15.1% α-phase (202) and

indicated voltages as much as �30 V can cause significant effects on nanoscale β-phase

nanocrystals. Nanodomains were distributed along to the fiber axis, and the β-phase orientation

was investigated by TEM and XRD [48]. Furthermore, polymer composites can be polarized at

low electric field strengths with addition of nanoparticle ferroelectric ceramics [49, 50].

Introduction of chemical functional groups into virgin PVDF polymer has resulted in novel

functional characteristics [51, 52]. Several studies have reported the ability of modifying struc-

tural morphologies and analytical properties in electrospun PVDF nanofibers via plasma

deposition of polymers under inert conditions. Molecular cross-linking on PVDF can be

achieved through dehydrofluorination or by introducing functional comonomers during

electrospinning [5, 8, 53].

The PVDF materials with modified properties are of significant practical interest. In filtration,

for example, an exceptional particle capture efficiency of ≥99.999% was achieved by a hybrid

monolithic electret aerogel composed of syndiotactic polystyrene (sPS)/PVDF [54], whereas

98.9% filtration efficiency was recorded with sPS monolithic aerogel comprised of similar solid

content. In comparison, performance of cellulose acetate electrospun fibers with diameters in

the range from 0.1 to 24 μm challenged with a solid brine aerosol (NaCl) and a liquid aerosol of

(diethyl hexyl sebacate) showed a maximum efficiency of 70% and with the most penetrating

particle size in the range of 40–270 nm [55].

4. Results and discussion

4.1. Electrospinning of PVDF fibers

Electrospinning solutions 10 wt% were prepared by dissolving Kynar® 761 grade resin (MWof

about 550,000, melt viscosity of 35 kp, and a solution viscosity of 350cp at room temperature),

PVDF powder (Arkema Inc., USA) in cosolvents N-N-dimethylformamide (DMF), and acetone

(Sigma-Aldrich, USA). The solutions were electrospun under the conditions reported in Table 2.

Mats of 20 g/m2 basis weight were preheated in an oven at 70�C for 4 hrs before any analysis.

Fiber morphologies were analyzed under a scanning electron microscope. Smooth and consistent

fibers were observed as shown in Figure 2. A maximum of 57.7% β-content in the fibers was

observed. SEM images occasionally showed branched fibers. Branched fibers were formed

because of “static equilibrium undulations under the combined effect of the electric Maxwell

stresses and surface tension as the electrical stresses are increased” [56].
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4.2. Atomic resolution electron microscopy of PVDF nanofibers

A segment of 8X5nm PVDF fiber was studied under an aberration-corrected electron micro-

scope with highly controlled electron beam shown in Figure 3. The images revealed the paths

of individual monomers aligned in the direction of fiber axis as shown in Figure 3A. CF2 bonds

appeared as brighter dots compared to other bonds as gray and black dots. The raw TEM

micrograph was converted into a Fourier transform image to reduce the electron noise and

reverted as an RGB image to enhance the features. Paths of CF2 molecules from end to end are

clearly seen in the enhanced RBG image in Figure 3B. The calculated distance between the

centers of two adjacent bright dots in Figure 3B is about 0.25 nm which is consistent with

molecular dynamic simulation of the theoretical distance between fluorine atoms in the β-

phase crystallographic structure of the PVDF [1] in Figure 3C.

4.3. Functionalization of PVDF nanofibers by electrical polarization

Lolla et al. [7] describe a thermal-stretch-electric field polarization treatment of PVDF nanofibers

to fabricate polarized PVDF fiber mats. Simultaneous thermal and electrical treatments caused

substantial changes in surface textural morphology. These surface morphological changes are

obvious when as-spun fibers shown in Figure 4A are compared to the thermal-electrically

treated fibers in Figure 4B.

Conc. PVDF

(wt%)

DMF:

acetone (w:

w)

Gap

distance

(cm)

Voltage

(kV)

Flow rate

(mL/h)

Collector

rotation (RPM)

Avg. fiber

dia. (nm)

Standard

deviation (nm)

10 1:1 20 17 5 100 196 54

Table 2. Electrospinning conditions and average PVDF fiber diameter.

Figure 2. SEM image of 10 wt% PVDF, 1:1 DMF/acetone electrospun fibers.
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Figure 3. (A) Raw high magnification TEM image of PVDF nanofiber, (B) Fourier transform of raw image, and (C)

molecular dynamic simulation of PVDF molecule.

Figure 4. Surface morphology analysis using high magnification SEM (images A and B) and laser microscopy (images C

and D). The fiber samples in images A and C were as-spun fibers, and the images B and D were thermal-electric treated

polarized PVDF nanofibers.
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Surface modifications were found to have a remarkable effect during liquid–liquid filtration

applications compared to aerosol filtration as the interfacial strength between liquid droplets is

much higher in polarized fiber mats compared to relatively smooth fibers. Kinetic energy

generated by electron collision during charge migration is suspected to be the primary reason

for surface irregularities. SEM analysis provided only 2D visual conformation of polarization-

associated surface modifications. A complete three-dimensional analysis was done to obtain

precise increase in roughness due to electron interaction. Lasers were projected in z-direction

with the fibers across a 20�30�25μm sample, and few thousands of data points were gathered

from hundreds of fibers to make the analysis. All the fiber samples were highly irregular with

several mounds, hills, and valley-like structures as shown in Figure 4C and D. Unlike the 2D

SEM images, the detailed layer-by-layer fiber interactions were seen, and paths of fiber con-

glutination or fiber cross-linking were more accurately captured in several directions using

laser projections.

2D images of laser intensities were obtained in parallel with three-dimensional images, and an

empirical analysis was conducted to estimate the changes in surface morphology. As-spun

fibers and thermal-electric treated fibers are shown in Figure 5A and B. The data analysis was

conducted on the circular areas highlighted in the images. The radii of the circles in both

images were 40 μm. The average intensities of as-spun fibers from peak to valley detection

were mapped as shown in Figure 5C represented by the blue line, which gave us a mean

surface roughness of Rms = 7.86 � 4.73 nm. Similar calculations were also performed on the

thermal-electric treated fibers, and the mean surface roughness Rms of 16.86 � 6.68 nm was

Figure 5. Comparison of surface roughness (A) as spun (B) polarized fibers (C) graphical overlay of surface roughness

distribution.
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determined which proves a substantial rise in surface roughness. Average values of roughness

averaged over the length of the circumference of circles of varying radius from 0 to 40 μm was

used to make a comparison between as-spun and polarized fibers.

4.3.1. Nanoscale aerosol particle filtration

Functionalized electrospun fibers are of great interest in aerosol filtration [57]. Fiber mats were

subjected to aerosols of 10–250 nm diameter NaCl particles using a TSI-automated filter tester

(TSI 8130). Each test was conducted for a duration of 10 s at 10 l/min volumetric flowrate.

Three individual samples were consecutively tested 30 times with 30 days between tests to

generate a particle capture v/s pressure buildup profile. For thermal-electrically treated polar-

ized fiber mats, the first tests were performed within 24 h of polarization. Both the as-spun and

polarized samples showed very distinct and diverse capture trends as apparent from

Figure 6A and B. Further research with these materials and with theoretical predictions is

needed to explore and understand the shelf life of the filter media in association with net

charge. The polarized fibers did not exhibit cake formation, even for the smallest fiber diame-

ters, and had much smaller pressure drop compared to the as-spun fibers. Almost all of the

aerosol particles were evenly distributed among individual fibers in the polarized mat as

compared to the agglomerates observed in the mat of as-spun fibers.

The plots in Figure 7A show the filter efficiency and pressure drop as a function of the number of

tests. Effectively, the plot shows the filter performance over time as it was affected by loading of

particles and by charge dissipation (if dissipation occurs) over an extended time. Both the as-

spun and polarized filters recorded similar efficiencies of 94.63� 012 and 94.96� 0.46 during the

first experimental run with pressure drops of 56 � 1.63 and 49.66 � 1.69 mmH2O, respectively.

Pressure drops across the media are in good agreement with the air permeability as shown in

Figure 7B.

The Frasier air permeabilities of the fiber mats were tested at two different test pressures at 125

and 2000 kPa. The Darcy law permeability has units of area, whereas the Frazier permeability

is reported as volumetric flow rate (cfm = cubic feet per minute). The Darcy permeability can

be calculated, but for the purposes here, the relative magnitudes of the two flow rates are the

relevant data. The plot in Figure 7B shows that the relative flow rates of the polarized mats

Figure 6. Brine (NaCl) aerosol captures on (A) as-spun and (B) polarized PVDF filter media.
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were about 17% greater than the flow rates of the as-spun mats, which corresponds to about

17% greater Darcy permeabilities in the polarized mats.

The pressure of 2000 psi is 16 times the pressure drop of 125. If the Darcy permeability was

constant, then one would expect the flow rate to increase by a factor of 16 as the pressure

increased. The data show that an increase of flow rate was only on order of a factor of 8 times.

This indicates that as the flow rate increased the fiber mat structures may have deformed and

caused a higher resistance to flow. This topic needs future investigation.

Inspection of SEM images showed attraction between fibers in the polarized mat that caused

the fibers to rearrange relative to each other in the fiber mat which resulted in larger pores than

the pores in the as-spun mat and is a likely cause of the increase in permeability of the

polarized mats. At the end of the 30 filtration experiments, a slight increase in efficiency due

to particle accumulation was observed in both the samples. The as-spun fiber mats had a

maximum efficiency of 96% at 64 mmH2O pressure drop, and the polarized fibers had a

maximum efficiency of 97% pressure drop of 58 mmH2O. Because both efficiencies were very

similar, the significant advantage of the polarized mats was the reduced pressure drop.

4.3.2. Functionalized PVDF nanofibers in water desalination and purification

Population growth, industrialization, rise in living standards, and rapid climate changes have

an increased demand for water significantly [58]. Water desalination and purification are a

possible solution for providing fresh drinking water to the world especially in drought-prone

regions [59]. Researchers have developed several treatment processes such as reverse osmosis

(RO), nanofiltration (NF), ultrafiltration (UF), and thermal methods such as membrane distil-

lation to improve water quality and supply. These techniques are energy intensive and have

high operating and maintenance costs which make it difficult for developing countries to

implement [59]. Membrane distillation finds limited application due to lack of a variety of

membranes that can produce stable and high flux for a long time [60].

Figure 7. Aerosol penetration testing and Frazier permeability (i.e., flow rate at applied pressure) of as-spun and

polarized fibers.
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Industrial effluents contain a wide range of hazardous and toxic substances including heavy

metal ions (Cd2+, Pb2+, Hg2+, Zn2+, etc.), organic acids, nitro compounds, hydrocarbons, sul-

fides (S2�), sulfites (SO3
2�), and sugars. Heavy metal pollution can cause serious environmen-

tal and health problems to humans [61]. Various methods used for heavy metal removal

include ion exchange, electrodialysis, chemical precipitation, and solid-phase extraction

[62–64]. Materials such as nanoparticles, polymers, and organic and inorganic compounds

have been employed in the form of thin films, membranes, or powder for water treatment

[65]. Apart from these, using a nano-adsorbent for heavy metal removal via adsorption mech-

anisms is a growing area of research because of its large surface area and mechanical strength

[66]. However, regeneration of nano-adsorbents after water treatment is a challenge as adsorp-

tion activity decreases with time due to agglomeration. To overcome this challenge, nano-

adsorbents can be modified using functionalization techniques [67].

Blending PVDF with inorganic materials such as ZrO2 [68], ZnO [69], Al2O3 [70], Fe3O4 [71],

CdS [72], SiO2 [73], and TiO2 [74] to increase adsorption capacity can help in heavy metal ion

removal. This research area is of growing interest. For example, Zhang et al. [75] used ZnO-

hybridized (PVDF/ZnO) membranes for adsorption and desorption studies of Cu2+ ions.

Zhao et al. [76] studied melamine-diethylenetriaminepentaacetic acid/polyvinylidene fluoride

(MA-DTPA/PVDF)-chelating membranes bearing polyaminecarboxylate groups for removal

of Ni2+ ions from wastewater. Salehi et al. [77] studied adsorption of Ni2+ and Cd2+ ions using

8-hydroxyquinoline ligand-immobilized PVDF membrane.

Na+, Cl�, and SO4
2� ions are present in significant concentrations in typical seawater and

brackish waters [78]. Most of the feeds subjected to desalination processes have sodium

chloride (NaCl) or sulfates of Ca and Mg.

Table 3 is a brief literature summary of the electrospun fiber membranes applied to desalina-

tion performance. PVDF is generally applied in the as-spun condition. Few data are available

on performance of functionalized PVDF for this application.

4.3.3. Membrane and polymer nanofiber catalyst

Membrane-based separations and heterogeneous chemical reactions are often treated as inde-

pendent processes. The advantages of combining the two operations have drawn attention to

membrane reactors that combine reaction and separation in a single-unit operation [86]. The

properties of PVDF fiber mats naturally lend themselves to use as membrane reactors. The

PVDF fiber mats have strength, can be embedded or coated with catalyst particles, have

thermal stability over a useful temperature range, are inert to many chemical environments,

can be superhydrophobic, and thus provide a barrier to aqueous solutions while being porous

to gases.

Catalytic membrane reactors can be fabricated of materials that can selectively remove the

reaction products from the reactor to increase the product yield. Membranes as catalyst

support structures can provide relatively large surface areas, especially when the electrospun

fibers are very small, for supporting catalyst particles [87].
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Inorganic membranes can provide high-temperature durability and easy loading of catalyst

[88]. However, polymer membranes have the advantages including flexibility, easy for

recycling [89], and affinity for reagents [90].

Electrospun fiber membranes have been studied for their physical and chemical properties,

mechanical performance [28], large surface areas, and high porosities [19]. Pinto et al. [16]

studied polystyrene electrospun fibers for catalysts and nanopore filter applications.

Electrospun PVDF nanofibers were studied by Li et al. [19] for immobilizing CoCl2 catalyst

for hydrolysis of NaBH4. The high thermal stability, moduli, and mechanical strength of the

PVDF fibers showed excellent catalytic activity and recycling stability.

Electrospun layer Second layer/

treatment

Solute Method Flux (L/m2/h) Rejection Ref.

PVDF Polyamides MgSO4 TFNC by

interfacial

0.66 75.7 [79]

NaCl 0.66 70.2

PVDF n.a. 6%wt NaCl AGMD 11–12 kg/m2 h n.a. [80]

PVDF, clay

nanocomposites

n.a. NaCl DCMD n.a. 98.27

99.95

[81]

PET/PS Polyamides NaCl Interfacial 1.13 L m�2h�1bar�1 n.a. [82]

PVDF-HFP (hot pressed) Hot pressed NaCl DCMD 20–22 L h�1 min�2 98 [83]

PAN Polyamides MgSO4 TFNC interfacial 81 84.5 [84]

PVDF-PTFE Microporous PTFE NaCl VMD 18.5 kg/m2 h 99.9 [36]

PVDF-co-HFP PAN microfibers 35 g/L NaCl DCMD 45–30 L h�1 min�2 n.a. [85]

Intrinsically modified

PVDF

Ag nanoparticles 3.5 wt%

NaCl

DCMD 31.8 L h�1 min�2 n.a. [60]

DCMD, direct contact membrane distillation; AGMD, air gap membrane distillation; TFNC, thin-film nanocomposite;

VMD, vacuum membrane distillation.

Table 3. Performance of various electrospun polymeric nanofibers used in water desalination techniques in pristine form

or in modified conditions.

Figure 8. SEM image of electrospun PVDF+Pd black fibers.
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In the work here, palladium (Pd) immobilized on PVDF electrospun fiber mats was investi-

gated for catalytic hydrogenation of phenol to cyclohexanone. The one-step reaction can

directly hydrogenate phenol into cyclohexanone, and the hydrogenation can be conducted

either in liquid or gas phase. A two-step reaction is also possible in which phenol is first

hydrogenated to cyclohexanol and then dehydrogenated to cyclohexanone [91]. PVDF and

PVDF-HFP electrospun fiber mats are hydrophobic, resist the flow of water through the

membrane, and provide a barrier between phenol water solution and hydrogen gas. Figure 8

has SEM images of PVDF+5% Pd black samples.

Figure 9 shows EDX images of PVDF fibers with Pd black particles. The elemental Pd (appears

in green color) on fibers. The fibers appear red due to elemental fluoride. Similar results were

obtained for PVDF-HFP electrospun fiber mats.

Batch tests were conducted with Pd supported on PVDF-HFP fibers with 5, 10, and 15 wt%

of Pd black. The average fiber diameter was 357 nm. The fiber mats were immersed in

75 mL of phenol/water solution (20 g/L) at 80�C under mild stirring and exposed to H2 gas

bubbles.

Reaction sample concentrations were measured by GC. The conversion and selectivity were

calculated based on concentration changes. The reaction conversion increased with the con-

centration of Pd black and reached 98% conversion after 7 hours. The selectivity for cyclohex-

anone was about 97% for all of the fiber samples.

Figure 9. Energy dispersity X-ray (EDX) images of electrospun PVDF +5 wt% Pd black fibers.
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5. Conclusion

In this work, PVDF and related copolymer mixtures are discussed. PVDF has unique properties

due to its CH2-CF2 repeated monomer units that make it a material of recent scientific interest.

Several applications of the electrospun PVDF polymer were reviewed. The PVDF molecule can

be polarized. The polarized fiber mats were tested as aerosol filter media. SEM images showed

remarkably different performances due to changes in particle capture mechanisms.

The PVDF membranes have potential applications for water treatment, first as a filter but

second as a desalination membrane. The inherent dipole charges due to the CH2-CF2 repeated

monomer units may be useful for separating salt ions from water. The last topic discussed is

the use of PVDF and related copolymers as catalyst supports. As an example, experimental

data for hydrogenation of phenol is presented. The limited amount of experimental data

available showed that the PVDF membranes can be used for these applications. Further work

is needed on these topics to determine the full potential of PVDF and related copolymer

electrospun fiber mats.
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