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Abstract

Calcium phosphate cement (CPC) has limited use in bone repair due to their poor 
mechanical properties. Halloysite nanotubes (HNTs) are clay tubes with an alumino-
silicate composition. The physicochemical properties, cytocompatibility, and cellular 
response to the CPC/HNT composites were assayed. Compression strength, FTIR analy-
sis, protein synthesis, and mineralization were assessed. The cumulative data show that 
composites of tricalcium phosphate (TCP), anhydrous calcium diphosphate (DCPA) as 
the solid phase agent, and 10% chitosan lactate solution as the setting liquid produced 
cement with sustained release properties without loss of material strength. The com-
posite also showed enhanced material properties (adhesiveness, surface roughness, 
and increased strength). Cellular assays confirm its osteoconductive and osteoinductive 
nature. CPCs, loaded with gentamicin- and neomycin-doped HNTs, showed sustained 
antibacterial release and marked zone of growth inhibition. CPCs fabricated with drug-
doped HNTs offer a means for inducing bone growth at the site of implantation while 
controlling infection. This treatment modality should hasten patient healing time and 
enhance restoration of function. The increase in materials properties suggests that this 
CPC may be clinically applied to repair injuries in load-bearing bones.

Keywords: bone cement, bone repair, calcium phosphate, halloysite nanotubes, 
osteoblasts, sustained release, tissue engineering
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1. Introduction

Polymethylmethacrylate (PMMA) is widely commercially used bone cement [1, 2]. The most 

common method of application is the dry mixing of drugs along with the bone cement and 

administering it into the body [3]. While long considering the ‘gold’ standard in local anti-

biotic therapy, it has many disadvantages. A radiolucent fibrous tissue is often observed at 
the bone/cement interface due to the release of toxic methylmethacrylate (MMA) monomers 

which damages surrounding tissue [3, 4]. These cements also exhibit a high exothermic set-

ting temperature. Temperatures ranging from 70–120°C have been reported during setting of 
the PMMA bone cement during implantation [2, 5]. In an experiment conducted by Stańczyk 
and Rietbergen on bovine cancellous bone, the temperature exposure of 70°C by a fraction 

(10%) of the bone at the bone/cement interface was recorded [6]. The addition of antibiot-

ics results in reduced mechanical properties in the cement [7]. Furthermore, the release of 

the antibiotic is short lived and results in less than maximal antibiotic release [7, 8]. Finally, 

PMMA cements lack elasticity and have dense structure which does not allow bone growth 

inside the cement [9].

Brown and Chow were the first to propose the use of calcium phosphate cement (CPC) in 
bone repair [10]. CPC was approved in 1996 by the Food and Drug Administration (FDA) for 

repairing craniofacial defects [11]. CPCs have many advantages over PMMA cement. Low 

shrinkage, durable, dense or porous (depending on the site of injury), and formability (ability 

to fill cavities of complex configurations) are additional positive qualities of CPCs [12–14]. 

Due to their similarity to apatite minerals in natural bone, calcium phosphate (CaP) bioc-

eramics, such as hydroxyapatite (HA), are osteoconductive and osteoinductive [15–17]. CPCs 

implants provide an ideal environment for colonization by osteoblasts to form a functional 

interface [18, 19]. The end product is easily resorbed by osteoclast cells, leading to new natural 

bone formation at the bone-implant interface [21].

All CPCs are formulated by mixing a solid and a liquid component. The solid component 
consists of two or more calcium phosphate salts. The solid phase usually consists of a basic 

and an acidic salt, which reacts together in an aqueous medium and precipitates HA as a final 
product [19, 20]. The liquids used can be either water, alginates, chitosan, or sodium phos-

phates [20–22]. To obtain maximum biological use, these components are mixed in predeter-

mined proportions that will lead to the formation of HA. Resorbability of the CPCs completely 

depends on its end product [22]. The physicochemical reactions that occur during mixing 

are complex, and cement setting time depends on factors such as solid-liquid composition, 
liquid-to-powder ratio, and particle size of the powder. Setting conditions also influence the 
mechanical properties of the cement [23]. However, due to its brittleness, CPCs are restricted 
to the reconstruction of non-loading bearing bone [24, 25]. Recently, absorbable fibers [23] and 

chitosan [26] were used to improve the load-bearing capability of CPC [27, 28]. Chitosan and its 

derivatives are natural biopolymers that are biocompatible, biodegradable, and osteoconduc-

tive [29]. CPCs can also be modified through additives (i.e., silicon, strontium, and zinc) and 
delivered as paste, putty or in an injectable form and set in situ to provide intimate adaptation 

to complex-shaped defects [23, 24]. Polymer materials added as an organic phase to the CPCs 

have been shown to improve the biological response, physicochemical, and mechanical prop-

erties, such as injectability, cohesion, resorption, and toughness [27, 28, 30].
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Halloysite nanotubes (HNTs) are commercially inexpensive and two-layered aluminosilicate 

nanotubes are found naturally as raw mineral deposit. When dehydrated, 15–20 clay lay-

ers form a hollow tubule which is capable of carrying drugs [31, 32]. Inside of the lumen is 

positively charged and the external surface is negatively charged, permitting additional func-

tional modifications of these surfaces. This charge on both outer and inner surfaces affects 
the efficiency of loading drugs and chemical agents [33, 34]. Substances with overall negative 

charge can be easily loaded into the lumen when compared to positively charged particles. 

The size of HNTs varies from 500 to 1000 nm with an inner diameter of 15–100 nm depending 

on the deposit [35]. Due to physical properties such as nanosized lumens, high L/D (length to 

diameter) ratio, low hydroxyl group density, low cost, and abundant natural deposits, HNTs 

have been intensely studied as a controlled or sustained release agent [31, 33, 34]. Loading 

HNTs with pharmaceuticals showed low initial release concentrations, preventing an initial 

outburst and uniform drug delivery (particularly with drugs, such as antibiotics, hormones, 

and growth factors) [35–37]. The drugs dexamethasone, furosemide, and nifedipine gave 

an extended 6–10 h release profile [29]. Under optimal conditions, a maximum loading of 

12% volume (very close to theoretical capacity) was obtained [29]. When HNTs are added to 

polymeric materials, they improve material and mechanical performance and stability [34]. 

HNTs have been used to increase surface area, impart high surface reactivity, and improve 

mechanical strength with a relatively low cost [32, 34]. To achieve an increase in the tough-

ness, mechanical strength, and thermal stability, HNTs have incorporated into a variety of 

polymers and examples include: poly(methyl-methacrylate) [35], poly(butylene succinate) 

[38], polyamide [12, 39], styrene-butadiene [40], epoxy [41], and chitosan [42]. In two previous 

studies using electrospinning, HNTs were used to enhance the polymer material properties 

including biological, chemical, mechanical, and thermal properties (see Kamble et al., (2012) 

for a more detailed review) [34].

Presently, the use of CPCs in regenerative medicine and orthopedic surgery is limited only to 

non-load bearing regions, that is, cranioplasty [43, 44]. There is a critical need for developing 

osteogenic and osteoconductive cement that can be used in load-bearing sites. The objective 

of this study is to improve the mechanical and anti-infective properties of CPCs. The com-

mon thread between these two objectives is the use of HNTs to provide a means for sustained 

release of anti-infective agents (gentamicin sulfate and neomycin sulfate) and to improve the 

material properties (tensile strength and adhesiveness) of the cement. The choice of CPC com-

ponent materials was also a critical factor.

2. Materials and methods

2.1. Materials

Calcium phosphate dibasic anhydrous (HCaO
4
P, DCPA), β-tri calcium phosphate (Ca

3
O

8
P

2
, 

β-TCP), calcium phosphate monobasic monohydrate (H
4
 CaO

8
 P

2
 H

2
0, MCPM), chitosan oligosac-

charide lactate ((C
12

H
24

N
2
O

9
)

n
), chitosan (low molecular weight), dexamethasone, gentamicin, neo-

mycin, calcium L-lactate (C
6
H

10
CaO

6
 × H

2
O), and HNTs (H

4
Al

2
O

9
Si

2
 2H

2
O) were purchased from 

Sigma-Aldrich, St. Louis, MO. Tetra calcium phosphate (Ca
4
O

4
P, TTCP) was ordered from CaP 

Biomaterials, E. Troy, WI. Cupric chloride (CuCl
2
) and calcium carbonate (CaCO

3
) were delivered 
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from Nasco, Fort Atkinson, WI. Sodium phosphate dibasic (Na
2
HPO

4
) was purchased from Fisher 

Scientific Company, Waltham, MA. Human osteoblast cells (C-12760) and osteoblast growth 
medium were purchased from PromoCell, Heidelberg, Germany. Mouse pre-osteoblast cell lines 

MC3T3-E1 (ATCC® CRL-2593™) and mouse bone marrow stromal cells (MSCs) CRL-12424 

(ATCC® CRL-12424™) were obtained from ATCC (Manassas, VA.). Cell culture and lab plas-

tics were obtained from MidScientific, St. Louis, Mo. Alpha minimal essential medium (α-MEM) 
and Dulbecco’s DMEM were obtained from GIBCO Invitrogen, Grand Island, NY. Fetal bovine 

serum and penicillin-streptomycin were purchased from Phenix Research Products (Candler, 

NC). TryplE, an animal free trypsin substitute, and Trypan blue were obtained from GIBCO 

Invitrogen, (Grand Island, NY). Cell Titer Blue assay was purchased from Promega (Sunnyvale, 

CA). The Picrosirius red staining kit was obtained from Polysciences, Inc. (Warrington, PA.)

2.2. Sample preparation

Different types of calcium phosphate salts were mixed in different proportions using vari-
ous chemicals as part of the liquid phase to identify the best composition with respect to 
their mechanical properties (Table 1). All samples were mixed using mortar and pestle under 

ambient conditions (room temperature and atmospheric pressure). The powder phase was 

mixed thoroughly until all the salts were uniformly dispersed. To this, the liquid phase was 
added in small quantities and triturated until the mixture became a thick, moldable paste.

The most suitable formulation was achieved when tetracalcium phosphate (TTCP provided 

by CaP Biomaterials) and dicalcium phosphate (DCPA provided by Sigma-Aldrich, St. Louis, 

MO.) were used as the solid phase and chitosan lactate (CL) was used as the setting liquid. 
An equimolar ratio of TTCP and DCPA was mixed and to this 10% w/v solution of CL was 
added. This mixture was thoroughly mixed using mortar and pestle to form a soft mass. The 

soft mass could then be set in different mold shapes depending on the assay or test being 
performed.

2.2.1. Sample preparation for SEM

Scanning electron microscopy (SEM) was used to analyze the surface of CPCs. Specimens 

fractured during compression test were taken for SEM imaging. S4800 Field Emission SEM, 

HITACHI was used for our research. Gold nanolayer (about 3 nm) was laid over specimens 

before analyzing using SEM.

Group CPC Composition

Group 1 CPC powder without HNTs

Group 2 CPC powder with 5% wt. HNTs

Group 3 CPC powder with 10% wt. HNTs

Group 4 CPC powder with 15% wt. HNTs

Table 1. Control and experimental groups use in osteoconductive studies.
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2.2.2. Compression strength testing

Compression test was performed on cylindrical shape specimens (12 mm length and 6 mm 

diameter). Compression test was performed on dry specimens and on specimens placed in 

simulated biological fluid (SBF) for 24 h before testing. Testing was done using an ADMET 
tensile tester with a load speed of 1 mm/min. FTIR spectroscopy was done to analyze the 

composition of CPCs after setting.

2.2.3. Flexural strength testing

Samples of dimensions 65 mm × 10 mm × 4 mm were prepared using paraffin wax in accor-

dance with the ASTM F417-78 standards. Cement samples were put in these molds and used for 

flexural testing. The same compression machine was used at a cross-head speed of 1 mm/min.  
Three samples for each concentration of HNTs were used and an average was calculated.

2.3. FTIR analysis

Potassium bromide (KBr) pellet method was used for FTIR spectroscopy. Thin discs of KBr 

were prepared by placing a small amount of KBr into the die set and were subjected to a pres-

sure of 8 tons. This pressure caused the KBr to re-crystallize to form thin transparent discs. 

These discs were used to obtain the background. A small amount of test sample powder was 

added to KBr and thin discs were prepared by a similar procedure.

2.4. Loading of the HNTs with dexamethasone (DEX)

HNTs were loaded using the vacuum loading technique. Saturated solution of Dex was made 
by dissolving 200 mg of Dex in 50 mL of ethanolic water (50%v/v). To this solution, 9 g of HNTs 

were added and subjected to vacuum cycles. The suspension of HNTs in Dex was kept in a 

vacuum for 20 min and at atmospheric pressure for 20 min, this was repeated thrice. This sus-

pension was left under the vacuum overnight and centrifuged. The supernatant was discarded 

and HNTs were washed twice with deionized water to remove drug adsorbed on the HNT 

surface. Washed HNTs were dried in a vacuum and these were used in further experiments.

Drug release from HNTs was measured for a period of 96 h. Accurately measured quantity of 
50 mg of Dex loaded HNTs was taken in a centrifuge tube and 1 mL of simulated biological fluid 
(SBF) was added and placed in a shaker. After specific time intervals, the tube was centrifuged 
to precipitate HNTs and the supernatant was collected. Equal volume of SBF was replaced 
every time supernatant was collected to maintain sink conditions. Collected supernatant was 

observed using a UV-visible spectrophotometer (NanoDrop) at a wavelength of 240 nm.

2.5. Cell culture, proliferation, and differentiation

Mouse pre-osteoblast cell lines MC3T3-E1 (ATCC® CRL-2593™) were obtained from ATCC 

(Manassas, VA.). Mouse pre-osteoblast (OB) was used for evaluating the osteoconductive 

potential CPC/HNT composites (details are provided below). OBs were maintained in a 

minimum essential medium, Eagle’s α-modification (α-MEM), containing ribonucleosides, 
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deoxyribonucleosides, sodium bicarbonate, and supplemented with 2 mM L-glutamine, 1% 

antibiotics (100 U/mL penicillin and 100 U/mL streptomycin), and 10% fetal bovine serum 

(FBS) (complete α-MEM). Cells from passage 3 to 4 were used.

Mouse bone marrow stromal cells (MSCs) CRL-12424 (ATCC® CRL-12424™) were used for 

evaluating the osteoinductive potential CPC/HNT composites (details are provided below). 

MSCs were maintained in Dulbecco’s Modified Eagles Medium (DMEM) with 10% FBS and 
1% antibiotics (100 U/mL penicillin and 100 U/mL streptomycin (complete DMEM)). Cells 

from passage 3 to 4 were used.

Human osteoblast (HOB) cells were used to assess potential cytotoxicity issues. HOBs were 

cultured in osteoblast growth media according to the manufacturer’s directions. Cells from 

passage 2 to 3 were used.

2.5.1. Cell proliferation

To check the cytocompatibility of the formulated scaffolds, XTT was performed on human 
osteoblast (HOB) cells C-12760 purchased from PromoCell, Heidelberg, Germany. XTT assay 
kit (X4751) with 1% PMS was ordered from Sigma-Aldrich. CPC discs of 5 mm  ×  1 mm dimen-

sions were molded using different concentrations of HNTs (5, 10, and 15%). Control discs 
without any HNTs and blank cell lines were also cultured for comparative studies.

XTT or 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide is a sensi-

tive and reliable quantitative assay. It is a colorless or slightly yellow color tetrazolium dye 
which gets converted into bright orange color formazan on reduction. When this dye is used 

in cell cultures, the dehydrogenase enzymes produced from mitochondrial cycle of actively 

respiring cells reduces the dye to orange color formazan. This assay is greatly improved by 

adding an electron accepting agent such as PMS (N-methyl dibenzopyrazine methyl sulfate). 

Unlike MTT, this assay does not require to go through laborious procedures such as solu-

bilization prior to quantization, making this process quick and easy. Osteoblast cells, upon 
reaching to 90% confluency, were trypsinized and resuspended into culture media. In a 96 
well plate, 100 μL of cell suspension was added in each well and incubated for 24 h. Activated 

XTT solution (20 μL) was then added to each well and incubated for 2 h and optical densities 
were measured using a Phenix LT-4000 absorbance microplate reader at 450 nm.

2.5.2. Assessment of CPC/HNT osteoconductive and osteoinductive potential

For seeding into CPC/DEX (+/−)/HNTs, OBs and MSCs were detached from the flasks by 
adding TryplE, an animal free trypsin substitute, and mixed with HBSS. Cells were then 

centrifuged and the cell pellets resuspended in either complete α-MEM or DEM. Setting liq-

uid remained the same for all the formulations except for changes in solid components as 

described below.

For cell-culture techniques, disc-shaped specimens 10 × 2 mm were made using steel molds. 
The liquid phase used in this process was prepared from sterile deionized water. After setting, 
the samples were removed from the molds, dipped in alcohol, and dried under a class II hood.
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Two different scaffold types were made for culturing cells (Tables 1 and 2). One set of scaf-

folds were made to evaluate the osteoconductive nature of CPCs while the other set was used 

to assess its osteoinductive potential. Osteoconductive scaffolds contained CPC powder with 
varied amounts of HNTs (Table 1). Four groups were prepared containing 0, 5, 10, and 15% 

wt. of HNTs to CPC powders. These HNTs were not loaded with DEX or any other growth 
factors. Mouse OBs were used for seeding on these scaffolds to evaluate the osteoconductive 
property of fabricated CPC. To evaluate the osteoinductive potential of our formulation with 

DEX-doped HNTs, four set of scaffolds were prepared (Table 2). Scaffolds in both groups were 
tested for cell viability, proliferation, ECM production, and alkaline phosphatase activity over a 

14-day period. Standard histochemical staining techniques were used. We predicted that MSCs 
would differentiate into osteoblasts after the exposure to DEX-doped HNT/CPC composites.

2.6. Histochemical staining

As the CPC scaffolds were opaque, bright field microscopy or confocal microscopy images 
could not be taken. Accordingly, an indirect method of estimating the ECM deposition and 

amount was used. Collagen content was estimated using Picrosirius red (PS) staining and 

acidic mucopolysaccharides were estimated using Alcian blue (AB). To quantify staining, 
stained CP discs were destained measured for staining the dye concentration using UV-visible 

spectrophotometry. Indirect estimation was done using the destaining method. Glacial acetic 

acid 7% solution was used as destaining solution. After staining the hydrogel films, destaining 
solution was added to remove the dye that was fixed on the films. Destaining solution was then 
collected and measured for the concentration of staining the dye using UV spectrophotometry.

2.6.1. Picrosirius red staining

Picrosirius red is a specific collagen fiber stain and also is capable of detecting thin fibers. 
Media was removed from the wells and a wash was given with Dulbecco’s phosphate buff-

ered saline (DPBS) before fixing the cells using 95% ethanol. These fixed cells were stained 
with Picrosirius red for quantifying the amount of collagen secreted. The staining kit had 
three different solutions—A, B (Picrosirius stain), and C (hydrochloric acid—HCl). Solution A 
was added to the cells and removed after 5 min and solution B was added and was removed 

after an hour. A wash was given with solution C to remove excess staining. Glacial acetic acid 

7% aqueous solution was used as de-staining solution. As the CPC scaffolds were too thick 

Group CPC composition

Group 1 CPC powder without HNTs

Group 2 CPC powder with 10% wt. HNTs

Group 3 CPC powder with 5% wt. DEX-doped HNTs and 5% wt. plain HNTs

Group 4 CPC powder with 10% wt. DEX-doped HNTs

Table 2. Control and experimental groups used in osteoinductive studies.
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for light to penetrate, microscopic imaging and quantification were difficult to accomplish. 
To quantify staining, de-staining was used and measured for staining the dye concentration 
using UV-visible spectrophotometry.

2.6.2. Alcian blue staining

Alcian blue is used to stain sulfate glycosaminoglycans and proteoglycans in the extracellular 

matrix. The same procedure, as indicated above, was followed using Alcian blue solution as 

the dying reagent and destained samples were collected. These samples were later analyzed 

using a Thermo Scientific NanoDrop 2000c spectrophotometer.

2.6.3. Alkaline phosphatase (AP) assay

During in vitro bone formation, AP activity is greatly enhanced and hence used as a 

marker to evaluate the differentiation of MSCs towards osteoblastic lineage or mainte-

nance of the osteoblast phenotype. It is easily detected using BCIP/NBT as a substrate, 

which stains cells blue-violet when AP is present. Alcohol fixed plates were washed with 
a buffer and carefully aspirated without disrupting the monolayer of cells. Enough BCIP/
NBT substrate solution was added to just cover the monolayer and left in the dark for 

5–10 min. It was then washed and destained using 7% glacial acetic acid for 5 min to quan-

tify the AP activity. The solution was aspirated and analyzed using a NanoDrop 2000c 

spectrophotometer.

3. Results and discussion

3.1. SEM analysis

SEM was used to analyze the nature of the surface topography of CPCs. Surfaces in all for-

mulations had granules of small and large size (Figure 1) No definitive difference could be 
observed visibility in these images between CPS with and without HNTS. Chitosan lactate 

was flakes or scales that were observed in thin layers around the particles of DCPA and TTCP 
(Figures 1 and 2). Granular particles of DCPA and TTCP are seen in a matrix of chitosan 

lactate. HNTs were also observed in few images distributed as clumps and as fine particles. 
As seen in Figure 2, aggregations of HNTs were observed distributed within the matrix of 

CPCs filling up the voids between the calcium and lactate particles. Cell viability and cell 
proliferation are largely dependent on the substrate surface, and cellular response to surface 

roughness is different depending on the cell type [32, 33]. Rough surfaces are preferred by 

many cell types for attachment and further functionality [33, 34]. Osteoblasts grown on sur-

faces with microtopography were stimulated towards differentiation as compared with a lack 
of specific bone marker expression when grown on smooth surfaces [35, 36]. SEM images of 

CPCs clearly indicate that all CPC formulations possess very rough surfaces and provide a 

conducive environment for cell attachment (Figure 1). This observation was confirmed by the 
cellular response of OBs and MSCs on the CPC surfaces.
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3.2. Compression strength

Specimens made for the compression test were analyzed for maximum compressive strength 

and peak load taken before they were fractured. Of the various combinations of calcium salts 

and setting liquid salts tested, only those samples that had anti-washout property and good 
compressive strength were chosen. Most of the samples had decent compressive strength 

when dry, but upon placing them in an aqueous environment, they became soft and col-
lapsed. Specimens made with TTCP and DCPA using chitosan as a setting liquid had good 
mechanical properties. As chitosan is soluble only in acidic solutions, aqueous solution of 
chitosan in acidic water was used. This resulted in elution of acid into SBF while testing for 

their anti-washout property. The pH of SBF was maintained at 7.40, but when these samples 

were immersed in SBF, the pH of the solution increased as high as pH 2.0. Hence, in-spite-of 

having good mechanical properties, these samples were not selected as it would create hostile 

microenvironment for cells. To prevent cytocompatibility issues, chitosan lactate was, accord-

ingly, selected as the setting liquid as it was soluble in neutral water. When all samples were 

Figure 1. SEM images of CPCs with and without HNTs. (A) CPCs with 0% w/w HNTs (1200× magnification); (B) CPCs with 
5% w/w HNTs (1200× magnification); (C) CPCs with 10% w/w HNTs (1500× magnification); and (D) CPCs with 15% w/w 
HNTs (1500× magnification). (A) and (B) scale bar = 40 microns; (C) and (D) scale bar = 30 microns. Red arrow = chitosan lactate.
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tested, the composition with the most desired properties was an equimolar mixture of TTCP 
and DCPA in the solid phase with chitosan lactate as the liquid phase.

Different concentrations of HNTs were added to this composition. These compositions were 
then tested for compression and flexural strengths. The addition of HNTs has an observable 
and significant change in the compressive strengths of CPCs (Figure 3A). Peak compressive 

strength was seen in groups that were added with 5% wt. HNTs. Peak compression pressure 

of 16.48 ± 0.95 MPa was observed for CPCs that were added with 5% wt. HNTs. CPCs that 

were not added with HNTs had a compressive strength of 11.65 ± 2.24 MPa. Compressive 

strength of CPCs is increased by 41.47% upon the addition of 5% of HNTs. At concentrations 

of 10 and 15% wt. HNTs, compressive strength of CPCs was recorded as 14.43 ± 1.64 MPa and 

13.54 ± 1.67 MPa. Minimum of five samples in each group were tested and statistical analysis 
was performed on the data sets. One way ANOVA was done to analyze the statistical sig-

nificance among the four groups. Results suggest that there is a significant difference in the 
means of all four groups at α = 0.05. Post hoc analysis was done to identify the group with the 
highest mean compressive strength. Results from Tukey’s HSD suggest that groups contain-

ing 5% wt. HNTs have the highest mean compressive strength.

Addition of nanoparticles in the matrix of CPCs improves the compression strength up to cer-

tain concentration and beyond this concentration no significant improvement was observed. 
The optimal concentration for this composition was observed to be at 5% wt. The particle size of 

TTCP contributes an important role in determining the compressive strength of CPCs. Smaller 

particles attribute for increased strength compared to larger particles. As shown in Figure 3B,  

at a particle size of 1.9 ± 0.31 μm, the compressive strength of CPCs was 23.49 ± 1.36 MPa. 

Larger particles with a diameter of 4.1 ± 1.15 μm had a peak compression strength of 

8.25 ± 2.56 MPa. Particles with an average diameter of 2.4 ± 0.42 μm had a compression strength 

Figure 2. Scanning electron micrograph of CPC added with 5% wt. HNTs showing aggregation of HNTs. Red 

arrows = chitosan lactate flakes. Red star = calcium phosphate particles. White star = HNTs concentrations.
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of 17.59 ± 1.13 MPa. It can be inferred that smaller particles may be arranged in a compact man-

ner resulting in smaller voids between the particles and thus resulting in greater compression 

strengths of CPCs. This improvement in compression strength by the addition of HNTs can be 

useful in applications where primary forces acting on cements are compression. Bone cements 

used in vertebral augmentation are primarily subjected to compressive forces and the CPC/

HNTs composite may be of use in this surgical procedure.

Much research was directed towards improvement of CPCs by introducing additives in solid 

and liquid phases. Improvements were observed in mechanical strengths, setting times, bioac-

tivity, and degradability. Addition of gelatin and chitosan resulted in increased setting time, 
improved cell adhesion and ECM formation, and improved compressive strengths. Addition 

of other polymers including collagen, alginate, hyaluronate, cellulose, and synthetic polymers 

had various effects depending on the CPC composition and the amount of polymer [37, 38].

3.3. Flexural strength

Three-point bending test was performed to evaluate the flexural strength of CPCs (Figure 4A). 

Flexural strength of control group containing just DCPA, TTCP, and chitosan lactate was recorded 

as 13.86 ± 2.45 MPa. Addition of HNTs at 5% wt. improved the strength to 17.12 ± 2.49 MPa. This 

increase was not statistically significant at α = 0.05. CPCs containing 10 and 15% wt. HNTs had 
flexural strengths of 15.38 ± 0.26 MPa and 17.41 ± 1.45 MPa, respectively. This trend of flexural 
strengths is graphically represented in Figure 4B. The standard deviation error bars in Figures 3 

and 4 may be attributed to air gaps formed while preparing the bone cement and loading them 
into the molds. Presence of air pockets can reduce the compression and flexural strength of 
cements. This may be avoided by using a vacuum chamber to mix and prepare the specimens.

The inability to provide significant resistance to applied mechanical loads has limited CPCs 
to non-load-bearing, mostly craniofacial applications [37–39]. Their toughness and fatigue 

resistance are much less than those of cortical bone. The incorporation of a polymer during 

the CPC liquid phase increases ductility, allowing for a higher deformation before breaking 
[39, 40]. Moreover, polymer fiber reinforcement has been extensively explored as a strategy to 
increase the toughness and strength of cements [41].

Figure 3. (A) Compressive strength of CPCs with varying amount of HNTs. (B) Compression strength as a function of 

particle size of TTCP. Error bars = standard deviation.
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One explanation for a portion of the gain in material strength could be HNT addition to the 

CPC cement. HNTs have been widely used as a nanofiller for the modification of nanocompos-

ite materials [24, 25, 27]. HNTs have been used to increase surface area and impart high surface 

reactivity, improving mechanical and overall strength (see Zhang et al. for an excellent review 

[42]). To achieve the increase in mechanical strength, thermal stability, and toughness HNTs 

has been combined into a variety of polymers. Examples of polymer studied modification by 
HNTs include: poly(butylene succinate) [44], polyamide [12, 45], styrene-butadiene [46], epoxy 

[47], poly(methyl-methacrylate) [48], and chitosan [43]. In our case, we speculate that HNTs 

distribution the CPC cement fills voids resulting in the increase of mechanical strength by 
preventing crack propagation. HNTs have been suggested as mechanism nanoparticle deflect 
or absorb a propagating crack, thus preventing the formation of weak points and improving 

strengths. However, when the HNT concentration exceeds a certain value, the CPC deform-

ability decreased sharply. This may be because of the pattern of HNT dispersion [47]. The inter-

facial binding between HNT/chitosan composites was proposed as resulting from hydrogen 

bonding and electrostatic interactions and a uniform dispersion results in a uniform interfacial-

binding matrix and favorable to force conduction [43]. In contrast, too many HNTs and HNT 

clustering may inhibit the dispersion state and create interfacial gaps, which are easy to break.

3.4. FTIR analysis

The final setting product of apatite cements was hypothesized to be hydroxyapatite. To evalu-

ate the end-product formation, FTIR analysis was used. A comparison of IR spectra of CPC con-

trol, CPCs (no HNTs added), CPCs with 5% HNTs, and hydroxyapatite is shown in Figure 5.  

Band of peaks seen at wavenumber 900–1200 cm−1 are due to PO + 4 groups present in all 
the test samples. Peaks at 1450 cm−1 are characteristic of the CO

3
2− group found in HA. Peaks 

at 3100–3700 cm−1 are due to the ▬OH groups of hydroxyapatite. Comparing peaks for the 

▬OH group, we observe that CPCs with HNTs have stronger peak than control CPCs. This 

observation can be attributed to the presence of HNTs that acted as seeding/nucleating agents 
facilitating the precipitation of hydroxyapatite crystals.

Figure 4. (A) Flexural test method. (B) Flexural strength of CPCs with varying amount of HNTs. Error bars = standard 
deviation.
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3.5. Dexamethasone elution profile

Drug elution was studied using 50 mg of DEX loaded HNTs (Figure 6A). It can be observed 

that there is an initial burst release from HNTs during the first 10 h of release and from then 
onwards it was sustained. This 50 mg elution form of HNTs is above the desired micro to 

nanomolar range to stimulate the differentiation of MSCs towards osteoblastic lineage. DEX 
release from scaffolds was also studied using scaffolds with only 5% of HNTs loaded with 
DEX. It can be observed that drug release was slow and the concentration of drug released 
from scaffolds is much lower compared to HNTs. Figure 6B shows the release of DEX from 
scaffolds. The drug release may be even more extended during scaffolds degradation expos-

ing more HNTs to extracellular fluids (in vivo). Drug release from CPC scaffolds was less com-

pared to HNTs. This may be attributed to the surface release and doped HNTs in the matrix 
did not have contributed to this release.

3.6. Cell proliferation

The viability of HOBs on the surface of the CPC scaffolds was analyzed at days 3, 7, and 14 
(Figure 7). The absorbance values of the XTT assay reflects the mitochondrial activity of the 
live cells. The absorbance values across the 14-day period indicate that all samples showed 

no cytotoxic effects. The mean values of absorbance also varied strongly with the HNT con-

centration. On day 3, a 20.35% increase in absorbance values was observed for control CPC 

scaffolds when compared to wells containing only cells. On addition of 5% HNTs to the CPC 
scaffolds, 28.3% significant increase in the absorbance value was noticed. For 10 and 15% HNT 
absorbance was 9.8 and 12.8% larger, respectively. But, when compared with control CPC scaf-

fold (no HNTs added), 8.7 and 6.1% decrease in the absorbance values for 10 and 15% CPC-

HNT scaffolds were seen. By day 7, absorbance was larger for CPC scaffolds than for control 
wells. Wells containing 5% HNT samples showed 26.7% larger absorbance compared to CPC 

Figure 5. FTIR spectra of HA and CPCs with and with HNTs. Peaks at 1450 cm−1 and 3100–3700 cm−1 are characteristic of 

HA (CO
3

2− and ▬OH groups, respectively).
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samples without HNTs. CPCs with 10% HNTs had the highest absorbance value. Finally, at 

day 14, all wells containing CPC scaffolds showed higher absorbance values than control wells 
and it was the largest in scaffolds with 15% HNTs. The results further suggest that HNT/CPC 
composites are cytocompatible and enhance the osteoblast viability of the osteoblast cells. In 

addition, further increase in viability (cell growth) was seen with HNT addition.

3.7. Histochemical staining of HNT-doped CPC discs

As all CPC scaffolds were opaque, bright field microscopy or confocal microscopy micro-

graphs were unable to be taken. An indirect method of estimating ECM production was 

Figure 7. Cell viability assessed in human osteoblast culture on different CPC-HNT scaffolds (mean ± SD; n = 6).

Figure 6. (A) Dexamethasone elution from loaded HNTs. (B) Dexamethasone release from CPC scaffolds loaded with 
DEX-doped HNTs.
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employed using a staining and destaining method. Collagen content was estimated using the 

Picrosirius red stain, the presence of acidic mucopolysaccharides using an Alcian blue stain, 

and alkaline phosphatase activity was examined to confirm the osteoblastic phenotype of cells 
cultured of HNT/CPC discs.

3.7.1. Picrosirius red staining (PSR)

Graphical representation of PSR stain absorbance is shown in Figure 8. Higher absorbance 

indicates greater collagen content secreted by osteoblasts on the scaffolds. All test groups 
supported collagen production and throughout the length of the experimental period. On 

average, a higher amount of collagen synthesis was observed on day 14 stain as compared 

to day 7. However, there was no significant difference in the amount of collagen synthesized 
among all the groups on given day.

3.7.2. Alcian blue staining

Alcian blue staining was used to determine the acidic mucopolysaccharides synthesis. 

Figure 9 is graphical representation of Alcian blue staining for all scaffolds over the testing 
period. Higher absorbance indicates higher acidic mucopolysaccharides synthesis. On day 

7, acidic mucopolysaccharides synthesis was almost same across all CPC scaffold groups. 
Day 14 staining showed an improvement in mucopolysaccharide synthesis with an increase 

in the HNT concentration. CPC scaffolds with 15% HNTs showed the highest level of Alcian 

Figure 8. Destained well-plates showing red color, due to Picrosirius red, staining on and around osteoblast seeded CPC 

scaffolds indicating the presence of collagen. A = 7 days in culture and B = 14 days in culture. (C) Absorbance values for 
different HNT concentrations at day 7 and 14.
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Figure 9. Destained well-plates showing blue color, due to Alcian blue dye, on and around CPC scaffolds indicating the 
presence of acid mucosubstances. A = 7 days in culture and B = 14 days in culture. (C) Absorbance values for different 
HNT concentrations at day 7 and day 14.

blue staining indicating the higher acidic mucopolysaccharides synthesis. However, there 

was no significant difference in the amount of collagen synthesized among all the groups 
on given day.

The Picrosirius red and Alcian blue staining results suggest that CPC surfaces are conducive 

for osteogenesis and cell viability. Production of ECM molecules is a critical factor during 

bone tissue regeneration.

3.7.3. Alkaline phosphatase activity (ALP)

Preservation of the osteoblastic phenotype in OB cells was assayed using ALPase activity. 

It was observed that all CPC groups had a strong ALPase activity showing the preservation 

of the osteoblast phenotype (Figure 10). From the graph, it can be inferred that the cells had 

enhanced ALPase activity on day 14 compared to day 7. A pronounced increase in ALPase 

activity was seen in CPC discs without HNTs and CPCs with 10% wt. HNTs. There was, how-

ever, no statistical difference among groups on a given day of assay. All histochemical stain-

ing results suggest that CPC surfaces are conducive for osteoblast attachment, proliferation, 
and synthesis of an organic matrix that was subsequently mineralized. Osteogenesis and cell 
viability are the critical requirements for bone tissue regeneration.

3.8. Histochemical staining of DEX-doped HNT/CPC discs

As with the HNT/CPC discs, an indirect method of estimating ECM production was employed 

using the same staining methods and destaining protocols.
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3.8.1. Picrosirius red staining (PSR)

MSC collagen production was observed across all the test groups and throughout the length 

of the experimental period (Figure 11). Collagen synthesis remained almost same for any 

given group on all the days except for Group 3. By day 7 and 14, these scaffolds were stained 
equally compared to the rest other scaffold groups. By the end of day 14, all the scaffolds were 
equally stained with PSR stain referring to similar amount of collagen production by cells on 
all the scaffolds. However, no significant difference in the amount of collagen is synthesized 
among all the groups on given day. In comparing OB and MSC collagen synthesis on CPC/

HNT discs, the pattern observed was similar for Group 1 (CPCs no HNTs) and OB Group #3/
MSC Group #2 (CPCs with 10% HNTs).

3.8.2. Alcian blue staining

Each group of scaffolds followed a different trend for each day of experiment in terms of 
acidic mucopolysaccharide synthesis (Figure 12). Group 1 scaffolds had an increase in stain-

ing for day 3 and slight decrease on the following days 7 and 14. Staining on Group 2 scaf-

folds had deep staining on day 7, while on rest other days, similar amount of staining was 

observed. Group 3 scaffolds showed a similar staining for all the test days, in contrast, Group 
4 scaffolds were deeply stained on day 14 compared to other days (Figure 12). Results from 

Picrosirius red and Alcian blue stains suggest cytocompatibility of these scaffolds with bone 
marrow stromal cells. The presence of dexamethasone does not appear to enhance or decrease 

the ECM synthesis as revealed by histochemical staining.

Figure 10. Comparison of absorbance values for samples collected at different concentrations of HNTs at day 7 and day 
14 for ALPase activity.
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Figure 12. Alcian blue staining for osteoinductive scaffolds. A different trend was observed in terms of acidic 
mucopolysaccharide synthesis for all four groups.

3.8.3. Alkaline phosphatase activity

According to the hypothesis, scaffold Groups 3 and 4 would induce differentiation of BSCs 
towards osteoblastic lineage as they contained different concentrations of DEX- doped HNTs. 
Hence, more alkaline phosphatase activity was predicted in these groups. Staining results of 

Figure 11. Picrosirius red staining. Collagen synthesis was consistent and steady across all study groups.
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alkaline phosphatase assay are shown in Figure 13. Differentiation was more pronounced 
on Group 2 scaffolds that contained empty HNTs. Scaffolds of Groups 3 and 4, containing 
DEX loaded HNTs did not induce osteoblastic differentiation in the BSCs. Cell culture wells 
containing Group 2 scaffolds were deeply stained in purple while the rest other wells were 
stained slightly or none. Group 2 scaffolds’ alkaline phosphatase activity was significantly 
higher on day 14 compared to other groups. Inability of Group 3 and 4 scaffolds to induce dif-
ferentiation may be attributed to very high concentrations of DEX released. The optimum con-

centration of DEX needed to induce the osteogenic differentiation is 10–7 [49–51]. In the CPC 

discs doped with DEX, DEX may have been eluted in excess and thus had an inhibitory effect.

The ability of HNTs alone (no DEX) to induce osteogenic differentiation was previously reported 
using montmorillonite-doped biopolymers [52]. It may be inferred from this study and the 

study by Ambre et al. that many aluminosilicate clays may be inherently osteoinductive [53].

4. Conclusions and future work

We conclude that CPCs fabricated using TTCP and DCPA as the solid phase and 10% chi-

tosan lactate solution as the setting liquid and doped with HNTs have an osteoconductive 
nature as evidenced by a production of an abundant ECM synthesis and alkaline phosphatase 

activity. Surface roughness was increased with HNT addition which favors cell attachment, 
proliferation, and ECM synthesis. Halloysite increased the compressive strength of CPCs. 

The composition of CPCs after setting was analyzed using FTIR which reveals that the addi-
tion of HNTs increased HA production by acting as seeding agents for the precipitation of 

Figure 13. Alkaline phosphatase activity assay for osteoinductive scaffolds.
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HA. CPC with DEX-doped HNTs showed an extended release of DEX from CPC scaffolds. 
DEX-loaded HNTs were used in varying concentrations in the fabrication of osteoinductive 
scaffolds. Osteoinductive scaffolds were seeded with MSCs to evaluate their osteoinductive 
nature. Our results suggest that HNTs with DEX loaded in the scaffolds started inducing dif-
ferentiation in MSCs after 14 days while scaffolds with empty HNTs started inducing differ-

entiation towards osteoblastic lineage after 3 days. At the end of 14th day, scaffolds containing 
non-loaded HNTs had the highest amount of alkaline phosphatase activity suggesting maxi-

mum differentiation of BSCs to osteoblastic phenotype. HNTs promoting differentiation of 
BSCs to osteoblastic phenotype can be explored further using different compositions. HNTs 
loaded with different drugs, antibiotics, growth factors, and chemotherapeutic agents can be 
used in fabricating CPCs. Addition of other polymers can also be considered to enhance the 

CPC mechanical properties further. In vivo experiments are being conducted in small animals 

to evaluate the tissue formation properties effectiveness of the CPCs fabricated.
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