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Abstract

The main objective of thermoelectric power plants is to meet the power demand with 
the lowest fuel cost and emission levels of pollutant and greenhouse gas emissions, 
considering the operational restrictions of the power plant. Optimization techniques 
have been widely used to solve engineering problems as in this case with the objective 
of minimizing the cost and the pollution damages. Heuristic and metaheuristic algo-
rithms have been extensively studied and used to successfully solve this multi-objective 
problem. This chapter, several optimization techniques (simulated annealing, ant lion, 
dragonfly, NSGA II, and differential evolution) are analyzed and their application to 
economic-emission load dispatch (EELD) is also discussed. In addition, a comparison of 
all approaches and its results are offered through a case study.

Keywords: economic-emission load dispatch, optimization techniques, heuristic, 
metaheuristic algorithms, power plants
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1. Introduction

The main problem of economic-emission load dispatch (EELD) is to reduce the emission level 
and total cost of generation at the same time accomplishing the demand for electricity from 

the power plant. Thermal power plants are among the maximum significant sources of con-

tamination by sulfur dioxide (SO
2
), carbon dioxide (CO

2
), and nitrogen oxides (NOx), which 

create atmospheric pollution [1].

Some authors developed three approaches to solve the EELD problem [2–4]. The first one is 
using a single objective, considering emissions and pollution as restrictions with permissible 

limits [5]; the second one combines cost and emission functions into a single objective func-

tion with different weights, where cost and emission are minimized simultaneously [2]; and 

the third one uses the separated cost and emission functions in a multi-objective optimiza-

tion [1, 6].

The solution of EELD problem is to minimize the total cost of fuel consumption and carbon 

emissions [7], considering power demand and operational restrictions [8]. Several techniques 
such as particle swarm optimization [9, 10], linear programming [11, 12], ant colony optimiza-

tion [13], biogeography-based optimization [14], genetic algorithms (GA) [15, 16], Tabu search 

algorithm [17], simulated annealing (SA) [1], neural networks [18], differential evolution (DE) 
[19], harmony search algorithm [20], Lagrange functions [7], and others [19] have been used to 

fix the problem of EELD. In spite that all of them have been used, few are used with cost and 
emission functions in a multi-objective optimization.

This chapter, six multi-objective optimization approaches to solve the EELD problem are 

going to be presented, and a brief comparison among them is done.

In addition, the “shutdown” of the most inefficient generators is included in all multi-objec-

tive optimization approaches used [1, 8, 21].

2. Materials and methods

To solve a problem of EELD, two important objectives in an electrical thermal power system 

must be considered; they are environmental and economy impacts [22].

The parameters of objective functions are determined by curve fitting techniques based on 
tests of engine performance.

The multi-objective optimization problem is defined as:

  (1)

where F1(P) and F2(P) are the objective functions to be minimized over the set of permissible 

decision vector P, as follow in the next Subsections 2.1 and 2.2.

Optimization and Control of Electrical Machines14



2.1. Cost function (F
1
)

The fuel cost is considered as an essential criterion for economics analysis in thermal power 

plants. The cost function of each generator can be assumed to be approximated by a quadratic 

function of generator power output Pi [8, 22]:

  (2)

where a
i
, b

i
, and c

i
 are the fuel cost coefficients of the ith unit generating, n the number of 

generators, and P
i
 the active power of each generator (Table 2) .

2.2. Economic emission function (F
2
)

Emissions can be represented by a function that links emissions with power generated by each 

unit [23]. The emission function in ton/h, which normally represents the emission of SO
2
 and 

NOx, is a function of the power output of the generator, and it can be expressed as follows [1]:

  (3)

where di, ei, and fi are emission coefficients.

2.3. Economical load dispatch constrains

The restrictions used in the problem were of three types as follows.

2.3.1. Equality power balance constrain

The real power of each generator is limited by the lower and upper limits. The following 

equation is the equality restriction of power balance [24, 25]:

  (4)

where P
i
 is the output power of each i generator, PD is the load demand, and PL are transmis-

sion losses; in other words, the total power generation has to meet the total demand PD and 

the actual power losses in transmission lines PL, i.e.

  (5)

The calculation of power losses PL involves the solution of the load flow problem, which has 
equality constraints in the active and reactive power on each bar as follows [26]:

  (6)
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A simplification is applied to model the transmission losses, setting them as a function of the 
generator output through Kron’s loss coefficient derivatives of the Kron formula for losses [21]:

  (7)

where B
ij
, B

0i
, and B

00
 are the energy loss coefficients in the transmission network and n is the 

number of generators. A reasonable accuracy can be obtained when the actual operating con-

ditions are close to the base case, where the B coefficients were obtained [26].

2.3.2. Production capacity constraint

The power capacity total generated from each generator is restricted by the lower limit and by 

the upper limit, so the constrain is [1]

  (8)

where P
i
 is the output power of the i generator, P

min.i
, is the minimal power of the i generator, 

and P
max.i

, the maximal power of the i generator.

2.3.3. Fuel delivery constraint

At each time interval, the amount of fuel supplied to all units must be less than or equal to the 
fuel supplied by the seller, i.e., the fuel delivered to each unit in each interval should be within 

its lower limit F
min,i

 and its upper limit F
max,i

 so that [21].

  (9)

where F
i,m

 is the fuel supplied to the engine i at the interval m, F
i,min

 is the minimum amount of 

fuel supplied to i generator, and F
max,i

 is the maximum amount of fuel supplied to i generator.

3. Multi-objective optimization techniques to solve EELD

There are a lot of multi-objective optimization approaches that can be used to solve the EELD 

problem [19], but implementations need to be made to solve EELD problem. On this chapter six 

metaheuristic algorithm methods that already have the implementation are going to be presented.

3.1. Simulated annealing (SA)

SA is a powerful optimization technique which exploits the resemblance between a minimiza-

tion process and the cooling of molten metal [1].

The physical annealing process is simulated in the SA technique for the determination of 
global or near-global optimum solutions for optimization problems. In this algorithm a 
parameter T, called temperature, is defined [27].
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On Figure 1, the simulated annealing algorithm is shown.

Starting from a high temperature, a molten metal is cooled slowly until it is solidified at a low 
temperature. The iteration number in the SA technique is analogous to the temperature level. 
In each iteration, a candidate solution is generated. If this solution is a better solution, it will 
be accepted and used to generate yet another candidate solution. If it is a deteriorated solu-

tion, the solution will be accepted when its probability of acceptance Pr (Δ) as given in Eq. (10) 
is greater than a randomly generated number between 0 and 1 [27]:

  (10)

where Δ is the amount of deterioration between the new and the current solutions and T is 
the temperature at which the new solution is generated. Accepting deteriorated solutions in 
the above manner enables the SA solution to “jump” out of the local optimum solution points 
and to seek the global optimum solution [1]. The last accepted candidate solution is then taken 

as the starting solution for the generation of candidate solutions in the next iteration. The 

reduction of the temperature in successive iterations is governed by the following geometric 

function:

  (11)

where v is the iteration number and r is temperature reduction factor. T
0
 is the initial tempera-

ture; its value can be set arbitrarily or estimated [29]. A multi-objective simulated annealing 
optimization to fix a generation dispatch problem is analyzed in [30], and used too in [1], but 

Figure 1. Simulated annealing algorithm. Source: [28].
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with the implementation of turning off the most inefficient generators, and this information 
will be used to compare with the new methods presented in this chapter.

3.2. NSGA II

The Non-dominated Sorting Genetic Algorithm II (NSGA II) has been one of the algorithms 
most used to solve the multi-objective optimization (MOO) problems in general and EELD 
problem in particular [31–33]. It was proposed by Deb et al. in 2002 [34]. NSGA II uses a faster 
selection, an elitist preservation approach, and a less segmented operating parameter [35]. 

The operation of NSGA II is shown in Figure 2.

Figure 2. Operation of NSGA II. Source: [35].
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3.2.1. Initial population

Initially, a parent random population is created. The population is ordered based on non-
domination. For each solution, an aptitude equal to its level of non-domination is assigned (1 

is the best level). Thus, a minimization of aptitude or fitness is assumed. Tournament selection, 
recombination, and mutation operators are used to create N size descendant populations [36].

The population is initialized based on the problem range and constraints, if any. This popula-

tion is initialized and ordered based on non-domination.

3.2.2. Selection

In the original NSGA II, the selection by binary tournament (BTS) is used, where tournament 
is disputed between two solutions and the best one is selected and placed in the crossing 

tank. Two other solutions are taken again, and another gap in the cross junction is filled. It is 
performed in such a way that each solution can participate in two tournaments exactly [35].

3.2.3. Crossover

The NSGA II uses the simulated binary crossover (SBX), which works with two parent solu-

tions and generates two descendants. The step-by-step procedure is described in [35].

3.2.4. Mutation

NSGA II uses polynomial mutation, which transforms each solution separately, that is, a stock 
solution gives offspring after being mutated. The mathematical formulation can be described 
as in [37].

3.2.5. Crowded tournament selection

An estimate obtained of the density of solutions close to a particular solution i in the popula-

tion, the average between the two solutions on both sides of solution i together with each one 

of the targets is taken. This amount is the Crowding distance [35].

The NSGA II presents an improved technique for the maintenance of the diversity of solu-

tions, proposing a method of crowding classification distance. However, in its case the clas-

sification technique remained unchanged from its previous version.

In NSGA II, all individuals are classified into combined populations (parents and descen-

dants) based on the Pareto dominance ratio and then classified into several layers based on the 
front to which an individual is located. At each front, the individuals are arranged in descend-

ing order of magnitude of the crowding distance value. In the binary tournament selection 
process, the algorithm first selects an individual positioned on a better non-dominated front. 
In cases where the individuals with an identical front are compared, the tournament selection 
operator chooses the winner based on the crowding distance value [38].

The elitist strategy of NSGA II considers all combinations of non-dominated population solu-

tions as the candidates for solutions to the next generation. If the number of non-dominated 
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solutions is less than the size of the population, they are all maintained as the next-genera-

tion solutions. Otherwise, candidates for the next generation are selected by the criterion of 

crowding distance. This criterion has the advantage of maintaining the diversity of solutions 

in the population in order to avoid premature convergence [38, 39].

3.3. Dragonfly

Recently new stochastic optimization technique was developed by Mirjaili in 2016 [40] named 

dragonfly optimizer. Dragonflies (Odonata) are fancy insects. There are nearly 3000 different 
species of this insect around the world. A dragonfly’s lifecycle includes two main milestones: 
nymph and adult. They spend the major portion of their lifespan in nymph, and they undergo 

metamorphism to become adult [41].

On Table 1 and Figure 3, the characteristics of dragonfly algorithm (DA) are shown.

Dragonflies are considered as small predators that hunt almost all other small insects in 
nature. Nymph dragonflies also predate on other marine insects and even small fishes. The 
interesting fact about dragonflies is their unique and rare swarming behavior. Dragonflies 
swarm for only two purposes: hunting and migration. The former is called static (feeding) 
swarm, and the latter is called dynamic (migratory) swarm [40].

The main inspiration of the DA algorithm originates from static and dynamic swarming 
behaviors. These two swarming behaviors are very similar to the two main phases of opti-

mization using meta-heuristics: exploration and exploitation. Dragonflies create sub-swarms 
and fly over different areas in a static swarm, which is the main objective of the exploration 
phase. In the static swarm, however, dragonflies fly in bigger swarms and along one direction, 
which is favorable in the exploitation phase [40]. The dragonfly algorithm has been applied 
successfully to the environmental economic dispatch.

General algorithm Dragonfly algorithm

Decision variable Dragonfly’s position in each dimension

Solution Dragonfly’s position

Old solution Old position of a dragonfly

New solution New position of a dragonfly

Best solution Any dragonfly with the best fitness

Fitness function Distance from the food source, the predator, center of the swarm, velocity matching, 

and collision avoidance

Initial solution Randomly selected position of a dragonfly

Selection —

Process of generating new 

solution

Flying with a specific velocity and direction

Source: [42].

Table 1. Characteristics of the DA.
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3.4. Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a population-based stochastic optimization technique, 
inspired by the social behavior of birds or shoals of fishes. Moore and Chapman extended this 
idea for multi-objective optimization in 1999 [44].

Figure 3. Dragonfly pseudocode. Source: [43].
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The simple PSO cannot be applied directly to multi-objective optimization since there are two 
issues to consider when extending PSO optimization to multi-objective problems [44].

The first one is how to select the best global and local particles (leaders) to guide the search, 
and the second one is how to keep good points found so far. For the latter, a secondary popu-

lation is usually used to maintain non-dominated solutions.

PSO is one of the modern heuristic algorithms suitable for solving large-scale non-converting 
optimization problems. It is a population-based search algorithm and parallel search using a 
group of particles [45].

On Figure 4, the PSO flow chart is shown.

The main idea of the PSO is that “particles” (solutions) move through the search space with 
velocities that are adjusted dynamically according to their historical behavior. Therefore, the 

particles have a tendency to move to a better search area throughout the search process [47].

3.5. Differential evolution (DE)

The DE algorithm was developed to be a promising heuristic optimization algorithm for numeri-

cal optimization problems. The DE was designed to meet the requirement of practical minimiza-

tion techniques with consistent convergence to the global minimum in consecutive independent 

trials. It can solve non-differentiable, nonlinear functions and multimodal cost functions [48].

The DE algorithm is a simple stochastic optimization strategy. It uses a voracious and less stochastic 
approach with floating-point coding in problem solving, unlike other evolutionary algorithms [49].

DE uses the arithmetic operators to evolve from a randomly generated initial population 

to a final solution. Basically, the weighted difference between two individuals is added to 
a third individual in the population. Thus, no separate probability distribution has to be 

used, which makes the scheme completely self-organized [49]. There are several variant 

strategies of DE. In general expressions are divided into two parts: the first part represents 
a vector to be disturbed. The first part is “rand” (vector chosen at random) or “best” (best 
vector of the current population). The second part is the number of difference vectors 
(one or two) chosen for perturbation vectors of the first part, and the last part indicates 
the type of crossover to be used. The type of crossing can be “bin” (binomial) or “exp” 
(exponential) [49].

3.5.1. Initialization

The initialization of DE can be done by randomly generating candidate solutions with NP 

D-dimensional vectors of real parameters evaluated [50].

There are other approaches to determining the initial population, although random equal-

ity is the most common. In current optimization problems, a possible solution parameter is 
added to the initial population in order to improve convergence.

3.5.2. Mutation

Differential mutation adds a scale, random sampling, of a difference vector to a third vector. 
Mutant vectors, also called donors, are obtained through the differential mutation operation [50].
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3.5.3. Crossover

The crossover increases the potential diversity of a population. In the case of binomial crossover, 
test vectors are produced. Crossover can be understood as a mutation rate or a probability of 
inheritance between successive generations. There are alternatives to binomial crossover. The 

most common is the exponential crossover. Both approaches are valid for all problems, although 
the success/improvement of one over the other varies according to the problem considered [50].

3.5.4. Selection

Selection can be understood as a form of competition, in line with many examples directly 
observable in nature. Many evolutionary optimization schemes, such as DE or genetic algo-

rithms (GAs), use some form of selection.

Figure 4. PSO flow chart. Source: [46].
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For a selection operation, the selection of pairs, also called avid selection or elite selection, is 

constantly used in the algorithm. As a stopping criterion, a maximum number of generations 
is defined [50].

3.6. Ant lion

Ant lion optimizer (ALO) [51] is a new algorithm inspired by nature proposed by Seyedali 
Mirjalili in 2015. The ALO algorithm mimics the mechanism of ant hunting in nature. It uses 
five main stages of prey hunting, such as random walking of ants, building traps, trapping 
ants in traps, catching prey, and rebuilding traps. All these steps are implemented.

The ant lions belong to the class of insects with wings and nerves (Neuroptera). The life cycle 
of the ants includes two main phases: larvae and adults. A natural shelf life can take up to 
3 years, which occurs mainly in larvae (3–5 weeks into adulthood). The ant lion undergoes a 
metamorphosis into a cocoon to become an adult.

They hunt primarily on larvae, and the adult period is for breeding. A larva of ant lion digs a well of 
cones into sand, moving along a circular path and throwing the sands with the massive jaw. After 
digging the trap, the larvae hide under the bottom of the cone and wait for the insects (preferably 
ants) to be trapped in the well. The edge of the cone is sharp enough so that the insects fall easily into 
the bottom of the trap. Once that ALO realizes that a prey is in the trap, it tries to catch it. This is one 

of the algorithms that are also used for EELD, and it is one of the most recent discoveries [52–54].

The ALO is governed by the following rules [51]:

1. Ants move around the search space using different random walks.

2. Random walks are affected by the traps of ant lions.

3. Ant lions can build pits proportional to their fitness (the higher the fitness, the larger the pit).

4. Size of the pits is proportional to the probability of catching prey. Hence, ant lions with 
larger pits have higher probability to catch ants.

5. Each ant can be caught by an ant lion as well as the elite (fittest ant lion) in each iteration.

6. When ants try to escape from the pit, the ant lions throw sand toward the top of the trap 

to slide the ants inside the bottom of the trap. In order to simulate this behavior of sliding 
ants toward ant lions, the range of random walk is decreased adaptively.

7. If an ant becomes fitter than an ant lion, this means that it is caught and pulled under the 
sand by the ant lion.

8. After each hunt, an ant lion repositions itself to the latest caught prey and builds a pit to 
improve its chance of catching another prey.

4. Results of the comparison among all approaches applied to a case 

study

The power plant selected for the case study consists of 10 gas engines Jenbacher J620. In order 
to take the data of the power plant, its 10 motors were placed to work at different powers  
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(20, 30, 40, 50, 60, 70, 80, and 100% of the total power). For each one of these regimes, the data 
of fuel consumption of each engine were taken, and then the curve of power vs. cost of fuel for 

each motor was plotted. For clarity is convenient to say that each consume data was measured 

10 times and was chosen the main. In a similar way, it was done for the emission case. The 

engines were set to work with different power values, the data of the emissions of NO2, CO, 
CO2, SO2, etc., were collected, besides the total volume of the emissions of each engine, and 
the curves of power vs. emissions were also plotted. In this section, comparisons of results 
obtained with different approaches for the same case study are presented. There are many 
algorithms used for the economic environmental load dispatch [55]. Results are compared 

using the following algorithms:

• NSGA II

• Dragonfly optimizer

• Particle swarm optimization

• Simulated annealing

• Ant lion optimizer

The comparison was made with the following data:

• Power demand, 20 MW

• Number of power plant generators, 10

• Minimum power of generators, 0.56 MW

• Maximum power of generators, 3.9 MW

All algorithms were programmed in MATLAB to simulate and compare them with the pre-

defined case studies. Besides, the shutdown of less efficient motors in all these metaheuristic 
algorithms was implemented.

4.1. Motor data

Table 3 shows the emission coefficients of 10 gas engines of the power plant used as a case study.

The coefficients “a,” “b,” “c,” “d,” “e,” and “f” were determined by operating the engines 
of the power plant at different powers, measuring the consumption and emissions to 
obtain the power versus cost and power vs. emission curves of each engine. The qua-

dratic equation of each curve of each motor was obtained by the regression methods using 

MATLAB’s tool box curve fitting. In the same way, the coefficients “d,” “e,” and “f” were 
obtained but in this case by measuring the CO

2
, NOX, and SO

2
 emissions of each engine at 

different powers.

On Table 4, the coefficients of losses of the ten motors that make up the case study are pre-

sented. In this chapter a reduction to the transmission loss model is applied as a function of 
the output of the generators through the Kron loss coefficients [26].

On Table 5 cost and emission results with all metaheuristic algorithms used for comparison 

in this chapter are shown. Among these algorithms, applied in a plant with ten generators, 
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it is possible to notice that the SA has the lowest emission of pollutants with 1757.39 (m3/h), 
however with a cost of 1556.61 ($/h), while the DE algorithm has the lowest cost with 1545.59 
($/h), however with emission of pollutants with 1769.48 (m3/h).

The comparison of all the results of the different metaheuristic algorithms is provided in Table 6.

Motor f e d

1 0.00419 1.32767 73.85932

2 0.00419 0.32767 13.85932

3 0.00683 −0.54551 40.2669

4 0.00683 −0.54551 40.2669

5 0.00461 −0.51116 42.89553

6 0.00461 −0.51116 42.8955

7 0.00461 −0.51116 42.8955

8 0.00461 −0.51116 42.8955

9 0.00061 −0.51116 10.8955

10 0.00461 −0.51116 42.8955

Source: [1].

Table 3. Emission coefficients from the thermal power plant used as case study.

Motor   c  
i
    ($/Mw^2)   b  

i
    ($/Mw)   a  

i
   ($)   P  

min
   (Mw)   P  

max
    (Mw)

1 0.007 7 240 0.66 3.35

2 0.0095 10 200 0.9 3.7

3 0.009 8.5 220 0.8 3.6

4 0.009 11 200 0.66 3.35

5 0.008 10.5 220 0.72 3.45

6 0.0075 12 120 0.66 2.97

7 0.0075 14 130 0.88 3.5

8 0.0075 14 130 0.754 3.33

9 0.0075 14 130 0.9 3.9

10 0.0075 14 130 0.56 2.35

Source: [1, 21].

Table 2. Cost coefficients from the thermal plant case study.
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M 1 2 3 4 5 6 7 8 9 10

1 0.14 0.17 0.15 0.19 0.26 0.22 0.34 0.38 0.43 0.45

2 0.17 0.6 0.13 0.16 0.15 0.2 0.23 0.56 0.23 0.51

3 0.15 0.13 0.65 0.17 0.24 0.19 0.25 0.38 0.43 0.45

4 0.19 0.16 0.17 0.71 0.3 0.25 0.43 0.56 0.23 0.51

5 0.26 0.15 0.24 0.3 0.69 0.32 0.18 0.37 0.42 0.48

6 0.22 0.2 0.19 0.25 0.32 0.85 0.97 0.55 0.27 0.58

7 0.22 0.2 0.19 0.25 0.32 0.85 0.67 0.38 0.43 0.45

8 0.19 0.7 0.13 0.18 0.16 0.21 0.28 0.56 0.23 0.51

9 0.26 0.15 0.24 0.3 0.69 0.32 0.18 0.37 0.42 0.48

10 0.15 0.13 0.65 0.17 0.24 0.19 0.25 0.38 0.43 0.45

Fonte: [1, 21].

Table 4. Loss coefficients (all values have to be multiplied by 1e-4).

Results SA DE DA NSGA II PSO ALO

Emission (m3/h) 1757,39 1769,48 1765,34 2098,12 2113,33 1763,55

Cost ($/h) 1556,61 1545,59 1548,28 1709,47 1685,18 1549,93

Table 5. Comparative table with all costs and emissions.

Table 6. Comparison between all results of the different programmed algorithms.
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5. Conclusion

The model was implemented in MATLAB computing. Usually all algorithms have presented 

good results, because in all cases it is possible to switch off at least two motors, but some dif-
ferences among results of the different algorithms were evidenced. It was possible to notice 
vantages in relation to cost and emission of two methods among all of them. The SA achieves 
the lowest emission of pollutants, while DE obtained the lowest cost for the power plant of 

ten generating units.
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