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1. Introduction 

A multi-agent system (MAS) that composed of multiple interacting intelligent agents can be 
used to solve problems which are difficult or impossible for an individual agent or 
monolithic system to solve. Since the agent is autonomous and intelligent, it is reasonable to 
assume that it choice the behavior to bring itself the maximal benefit. Thus, the cooperation 
and coordination can be achieved successfully if we can wisely design the utility function 
for every agent so that every agent can get the maximal reward from the cooperation to 
accomplish a given task.  
However, the utility function of one agent usually involves those of others for most “real-
world” cooperation needed tasks. Moreover, it is not uncommon that the conflicts between 
the gains of these agents arise. In other words, the individual optimality is not always 
consistent with collective optimality in MAS. These conflicts will reduce the collective utility 
if there is no coordination among these decentralized, autonomous agents. 
This paper addresses the essential that in MAS the action of one agent may influence the 
action of others and there usually be conflicts among the payoff of one another. We 
investigated the optimal coordination approach for multi-agent foraging, a typical MAS 
task, from the point view of game theory. After introduced several concepts, we built the 
equivalence between the optimal solution of MAS and the equilibrium of the game 
corresponding to that situation, and then we introduced evolutionarily stable strategy into 
the approach hope that it maybe be of service in addressing the equilibrium selection 
problem of traditional game theory. 
Finally, based on the hawk-dove game model, an evolutionarily cooperation foraging 
algorithm (ECFA) is proposed to evolve a stable evolutionarily stable strategy (ESS) and 
bring the maximal reward for the group. If there be some change in the configuration of the 
environment, ECFA can, then, evolve to the new ESS automatically. And we also proposed a 
reinforcement factor to accelerate the convergence process of ECFA and thus make a new 
algorithm Accelerated ECFA (AECFA). These techniques were shown to be successful by 
the multi-agent foraging simulations. 

2. Rationality 

2.1 The concept of rationality 
Rationality is an important property we imposed upon the players of a game. It is a central 
principle for agent to respond optimally by selecting its action based on the beliefs he might O
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have about the strategies of his opponents and the structure of game, i.e. payoff matrix of 
the game. Sometimes rationality, also called “hyper-rationality”, implies having complete 
knowledge about all the details of a given situation. Under this concept, a player can 
calculate its best action of the current situation, and, furthermore, it can also calculate the 
best response of its opponents’ to his action on the flawless premise that no one will make a 
mistake. However, perfectly rational decisions are not feasible in practice due to the finite 
computational resources. In fact, if an agent uses finite computational resources to deduce, 
we say it is bounded rational. 
Of course, we assume all the players are honest and flawless weather he is rational or 
bounded rational when he selects his action. In other words, he never makes mistakes by 
choosing sub-optimal action intentionally to confuse his opponents. 

2.2 Autonomous agent and rational player 
Autonomous agent is the description of the player in a MAS. Autonomous means it can 
sense the environment and act on it over time in pursuit of its own goal. If the agent was 
equipped with learning ability, it can find the optimal way in accomplishing the same or 
similar job by machine learning techniques such as try-and-error, neutral network, and so 
on. Agent is egocentric during the selection and improvement of its action. 
A rational agent is specifically defined as an agent who always chooses the action which 
maximizes its expected performance, given all of the knowledge it currently possesses, and 
this may involve “helping” or “hurting” the other players. This time, the agent is game-
centric and the action selection is after a careful consideration about the payoff function of 
other players as well as game structure. 

2.3 Rational and selfish 
A rational agent always maximizes its payoff function based on the game structure and the 
common knowledge “other players are rational”. But it is not always selfish although it may 
choice selfish action more often than not. If the game structure shows that cooperation with 
other player can obtain more benefits for all, it has the incentive to choice this action since 
both of them are rational and, therefore, they all know these win-win actions. Another 
exception is repeated game since the Nobel Prize winner Robert Aumann had already 
shown rational players repeatedly interacting for indefinitely long games can sustain the 
cooperative outcome in his 1959 paper (Aumann R.J. 1959). 

3. Individual rationality and collective rationality 

Individual rationality indicates that the choices made by individuals are to maximize their 
benefits and minimize their costs. In other words, agents make decisions about how they 
should act by comparing the costs and benefits of different courses of action (Sen, A. 1987). 
And the collective rationality stand for the group as a whole, to maximize the utility of the 
entire group which is composed every single agent.  
As been stated before, usually there exist conflicts between actions that can make individual 
benefit or collective gains. Let’s take the famous classical prisoner's dilemma as an example. 
In this game, as in all game theory, the only concern of each individual player ("prisoner") is 
maximizing his/her own payoff, without any concern for the other player's payoff. The 
unique equilibrium for this game is a Pareto-suboptimal solution—that is, individual 
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rational choice leads the two players to both play defectly even though each player's 
individual reward would be greater if they both played cooperately, which is collective 
rational and Pareto optimal (Poundstone, W. 1992). 

4. Game theory based cooperation approach for multi-agent system 

4.1 The relationship between the optimal cooperation solution of MAS and Nash 
equilibrium of the corresponding game 
To accomplish a mission is only the preliminary requirement of a MAS. In fact, the MAS are 
required to complete the given task efficiently, and finally, optimally. It needs all the actions 
selected by the agent during every step of the procedure should be optimal. Of course, this 
is a very hard, if not impossible, problem. 
But if we regard the procedure of accomplishing the given task as a Markov game 
composed by multiple stage games which corresponding to every step that constitute the 
cooperating work, we can find a optimal solution given that we find the best equilibrium of 
every stage game of the Markov game. Game theory provides several feasible approaches to 
find an equilibrium, the most popular one among which is Nash equilibrium.  
Nash equilibrium is proven to exist for any game and it also is the only “consistent” 
prediction of how the game will be played in the sense that if all players predict that a 
particular Nash equilibrium will occur then no player has an incentive to play differently. 
Thus, a Nash equilibrium, and only a Nash equilibrium, can has the property that the 
players can predict it, predict that their opponents predict it, and so on (Fudenberg,D. & 
Tirole,J. 1991). Therefore, it is reasonable for us to choice Nash equilibrium as the optimal 
solution for each stage game although a Nash equilibrium can not always be Pareto-optimal. 

4.2 Fundamental equilibria of the game and their relationship 
From different viewpoints and based on different solution approaches, a game have 
multiple kinds of solution equilibria, among which Nash equilibrium, Iterative deletion of 
strictly dominated strategies, strictly dominance strategies, risk-dominant equilibrium and 
Pareto-optimal equilibrium are commonly used for static game of complete information. 
Here gives a very short description of and the relationship among these equilibria, please 
refer game theory (Fudenberg,D. & Tirole,J. 1991) for the details. 
Informally, a set of strategies is a Nash equilibrium if no player can do better by unilaterally 
changing his or her strategy. Thus, Nash equilibrium is a profile of strategies such that each 
player’s strategy is a best response to the other player’s strategies. By best-response, we 
mean that no individual can improve her payoff by switching strategies unless at least one 
other individual switches strategies as well. There are two kinds of Nash equilibrium: 
mixed-strategy Nash equilibrium and pure-strategy Nash equilibrium. 
Dominance occurs when one strategy is better than another strategy for one player, no 
matter how that player's opponents may play. The iterated deletion of dominated strategies 
is one common technique for solving games that involves iteratively removing dominated 
strategies. Eventually all dominated strategies of the game will be eliminated. Iterative 
deletion of strictly dominated strategies are those strategies survived. 
Strictly dominance strategies are those strategies that can never be dominated by any 
strategy. They are the subset of iterative deletion of strictly dominated strategies since it also 
include the weakly dominated strategies. The idea of a dominant strategy is that it is always 
your best move regardless of what the other guys do. Note that this is a stronger 
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requirement than the idea of Nash equilibrium, which only says that you have made your 
best move given what the other guys have done. 

Risk-dominant equilibrium (Harsanyi, J.C. & Selten, R. 1988): In a symmetric 2×2 game —
that is, a symmetric two-player game with two strategies per player—if both players strictly 
prefer the same action when their prediction is that the opponent randomizes 1/2-1/2, then 
the profile where both player play that action is the risk-dominant equilibrium. 
Pareto-optimal equilibrium is the equilibrium that has the property that can bring the 
maximum utilities for all players of the game. 
The relationship between these equilibria is depicted in the fig. 1(Li, G.J. 2005).Note that 
risk-dominant equilibrium may be, or may not be a Nash equilibrium. And also note that a 
Pareto-optimal equilibrium may be, or may not be a Nash equilibrium. 
 

 

Fig. 1. The relationship between some equilibria 

4.3 The type of the non-cooperative game and its equilibrium 
A non-cooperative game is a one in which players can cooperate, but any cooperation must 
be self-enforcing, i.e. without the help through third parties by binding commitments or 
enforcing contracts. According to different standards, there are many categories of games. 
Fudenberg and Tirole (Fudenberg,D. & Tirole,J. 1991) use complete information and 
sequence of the players’ move as the category standards. Complete information requires 
that every player knows the structure of the game, the strategies and payoffs of the other 
players. Static games (or simultaneous games) are games where both players move 
simultaneously, or if they do not move simultaneously, the later players are unaware of the 
earlier players' actions (making them effectively simultaneous), whereas the games where 
later players have some knowledge about earlier actions are called dynamic games (or 
sequential games). Therefore, there are four category of games: static games of complete 
information whose equilibrium is Nash equilibrium, dynamic games of complete 
information whose equilibrium is subgame prefect equilibrium, static games of incomplete 
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information whose equilibrium is Bayesian equilibrium and the last, dynamic game of 
incomplete information whose equilibrium is perfect Bayesian equilibrium. Please refer 
corresponding text for the details. 

4.4 Equilibrium selection problem in game theory based cooperation approach 
Equilibrium is a profile of strategies such that each player’s strategy is an optimal response 
to the other player’s strategies. Nash equilibrium is a most frequently used equilibrium 
among all kinds of equilibria. The fact that a game may exists several, even infinite, Nash 
equilibria bring about the trouble for the players to predict the outcome of the game. When 
this is the case, the assumption that one specific Nash equilibrium is played relies on there 
being some mechanism or process that leads all the players to expect the same equilibrium. 
However, game theory lacks a general and convincing argument that a Nash equilibrium 
outcome will occur (Fieser, J. & Dowden, B. 2008). As a result, it is not surprise that different 
player predict different equilibrium and so as to lead a non-Nash equilibrium come into 
exists since there is no common acknowledged doctrines for the player to predict and select. 
This is the equilibrium selection problem that addresses the difficulty for players to select 
certain equilibrium over another. 
The researchers had already proposed several approaches and advices to make a reasonable 
selection for the player. Next list the some most frequently used approaches. The “focal 
points” theory of Schelling (Schelling, T. C. 1960) suggests that in some “real-life” situations 
players may be able to coordinate on a particular equilibrium by using information that is 
abstracted away by the strategic form of the game that may depend on players’ culture 
background, past experiences, and so forth. This focal-point effect opens the door for 
cultural and environmental factors to influence rational behavior. Correlated equilibrium 
(Aumann R. 1974) between two players and coalition-proof equilibrium in games with more 
than two players (Bermheim, B.D., Peleg,B.& Whinstion,M.D. 1987a,1987b) that engage in a 
preplay discussion and then act independently is another approach. Risk-dominant 
principle first introduced by Harsanyi and Selten (Harsanyi, J.C. & Selten, R. 1988) is still 
another. However, please note that the selected Nash equilibrium is not necessarily Pareto-
optimal equilibrium. 

5. Evolutionary game theory approach 

5.1 Introduction and advantages 
Till now, we have motivated the solution concept of Nash equilibrium by supposing that 
players make their predictions of their opponents’ play by introspection and deduction, 
using their knowledge of the opponents’ payoffs, the knowledge that the opponents are 
rational, the knowledge that each player knows that the others know these things, and so on 
through the infinite regress implied by “common knowledge”. 
An alternative approach to introspection for explaining how players predict the behavior of 
their opponents is to suppose that players extrapolate from their past observation of play in 
“similar games,” either with their current opponents or with “similar” ones. The idea of 
using learning-type adjustment process to explain equilibrium goes back to Cournot, who 
proposed a process that might lead the player to play the Cournot-Nash equilibrium 
outputs(Fudenberg,D. & Tirole,J. 1991).  
If players observe their opponents’ strategies at the end of each round, and players 
eventually receive a great many observations, the one natural specification is that each 
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player’s expectations about the play of his opponents converge to the probability 
distribution corresponding to the sample average of play he has observed in the past. In this 
case, if the system converges to a steady state, the steady state must be a Nash equilibrium 
(Weibull, J.W. 1995). 
We can use this large-population model of adjustment to Nash equilibrium to discuss the 
adjustment of population fractions by evolution as opposed to learning. In theoretical 
biology, Maynard Smith and Price (Smith, J.M. & Price, G. 1973) pioneered the idea that the 
genes whose strategies are more successful will have higher reproductive fitness. Thus, the 
population fractions of strategies whose payoff against the current distribution of 
opponents’ play is relatively high will tend go grow at a faster rate, and, any stable steady 
state must be a Nash equilibrium. 
To conclude this section, we know that we can use evolutionary game theory and evolution 
stable strategies to explain the Nash equilibrium. The advantages of this explanation are if 
the players play one another repeatedly, then, even if players do not know their opponents’ 
payoffs, they will eventually learn that the opponents do not play certain strategies, and the 
dynamic of the learning system will replicate the iterative deletion process. And for an 
extrapolative justification of Nash equilibrium, it suffices that players know their own 
payoffs, that play eventually converges to a steady state, and that if play does converge all 
players eventually learn their opponents’ steady state strategies. Players need not have any 
information about the payoff functions or information of their opponents. 

5.2 Evolutionarily stable strategies and evolutionary game theory 
In game theory and behavioral ecology, an evolutionarily stable strategy (ESS) is a strategy 
which once adopted by an entire population is resistant to invasion by any mutant strategy 
that is initially rare. ESS was defined and introduced by Maynard Smith and Price (Smith, 
J.M. & Price, G. 1973) which is presumed that the players are individuals with biologically 
encoded, heritable strategies who have no control over the strategy they play and need not 
even be capable of being aware of the game. The individuals reproduce and are subject to 
the forces of natural selection (with the payoffs of the game representing biological fitness). 
Evolutionary game theory (EGT) is the application of population genetics-inspired models 
of change in gene frequency in populations to game theory. Now it is one of the most active 
and rapidly growing areas of research. It assumes that agents choose their strategies 
through a trial-and-error learning process in which they gradually discover that some 
strategies work better than others. In games that are repeated many times, low-payoff 
strategies tend to be weeded out, and equilibrium may emerge (Smith, J. M. 1982). 

5.3 Evolution stable strategies and Nash equilibrium 
As we already known, Nash equilibrium is a profile of strategies such that each player’s 
strategy is an optimal response to the other player’s strategies as a result of the rational 
agent’s introspection and deduction based on the “common knowledge”, such as the 
opponents’ payoffs, while ESSes are only evolutionarily stable result of the simple genetic 
operation among those agents who even not knows any information about the payoff 
functions or information of their opponents. Given the radically different motivating 
assumptions, it may come as a surprise that ESSes and Nash equilibria often coincide. In 
fact, every ESS corresponds to a Nash equilibrium, but there are some Nash equilibria that 
are not ESSes. That is to say, an ESS is an equilibrium refinement of the Nash equilibrium -- 
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it is a Nash equilibrium which is "evolutionarily" stable meaning that once it is fixed in a 
population, natural selection alone is sufficient to prevent alternative (mutant) strategies 
from successfully invading. 
In most simple games, the ESSes and Nash equilibria coincide perfectly. For instance, in the 
Prisoner's Dilemma the only Nash equilibrium and the strategy which composes it (Defect) 
is also an ESS. Since ESS is more restrict Nash equilibrium, there may be Nash equilibria that 
are not ESSes. The important difference between Nash equilibria and ESSes is Nash 
equilibria are defined on strategy sets (a specification of a strategy for each player) while 
ESSes are defined in terms of strategies themselves. 
Usually the game have more than one ESS, we have to choose one as the solution. To most 
game, the ESS is not necessary Pareto optimal. But for some specific game, there is only one 
ESS, and it is the only equilibrium whose utility is maximal for all the players. 

5.4 Symmetric game and uncorrelated asymmetry 
A symmetric game is a game where the payoffs for playing a particular strategy depend 
only on the other strategies employed, not on who is playing them (Smith, J. M. 1982). If one 
can change the identities of the players without changing the payoff to the strategies, then a 
game is symmetric. Symmetries here refer to symmetries in payoffs. 
Biologists often refer to asymmetries in payoffs between players in a game as correlated 
asymmetries. These are in contrast to uncorrelated asymmetries which are purely 
informational and have no effect on payoffs. Thus, uncorrelated asymmetry only means 
"informational asymmetry", not “payoff asymmetry”. 
If uncorrelated asymmetry exists, then the players know which role they have been 
assigned. i.e. the players in a game know whether they are Player 1, Player 2, etc. If the 
players do not know which player they are then no uncorrelated asymmetry exists. The 
information asymmetry is that one player believes he is player 1 and the other believes he is 
player 2. Let’s take the Hawk-Dove game (HDG hereafter), which will be presented in the 
next section, as an example. If player 1 believes he will play hawk and the other believes he 
will player dove, then uncorrelated asymmetry exists. 

5.5 Hawk-Dove Game (HDG) 
The game of Hawk-Dove, a terminology most commonly used in evolutionary game theory, 
also known as the Chicken game, is an influential model of conflict for two players in game 
theory. The principle of the game is that while each player prefers not to yield to the other, 
the outcome where neither player yields is the worst possible one for both players. The 
name "Hawk-Dove" refers to a situation in which there is a competition for a shared 
resource and the contestants can choose either conciliation or conflict.  
The earliest presentation of a form of the HDG was by Smith and Price (Smith, J.M. & Price, 
G. 1973) but the traditional HDG payoff matrix for the HDG, given as Fig. 2, is given in his 
another book, where v is the value of the contested resource, and c is the cost of an escalated 
fight. It is (almost always) assumed that the value of the resource is less than the cost of a 
fight is, i.e., c > v > 0. If c <= v, the resulting game is not a HDG (Smith, J. M. 1982). 
The exact value of the Dove vs. Dove playoff varies between model formulations. 
Sometimes the players are assumed to split the payoff equally (v/2 each), other times the 
payoff is assumed to be zero (since this is the expected payoff to wait, which is the 
presumed models for a contest decided by display duration). 
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While the HDG is typically taught and discussed with the payoffs in terms of v and c, the 
solutions hold true for any matrix with the payoffs in Fig. 3, where W > T > L > X (Smith, J. 
M. 1982). 

 Hawk Dove 

Hawk (v-c)/2, (v-c)/2 v,0 

Dove 0,v  v/2, v/2 

Fig. 2. Payoff matrix of traditional Hawk-Dove game 

 Hawk Dove 

Hawk X, X W, L 

Dove L,W T, T 

Fig. 3. Payoff matrix of a general Hawk-Dove game 

5.6 Using Hawk-dove game to model multi-agent foraging 
Foraging is a popular, typical, as well as complex, multi-agent cooperation task which can 
be described as, plainly, a search for provisions (food). How to forage food in an unforeseen 
environment and evolve coordination mechanisms to make the process effectively and 
intelligently in itself spans a number of sub tasks. Equipping agents with learning 
capabilities is a crucial factor to improve individual performance, precision (or quality) and 
efficiency (or speed) and to adapt the agent to the evolution of the environment. 
Generally, there are two kinds of food sources. One type is lightweight and can be carried 
by a single agent alone which is a metaphor for simple task that can be achieved by single 
robot, the other is heavy and need multiple agents to work simultaneously to carry it. This 
heavy food is a metaphor for complex task that must be accomplished by the cooperation of 
multiple robots (Hayat, S.A. & Niazi, M. 2005). Although coordination of multiple robots are 
not essential in collecting the lightweight food, the utilities can be increased when 
coordination indeed appear. Only lightweight foods are considered in this paper to simplify 
the complexity. In this case, the key to improve the collective utilities lies in how to make a 
feasible assignment of the food source to every agent so as to the goal for every agent is 
different since the same food source means there are conflicts between individual optimal 
assignment and collective optimal assignment in the MAS. 
But it is nearly impossible to make an optimal assignment under any situation where there 
exits lots of agents and foods which scattered randomly. Let’s start from an extremely 
simple situation to illustrate the difficulty. As depicted in Fig. 4, there are two agents A and 
B (red circle) pursuit two static foods F1 and F2 (two black dots) in a one-dimension world 
which only permit agent to move left or right and the food will be eaten whenever the agent 
occupy the same grid as a food. It is obvious that the optimal food for both A and B is F2 
since it is nearer than to F1. It is also obvious that if both A and B select F2 as their pursuit 
target, then utilities of A was sacrificed since it can not capture F2. Thus, it will cause low 
efficiency as far as the collective utility is considered. In this case, the optimal assignment is 
B pursuits for F2 while A trying to capture F1. This assignment can be regarded as agent A 
and B select different policy when confront same food, one is to initiate an aggressive 
behavior (B), just like hawk in HDG, the other is to retreat immediately (A), like a dove in 
HDG. 
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Fig. 4. Simple foraging task in one-dimensional world 

And this is only a extremely simple case, if we extend it to two-dimension where the move 
also extend to {up, down, left, right}, to large number of agents and foods scattered 
randomly, it will be very hard to make a wise assignment. If we use HDG to model the 
agent, then we can let the agent select a food by certain doctrine, such as nearest first, and 
then revise it if the target of multiple agents is the same. In this case, we can let those agents 
play a HDG to decide who will give up. 
As a conclusion, we can abstract the strategies of agents to two categories: one is always 

aggressive to the food, the other is always yield. The yield agent is dove, and the aggressive 

one is hawk. In this paper, this HDG model was used to model the strategy of pursuit 

agents to give the multi-agent foraging a feasible approach. 

5.7 Evolution dynamics – replicator dynamics 
Replicator dynamics is a simple model of strategy change in evolutionary game theory. 
Shown in equation (1), it describes how the population with strategy i will evolve. 

 ii xxxuxiux )],(),([ −=$
  (1) 

In the symmetric 2×2 hawk-dove game, a strategy which does better than the average 

increases in frequency at the expense of strategies that do worse than the average. There are 

two versions of the replicator dynamics. In one version, there is a single population which 

plays against itself. In another, there are two population models where each population only 

plays against the other population (and not against itself). 

In the one population model, the only stable state is the mixed strategy Nash equilibrium. 

Every initial population proportion (except all Hawk and all Dove) converge to the mixed 

strategy Nash Equilibrium where part of the population plays Hawk and part of the 

population plays Dove. (This occurs because the only ESS is the mixed strategy 

equilibrium.) This dynamics of the single population model is illustrated by the vector field 

pictured in Fig. 5 (Cressman, R. 1995). 

 

 
In the two population model, this mixed point becomes unstable. In fact, the only stable 

states in the two population model correspond to the pure strategy equilibria, where one 

population is composed of all Hawks and the other of all Doves. In this model one 

population becomes the aggressive population while the other becomes passive. 

The single population model presents a situation where no uncorrelated asymmetries exist, 

and so the best players can do is randomize their strategies. The two population models 

Fig. 5. Vector field for single population replicator dynamics
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provide such an asymmetry and the members of each population will then use that to 

correlate their strategies, and thus, one population gains at the expense of another. 

Note that the only ESS in the uncorrelated asymmetric single population hawk-dove model 
is the mixed strategy equilibrium, and it is also a Pareto optimal equilibrium (Smith, J. M. 
1982). If some problem can be solved by this model, including our HDG modeled multi-
agent foraging, and then the evolutionarily stable strategy is the only Pareto-optimal Nash 
equilibrium of the system. 

6. Evolutionarily cooperation foraging algorithm for MAS 

Multi-agent foraging is popular to verify the effectiveness of different cooperation 
algorithms. In evolving game theory, equilibrium is the result of long process in which the 
bounded-rational players are trying to optimize their payoff by a natural-selection like 
mechanism. From the learning process based on replicator dynamic, every player can obtain 
enough information of personalized equilibrium selection pattern of other agents, and then 
attain an optimal unanimous equilibrium for the whole MAS. For HDG, the sole 
evolutionarily stable strategy is also the sole Pareto-optimal Nash equilibrium and thus give 
a solution to the equilibrium selection of the traditional game theory. 
Using evolutionarily stable strategy as optimal solution, we built a HDG model to simulate 
the interaction between agents, and then proposed a evolutionarily coordinating foraging 
algorithm (ECFA) to find certain consistent maximal reward equilibrium for the group. 
Finally, we also add an accelerating factor to make ECFA converge faster, and thus make a 
new Accelerated ECFA (AECFA). The simulation verified the efficiency of the proposed 
algorithm. 

6.1 Description of problem 
Suppose a group of agent (n agents) were to capture as much as possible random moving 
preys (m preys) in a bounded rectangle field during a fixed period of time. The agents, 
having same bounded visual field, start at WANDER state to find a prey. Once it found the 
food, the agent change its state to GETIT to capture till it eat the food and change its state 
back to WANDER. 
If the agent is the sole pursuer for its target food, it just eats it by moving near to it. Eating 
occurs when the distance between the food and agent is less than a threshold distance. 
Another food will be generated at a random position right after to mimic a food abundant 
environment. 
But if the agent find another agent who pursuit the same food (suppose all agent know the 
goal of other agents), these two agents will play a HDG to determine the rewards they can 
get. As described in the previous part, two hawks compete for the food with sufficient large 
cost, while two doves both give up the food and get nothing. If a hawk meet a dove, the 
hawk eat the food and the dove give up. 
Agent can change its strategy to be hawk or dove. As stated in the replicator dynamics, a 
strategy which does better than the average increases in frequency at the expense of 
strategies that do worse than the average. Thus, the average reward of the whole system 
produced by the replicator dynamic is monotonically increasing with time for the symmetric 
HDG (Losert, V. & Akin, E. 1983). And as a result, the agent with worse strategy would 
change his strategy to better one and thus lead the whole system to a dynamic stable state 
with best reward for the agent group (Smith, J. M. 1982). 
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6.2 Introduction of evolutionarily coordinating foraging algorithm-ECFA 
This part describes how the replicator dynamics works so that the system evolves to the sole 
ESS. In replicator dynamics, the increasing quota of certain strategy is in proportion to the 
ratio of its average payoff to the average payoff of the population (Weibull, J.W. 1995). 
Therefore, a strategy which does better than the average increases in frequency at the 
expense of strategies that do worse than the average. The agent select its strategy based on 
the accumulated experience or on the observation and imitation of the strategies adopted by 
opponents. The more popular of a strategy, the more possibility it would be imitated. 
During the learning process, agent makes introspection to its strategy from time to time and 
this gives the possibility that it may change its strategy. Suppose those agents using less 

successful strategy are more likely to introspection and let ( )
i
r x  be the average rate of 

introspection of agent using strategy i∈K, where K is the strategy set and ei are strategies of 
agent i in K. 

 
( , )

( ) 1
( , )

i

i h

h K

u e x
r x

u e x
∈

= −
∑

  (2) 

Next, we use ( )
j

i
p x  denote the probability that agent i will change to use strategy j and let 

( )
j

i
p x  is proportion to the popularity of strategy j and its rewards. 
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[ ( , ), ]
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jj

i h

i h
h K
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u e x x x

ω
ω

∈

=
∑
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here ω is continuous Lipschitz function that non-decrease in its first independent variables. 
Also, to show the agents using less successful strategy are more likely to introspection we 

suppose ( ) [ ( , ), ]
i

i
r x u e x xφ=  and φ is continuous Lipschitz function that strictly decreases in 

its first independent variables. 
And at last we get the replicator dynamics of this symmetric revised Hark-Dove game as 

 ( ) ( ) ( )
i

j j j i i
j K

x x r x p x r x x
∈

= −∑$   (4) 

which will lead to the average fitness of the whole system increase monotonically with the 
time until the system evolve to an Pareto-optimal ESS, the sole evolutionarily  stable 
state(Wang,Y.H., Liu, J., & Meng, W. 2007). 

6.3 Description of ECFA 
Initialization:  
        Generate all preys and agents.  
        Assign random strategy (hawk or dove) to each agent.  
        Set the state of agent to WANDER to enable the agent looking for food. 

        Let RAND∈(0,1) is a random generated threshold. 
Main:  
        for every agent, run Step1 to Step3 infinitely until the MAS converge to ESS. 
Step 1: //Agent pursues food 
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        if (prey found) { 
           Agent change its state to GETIT; goto Step 2; 
        }  
        else goto Step 1; 
Step 2: //Single pursuer 
        If (the agent is the only pursuer of the prey) { 
           Eat the prey and get reward; 
           Generate a new prey at random position; 
           goto Step1;  
        } 
        else goto Step 3. 
Step 3://Multiple pursuer executing introspection - imitation 
        Play the hawk-dove game and get reward; 
        Update its environment model x(xi,xj), where xi and xj are the proportion of 
encountered hawks and doves.  

        Compute the utilities u(i,x); i∈K={Hawk,Dove} 
        Using equation (3) to compute the introspective probability of agent who execute 
strategy i: 
        If (ri(x)> RAND){ 

        Compute the strategy change probability Hawk

Dove
p  and Dove

Hawk
p ; here j

i
p denotes the 

probability that agent change its strategy from i to j.  

        if(
Hawk

Dove
p > RAND)) strategy = Hawk; 

        if( Dove

Hawk
p >RAND)) strategy = Dove; 

       } 

6.4 Simulation results of ECFA 
Several simulations had been done to verify the efficiency of ECFA. The following 

parameters were used for the simulations: agent number n =50, prey number m = 130, the 

benefits of capture prey v =4, the cost to injury to self c = 6. The environment is defined as 

an 1150*650 grid. Each grid location represent an x and y location which can be occupied by 

one or more agents at the same time. Preys were randomly disposed in the field before the 

simulation start. They can move randomly with a lower velocity than that of agents (70%). 

Right after a prey was eaten, a new prey would be regenerated at a random chosen grid. 

The first group of simulation is to test the validity and efficiency of the ECFA, we compare 

ECFA with another three algorithms, namely random forage, fixed strategy 1 forage with 

30% hawk and 70% dove, fixed strategy 2 forage with 70% hawk and 30% dove. While a 

random forage agent will try to eat every food it found, a fixed strategy forage agent will 

play the HDG when two agents compete for the same food, but the number of hawk agent 

and dove agent remains unchanged. In ECFA, however, the number of hawk and dove 

agent will evolve until they finally converge to a stable state. The performance index is the 

average number of the preys captured by the agent group in a given span of time. 

In either situation, the four algorithms were tested for 10 times respectively, and fig. 6 gives 

the graphic depiction of simulation results. 
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Fig. 6. The average number of preyscaptured by different foraging algorithm 

These results show that ECFA captured more foods than other three algorithms averagely. If 
we investigate the results more carefully, we can see fixed strategy 1 foraging with 30% 
hawk and 70% dove outperforms fixed strategy 2 that forage with 70% hawk and 30% dove. 
It is easy to see that the agents with different hawks and doves have different performance. 
Then, it would be natural to ask how much hawk and dove will be evolved in ESS in various 
HDG model. That is what we want to show in the second group of simulation. 
The second group of simulation is to find how many hawk agents in the evolutionarily 
stable state for different configuration of the hawk-dove games. Here we suppose v+c=10 
and we and we test 6 situations from (c=4,v=6), (c=5,v=5),…, to (c=9,v=1). Note that even it 
is not HDG when (c=4,v=6) and (c=5,v=5) since c < v, we are also eager to know the result. 
Each situation was test for 10 times and table 1 lists the simulation result as well as the 
corresponding theoretical result of the average number of hawk agent in the ESS of every 
situation. Fig. 7 is the corresponding graph.  
 

 

Fig. 7. The average number of hawk agents in convergent ESS of different game model 

www.intechopen.com



 Multiagent Systems 

 

216 

From these simulations, we can see that the number of hawk agent in the convergent ESS is 

decreasing with the increasing of the cost for two hawk competition. And it also shows that 

the simulation results are close to their theoretical values. The error between these two 

values is probably because the convergent threshold value for our simulation and the 

theoretical value is limit point which hardly achieved in finite trials. 
 

cost 4 5 6 7 8 9 

theoretical result 50 50 33.3 21.4 12.5 5.5 
simulation result 50 49.8 34.6 20 11.8 5 

Table 1. The number of hawk agent and corresponding theoretical result in different c,v 

6.5 Improving of ECFA 
As stated in replicator dynamics of this symmetric HDG, a strategy better than the average 

increases in frequency at the expense of strategies that worse than the average. And the 

changing quota of certain strategy is in proportion to the ratio of its average payoff to the 

average payoff of the population. But because the difference between strategies in the early 

evolutionarily stage is small, the better strategies or worse strategies can only impose a little 

impact on the agent group. Thus the evolution to the ESS of agent adopted ECFA is slow. 

Moreover, just as this evolving is a dynamic process and the strategies adopted by the 

agents are keep changing, which would make the system is not stable enough. 

For these deficiencies, we added a reinforcement factor to ECFA to make an Accelerated 

ECFA (AECFA) to strengthen the outstanding strategies and weaken inferior strategies. The 

process of convergence will be accelerated and the convergent ESE will be more stable for 

the impact of the worse mutation strategies is weakened. 

6.6 Reinforcement factor and the description of AECFA 

Let 
,

je
i t
θ be the reinforcement factor of agent i with respect to strategy k

e K∈  at time t and 

,

ke
i t
θΔ be a degree that the reinforcement factor is changed at time t. When t=0, 

,

je
i t
θ =0 and 

,
0

ke K

je
i t
θ

∈

=∑ . Then the reinforcement factor can be defined as 

 , ,, 1

k k ke e e

i t i ti t
θ θ θ+ = + Δ   (5) 

which means the better the strategy does, the more positively it is reinforced. And vice 
versa, the worse the strategy does, the more negatively it is reinforced. 

Now let 
,

ke

i tq denote the probability that agent i  execute strategy k
e at time t and let 

 
,

, ,

1

1
1

k

k k

e

i t
e e

i t i t

q
n n q

n

θ
−

Δ = = ⋅ −   (6) 

where n denote the number of the set of strategies K. Then, there is positive correlation 

between 
,

ke

i tq and the utility of k
e . And we let 
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At time t, let the agent i executes the strategy whose reinforcement factor is maximal. If the 
number of maximal reinforcement factor is more than one, the agent executes one of them 
according to some probability. At any time, each strategy in the set of agent-strategies is 
reinforced positively or negatively with respect to its current utility (Wang,Y.H., Liu, J. 
2008). The algorithm description of this accelerated ECFA is given in Fig. 8. 
 

 

Fig. 8. The algorithm description Accelerated ECFA 

6.7 Simulation results of AECFA 
To verify effectiveness of the reinforcement factor for the algorithm, we use multi-agent 
foraging task to test the difference of the stability and the time of convergence between 
AECFA and ECFA. 
The parameters: agent number n =64, prey number m =30, c=8, v=2. Theoretically, the 
number of hawk agent should be 16 in ESE on the condition of this simulation; the 
simulation sampled the number of hawk once 500 seconds (Liu, J. 2008). 
The performance index: the number difference between the number of hawk and the 
number of hawk in the equilibrium. Here is an example to make it clear. Suppose at certain 
time, the sampled hawk agent is 18, then the number difference is |18-16|=2 and the 
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performance ratio is 2/64=3.1%. Here 2 and 64 denote the number difference and total 
number of the agents respectively. 
Considering the size of the MAS, we take the following difference ratio as the criterion to 
decide weather the system is in the convergent state or not. This threshold is determined to 
be 5% according to several simulations. If the performance ratio is less than the difference 
ratio 5%, the system would be considered in the ESE. In this case all these two algorithms 
had been tested for 10 times respectively; the results are given in Fig.9 and table 2. Fig.9 
plots the number difference between the average hawk number and the hawk number of 
theoretical equilibrium in convergent ESE. 
As shown in the Fig.9, in convergent ESE, the stability of the AECFA is less than 2 %( 
between 15 and 18), yet the stability of the ECFA is only close to 5 %( between 12 and 20). 
The AECFA evolved into ESE at average 100 seconds and the ECFA at average 56590 
seconds. Thus, AECFA gives a much faster convergence process than the ECFA does. 
 

 

Fig. 9. The stability of two algorithms in the convergent ESE 

Time 
hawks 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 

AECFA 18 18 16 17 17 17 17 17 18 18 17 17 16 16 

ECFA 18 20 18 16 13 17 15 19 13 13 16 13 14 15 

Table 2.  The stability of two algorithms in the convergent ESE (Part I) 

Time 
hawks 

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000 

AECFA 16 15 15 15 15 15 15 16 16 16 16 15 15 

ECFA 12 15 18 17 14 19 18 18 13 17 15 14 19 

Table 2.  The stability of two algorithms in the convergent ESE (Part II) 
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7. Conclusion and future works 

An evolutionarily stable strategy was adopted to be an optimal solution for the multi-agent 
foraging task, and hawk-dove game model was used to simulate the interaction between the 
agents, and finally, an evolutionarily cooperation foraging algorithm (ECFA) that can adapt 
the environment change, evolve an stable ESS and bring the maximal reward for the group 
eventually is proposed. Moreover, to the disadvantages such as long convergence process of 
the ECFA, we imposed a reinforcement factor to accelerate the convergence process.  
The technique was shown to successfully apply in the multi-agent foraging task and to 
increase the efficiency of the agent group. Thus, at least for the domain under study, large 
population of agents and random moving preys, the technique proposes very fast foraging 
mechnisms. The simulation shows that the proposed algorithm can convergence to a 
maximal-reward ESS which in turn give an solution to equilibrium selection problem of 
game theory based cooperation MAS. 
For the second type of preys, a big food that need more than one agent together to capture, 
and dynamic environments where the value and cost to contest can change due to some 
reason need to studied in the future work. 
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