
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

7

Requirements Driven
Service Agent Collaboration

Liwei Zheng, Jian Tang and Zhi Jin
Academy of Mathematics and Systems Science, CAS

 China

1. Introduction

Composition of Web services has received many attentions. On the one side the business
world has developed a number of XML-based standards to specify Web services and the
flow-based composition of Web services, such as WSDL (Christensen, 2001) and BPEL4WS
(BPEL, 2007). On the other side, the semantic web community focuses on reasoning about
web resources by explicitly declaring the preconditions and effects of Web services with
terms precisely defined in ontologies, e.g. the Resource Description Format (RDF), and
OWL-S (OWL-S, 2004) etc. Based on these, many efforts have been done for retrieving,
discovering, and composing Web services. However, most of efforts assume that the Web
services are passive computation entities. They are published and recorded as entries in the
service registration centres managed by Service Agency (Kreger, 2001). They just wait there
for service requesters, normally a human at present, to discover and invoke them. Some
work (Paolucci & Sycara, 2003; Roman & Lausen, 2005; Roman & Scicluna, 2005) on
automatic discovery of Web services have also been done by using various matchmaking
algorithms according to the similarity between inputs/outputs and even preconditions
/effects of Web services (Paolucci et al., 2003).
However, what will go on if the service entities are active to become autonomous Web
services, namely the service agents? In fact, there are already some works which have
touched this topic. DAML-S (Ankoleka et al, 2002) gives the description that allows web
service to connect and interact autonomously with little intervention from the programmers.
Web service architecture (Ankolekar et al, 2002a; Ankolekar et al, 2002b) has also been
proposed to take advantage of DAML-S description to support automatic discovery and
interaction between web services. In our previous work (Zheng & Jin, 2007a; Zheng & Jin,
2007b), web services are considered as active entities distributed in Internet which can
autonomously recognize the service requests and compete or cooperate with others for
fulfilling the requirements. The principle behind these works is to assume that the web
services are active rational agents.
An example of rational agents is BDI agents (Wooldridge, 2000). It is an agent which can
take actions based on information and knowledge from its environment. The action a
rational agent takes also depends on the estimated benefits and the chances of success of the
actions. With this kind of rational agents as the carriers of Web services, the service
computing world will become more active, autonomous and dynamical which can be
figured out as follows. Service providers design service agents which normally have specific
functionalities and deploy them onto Internet. These are available service agents. Service O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Multiagent Systems, Book edited by: Salman Ahmed and Mohd Noh Karsiti,
 ISBN 978-3-902613-51-6, pp. 426, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Multiagent Systems

154

requesters submit their service requests, normally attached with payments, which are
virtual and needed-to-be-fulfilled service agents with some desired functionalities. When
there is a service request, service agents negotiate with the service request for deciding if
they can make contribution and get benefits from the contribution. When a service request
can be satisfied by a group of service agents, these service agents form a feasible coalition to
fulfil the service request. That has been called on-demand collaboration of service agents
(Zheng & Jin, 2007a; Zheng & Jin, 2007b).
This chapter presents the computing mechanism for on-demand collaboration of service
agents. There are several functional parts in this computing mechanism. First of all, for
allowing the negotiation among the service requests and the available service agents,
function ontology has been designed to provide the sharable terminology and serve as the
background knowledge for both the available service agents and the service requests. After
the service requests and the available service agents make agreement on their contribution
relationship, these service agents form candidate feasible coalitions based on the strategy of
automated mechanism design (Sandholm, 2003) for fulfilling the service requests. Normally,
several feasible coalitions can be formed for one service request. Then after a negotiation
process between the service request and its candidate coalitions, one of them can be chosen
out and a model of a multi-agent system consisting of the service agents in the chosen
coalition can be derived as the specification of the service request.
The strategies adopted in our approach are reasonable and feasible. First of all, Ontology
(Sycara & Paolucci, 2003) is often used for providing common knowledge in application
domain. We use function ontology for allowing the service requests and the available
service agents can understand each others’ functionalities. So that they can match the
required functions and the provided functions. In terms of the functional matchability
between a service request and a set of service agents and the satisfiability of the service
request, the set of service agents forms a coalition which can satisfy the service request.
Secondly, automated mechanism design is a feasible technique for preventing agents from
misreporting information and quitting an established coalition which would make the
coalition unstable. That will guarantee those coalitions are feasible and stable. Thirdly, the
service request needs to select a suitable coalition based on some criteria, such as the service
quality. And on the other hand, the service agents need to decide what they are going to
serve based on what they can earn for the contribution. A negotiation framework is
designed for them to make the final decision and to build a solution for the service request.
The rest of this chapter is organized as follows. Section 2 presents the function ontology. In
section 3, the coalition formation of service agents has been given. And the coalition stability
has been analyzed, and how to generate coalition constraints based on automated
mechanism design has been discussed. Section 4 formulates the solution selection as a
negotiation process and gives a negotiation framework to generate a good enough solution.
A case study is given in section 5 for illustrating the whole idea for the service agent
coalition formation and the negotiation-based decision-making. Section 6 presents some
related works and concludes the chapter.

2. Function ontology

2.1 Ontology concepts and associations

For enabling the requirements driven agent collaboration, service agents have to understand
the service requests. Function Ontology is constructed for this purpose. This ontology gives

www.intechopen.com

Requirements Driven Service Agent Collaboration

155

the terminology for describing the capability provided by service agents as well as the
required capability submitted by service requesters. The Function Ontology is represented
in a hierarchy of controllable resources together with the effects on them. For expressing the
effects imposed on resources by service agents, concept state has been used. So the effect
imposed on a resource by a service agent is characterized as the state change of the resource.
These effects are caused by the behaviours of a service agent. Using the effect, the capability
of service agents is grounded onto the state changes of the resources.
Resource. Generally speaking, anything that can be identified and can be operated by
service agents is a kind of resource, e.g., information (value, date, etc.), physical entities
(Hardware, people, etc.), and software systems and so on. All of these resources are
described by a set of attributes, each of which features some aspect of one resource. The
attributes of a resource are classified into static ones and dynamic ones. A static attribute is
irrespective of time and keeps its value through its whole lifecycle. A dynamic attribute may
change its value when some external behaviour happens.
Definition 2.1 (Resource) Resource is described as a 6-tuple:

Res:=〈SAttr,DAttr,SARan,DARan,ValFuncofSAttr,ValFuncofDAttr〉

In which,

• SAttr={sa1,…,san} is a finite set of static attributes of the resource;

• DAttr={da1,…,dan} is a finite set of dynamic attributes of the resource;

• SARan={sv1,…,svm} is a finite set of static attribute values of the resource;

• DARan={dv1,…,dvm} is a finite set of dynamic attribute values of the resource;

• ValFuncofSAttr:SAttr→SARan is a value function of static attributes; and

• ValFuncofDAttr:DAttr→P(DARan) is a value function of dynamic attributes. P(DARan)
is the power set of DARan.

For the convenience of description, we use ‘@’ as a general separator which means ‘of’, e.g.
’sa@res’ means a static attribute sa of resource res, ‘da@res’ means a dynamic attribute da of
resource res;
State. A state of a resource is the attribute-value pair of its dynamic attribute. So we may
also call the dynamic attributes the state attributes. The value of the dynamic attributes of a
resource may change when some external event happens. That is the state change of a
resource.
Definition 2.2 (State) Let res be a resource and da1,...,dan be dynamic attributes of res. The
set of states of res is state@res=(val1,…,valn), in which, vali=ValFuncofDAttr(dai),i=1,…,n.
Behaviour. Any possible state transition of a resource can be viewed as an effect imposed by
an external behaviour. That is our essential idea by mapping behaviour to state changes.

Definition 2.3 (Behaviour) A behaviour is defined as a triple: beh:=〈res,s0,s1〉, res is the
resource operated by beh. <s0, s1> is a state transition of res. That means that beh is a
behaviour which makes res changing its state from s0 to s1.
If beh1=<res,s1,s’1> and beh2=<res,s2,s’2> and s’1= s2, then beh1 and beh2 are sequential, i.e. beh1
is a direct precedent of beh2, and beh2 is a direct successor of beh1
Function. Behaviours impose the finest-grain effects on resources. Functions could be fine-
or course-grain effects. More importantly, functions can be used to claim patterns for
decomposing a course-grain effect into a set of finer-grain effects (sub-functions). It tells
how to decompose the function and which constraints should be followed when making the
decomposition. Two function structures, i.e. the primitive function and the function

www.intechopen.com

 Multiagent Systems

156

decomposition mode, have been used in our function ontology. These two are not exclusive.
Using the primitive function structure means that any function can implemented by a set of
behaviours, while using the function decomposition mode means some function can be
decomposed into a set of sub-functions via the decomposition pattern. Function
decomposition modes explicitly capture the hierarchy of function decomposition.
Definition 2.4 (Primitive Function) A primitive function is a 7-tuple:

Fun:=〈Beh,Res,Cond,CondFuncofBeh,Prop,PropFuncofBeh,Dependency〉

In which,

• Res is a set of resources operated by the function;

• Beh is a set of behaviours which constitute the function;

• Cond is a set of the logic expressions on the resource states;

• CondFuncofBeh:Beh→P(Cond) maps behaviour into a set of conditions. It gives the
invokable condition for each behaviour. P(Cond) is the power set of Cond;

• Prop={p1,p2,...} is a set of payoff distribution proportions;

• PropFuncofBeh:Beh→Prop is the proportion mapping function of behaviours so that
| |

1

1
Beh

i

i

p
=

=∑ .

• Dependency:=〈DirecBehDepen,CondBehDepen〉 in which,

• DirecBehDepen:Beh×Beh is a set of direct behaviour dependency relations. For any

behi,behj∈Beh, (behi,behj)∈DirecBehDepen iff behi is a successor of behi and

CondFuncofBeh(behj)=∅;

• CondBehDepen:Beh×Beh is a set of conditional behaviour dependency relation. For

any behi,behj∈Beh, (behi,behj)∈CondBehDepen iff behj is a successor of behi and

CondFuncofBeh(behj)≠∅.

Here, Cond is defined as a logic expression set of resource state. Suppose r is a resource,
state@res=(val1,…,valn) is a logic expression of resource state. That means the current state of

r is (val1,…,valn). Any composite logic expressions composed by logic connectors such as¬, ∧

and ∨ are also logic expressions of resource state.
Definition 2.5 (Function Decomposition Mode) A function decomposition mode of
function func is described as a 6-tuple,

FuncDecMod(func):=〈SubFuncs,Cond,CondFuncofSubFuncs,

Prop,PropFuncofSubFuncs,Dependency〉
In which,

• SubFuncs={func1,...,funcn} is a set of functions, each funci(1≤i≤n) is a sub-function of func;

• Cond is a set of logic expressions on resource states of func;

• CondFuncofSubFuncs:SubFuncs→P(cond) maps a sub-function into a set of conditions. It
gives the invokable conditions for each sub-functions;

• Prop={p1,p2,...} is a set of payoff distribution proportions;

• PropFuncofSubFuncs:SubFuncs→Prop is a proportion mapping function so that
| |

1

1
SubFuncs

i

i

p
=

=∑ ;

• Dependency:=〈DirecFuncDepen,CondFuncDepen〉 in which,

www.intechopen.com

Requirements Driven Service Agent Collaboration

157

• DirecFuncDepen:SubFuncs×SubFuncs is a set of direct function dependency relations.

(funci,funcj)∈DirecFuncDepen iff funcj is a direct successor of funci and

CondFuncofSubFuncs(funcj)=∅;.

• CondFuncDepen:SubFuncs×SubFuncs is a set of conditional function dependency

relations. (funci,funcj)∈CondFuncDepen iff funcj is the direct successor of funci and

CondFuncofSubFuncs(funcj)≠∅.

Table 1 summarizes the concepts and associations of the function ontology.

Concept class Description Super class

owl:thing The root class. without

Resource
The concept class of resource, including
all the resource instances.

owl:thing

Attribute The concept class of attribute. owl:thing
Static attribute The static attribute concept of resource. Attribute

Dynamic attribute
The dynamic attribute concept of
resource.

Attribute

State
A valid value of the dynamic attribute
vector.

owl:thing

Behaviour
The concept for describing the state
transition of resource.

owl:thing

Composite behaviour
The composition behaviour concept of
two additive behaviours.

Behaviour

Function
The function concept, including all the
function instances.

owl:thing

Sub-function The sub-function concept. Function
Function decomposition
mode

The concept of function decomposition
mode.

owl:thing

Execution condition
A group of logic expressions defined in
resource states.

owl:thing

Execution condition of
behaviour

The execution condition of behaviours in
functions.

Execution
condition

Execution condition of
sub-function

The execution condition of sub-functions
in function decomposition modes.

Execution
condition

Payoff distribution
proportion

The concept of payoff distribution
proportion.

owl:thing

Payoff distribution
proportion of behaviour

The Payoff distribution proportion
concept of behaviours in functions.

Payoff
distribution
proportion

Payoff distribution
proportion of sub-
function

The Payoff distribution proportion
concept of sub-functions in function
decomposition modes.

Payoff
distribution
proportion

Table 1. Concept classes of function ontology

2.2 An example of function ontology in the domain of E-Learning
Function ontology for E-Learning domain introduced in CELF (CELF, 2005) has been
developed as illustration. In this domain, an important resource is the question base. It

www.intechopen.com

 Multiagent Systems

158

provides various question data in the learning process, and helps teachers or students
finishing their teaching or learning tasks. The attributes of the question base include its
name (a static attribute) and a state variable (a dynamic attribute). And its state can be
opening, closing, reading or writing. The question base can be described as:

QuestionDatabase:={{databasename},{databasestate},{“QuestionData”},

{“open”,“read”,“write”,“close”},funSA,funDA}

That means that the name of QuestionDatabase is QuestionData and the value of the dynamic
attribute could be open, read, write, or close, i.e. the state space of resource QuestionDatabase is
{Open,Read,Write,Close}. When the value is Open, QuestionDatabase is in state “open”.
Table 2 lists some resources of this domain and their state spaces.

Resource State space

QuestionDatabase {Open, Read, Write, Close}

QuestionBuffer {NoQuestion, HasQuestions}

AnswerBuffer {NoAnswer, HasAnswers}

StandardAnswerBuffer {NoStandardAnswer, HasStandardAnswers}

CompareResultBuffer {DataInvalid, ResultDataInitiated , HasResultData}

TestPointBuffer {NoTestPointInfo, HasTestPointInfo}

TestPaper {NoTestInfo, HasTestInfo, NotEvaluated, HasScore, Evaluated}

Table 2. Resources and their state space

Here we use behaviour OpenDatabase operated on resource QuestionDatabase as an example
for showing the representation of the behaviour. This behaviour is to open a database,
which will change the state of resource QuestionDatabase from close to open. According to the
representation of behaviours, OpenDatabase can be described as:

OpenDatabase:=〈QuestionDatabase,Close,Open〉.
Table 3 gives some of the behaviours in the domain.

Behaviour Resource Starting state Ending state
OpenDatabase QuestionDatabase Close Open
ReadFromDatabase QuestionDatabase Open Read
GetQuestions QestionBuffer NoQuestion HasQuestions
CreateTestPaper TestPaper NoTestInfo HasTestInfo
DisplayTestPaper Monitor DisplaybuffEmpty DisplaybuffNotEmpty
GetStandardAnswer StandardAnswerBuffer NoStandardAnswer HasStandardAnswers
GetAnswerFromUser KeyBoard InputbuffEmpty InputbuffNotEmpty
RecordAnswer AnswerBuffer NoAnswer HasAnswers
CompareAnswer CompareResultBuffer DataInvalid HasResultData
CalculatePoint TestPointBuffer NoTestPointInfo HasTestPointInfo
WritePointToPaper TestPaper NotEvaluated HasScore
WriteCommentToPaper TestPaper HasScore Evaluated
EvaluateTestPaper TestPaper NotEvaluated Evaluated

Table 3. Behaviours and their state transitions

www.intechopen.com

Requirements Driven Service Agent Collaboration

159

To illustrate the representation of the function, we use function CreateTestPaper as an
example. Function CreateTestPaper gets question data from QuestionDatabase, and outputs
question data in the form of test paper. It consists of two behaviours: GetQuestion and
GreateTestPaper. In this function, each behaviour has a 50% payoff proportion. The invokable
condition of GetQuestion is that QuestionDatabase is in state Read. The invokable condition of
CreateTestPaper is that QestionBuffer is n state HasQuestions. According to the representation
of function, CreateTestPaper can be described as follows.

 CreateTestPaper:=〈{GetQuestions,CreateTestPaper},{QestionBuffer,TestPaper},

 {Stateof(QuestionDatabase)=Read,Stateof(QestionBuffer)=HasQuestions},

funC,{50%,50%},funP〉.
Similar representation can be obtained for the function decomposition mode of function
GetQuestionPoint. Function GetQuestionPoint obtains the point value of each question in a
given test paper. It can be decomposed into two sub functions: GetQuestionsFromPaper and
GetDataFromDatabase. The function decomposition mode of function GetQuestionPoint can be
described as follows.

FuncDecMod(GetQuestionPoint):=〈{GetQuestionsFromPaper,GetDataFromDatabase},

{},funSC,{40%,60%},funSF〉.

3. Coalition formation

3.1 Coalition formation of service agents
A service requester submits a service request. To recognize the service request, the service
agents have to understand the service request. Function Ontology provides the sharable
terminology. A service requester should offer enough information about the request in the
publication. These information includes the required functions, the payments which can be
payed for the functions, and the assignment of the payments for the different functions.
Formally, the structure of the service request can be given as follows.
Definition 3.1 (Service Request) A service request is described as a triple:

Req:=〈Funcs,Payment,PayFuncofFuncs〉

in which,

• Funcs is a set of required functions;

• Payment={p|p∈R} is a set of payments for the functions in Funcs; and

• PayFuncofFuncs:Funcs→Payment is the cost function of Funcs.
A service agent knows its provided functions and the prospective minimum payoff. And
these information will be also needed by service requesters and other service agents.
Accordingly, a service agent takes the following structure for self-description.
Definition 3.2 (Service Agent) Service Agent can be described as a triple:

SAgent:=〈Beh,MinPay,MinPFuncofBeh〉
in which,

• Beh is a set of the behaviours which the service agent possesses;

• MinPay is a set of the minimum prospective payoffs of each behaviour in Beh; and

www.intechopen.com

 Multiagent Systems

160

• MinPayFuncofBeh:Beh→MinPay is a minimum prospective payoff function of Beh.
As we have seen, the service requests and the service agents use the same terminology. That
is the basis for service agents to understand the service requests. Service agents can match
its behaviours with the functions' required by the service request.

Let agt be a service agent, req a service request and func∈Funcs@req a required function of

req. If ∃beh∈Beh@func∩Beh@agt, then agt can contribute behaviour beh to req. If agt takes beh

for req, it can get payment
kbehPay =CostFuncofFuncs(funcj)×PropFuncofBeh(behk). If there exists

a set of service agents C, for ∀beh∈Beh@func, ∃agt∈C so that beh∈Beh@agt, then we say that
func can be satisfied by C, which is denoted by cando(C,func).
For a given service request, a service agent coalition will be established, that is driven by
payoff which the service agent might obtain from the requester. We defined the coalition
structure as follows.
Definition 3.3 (Feasible coalition for service request req)

Let req be a service request and FC a service agent coalition. If forall func∈Funcs@req, ∃C⊆FC
such that cando(C,func). Then FC is a feasible coalition for req.
To establish the feasible coalition is based on the prospective advantages of the service
agents for the service request. With different function decomposition modes in function
ontology, a service agent will receive different payoffs in different coalitions. Service agents
need to decide in which coalition they can get more payoff so to decide which coalition they
shoud take part in.

Let req be a service request and FC a feasible coalition of req. Let agt∈FC be a service agent.
The prospective payoff of agt in FC is

1

1
,

| | k

n

agt beh k agt

k

ProsPay Pay beh FeasiBeh
FC =

= ∈∑

In which, agtFeasiBeh is a behaviour set for∀behj∈Beh@agt, if ∃func∈Funcs@req and

behj∈Beh@func then behj∈ agtFeasiBeh . | agtFeasiBeh |=n.

As service agents can by themselves obtain the prospective payoffs they can get from
different coalitions, they might “jump” from one coalition to another just for getting better
payoff. For grarantteeing that the service request can be fulfilled, we need stable feasible
coalitions in which all the agents have no “jumping” will.
Definition 3.4 (Stable feasible coalition) For an arbitrary feasible coalition C of service
request req, C is a stable feasible coalition if:

1. ∀agt∈C, ,
n

agt k k agt

k=1

Prospay MinPFuncofBeh(beh) beh FeasiBeh≥ ∈∑ ;and

2. ¬∃C*,C* is a FC and if agt∈C*, c* c

agt agtProspay Prospay≥

However, as the stability of coalition is just based on prospective payment, the final
coalition could be unstable because there are not constraits for preventing service agents tell
lies when forming the coalition which will leads to destroyable coalition. Automated
Mechanism Design (Sandholm, 2003) gives solutions to this situation.

3.2 Automated mechanism design for feasible coalition

Mechanism design is the art of designing the mechanism (i.e., rules of the game) so that the

service agents are motivated to tell their preferences truthfully and a desirable (according to

www.intechopen.com

Requirements Driven Service Agent Collaboration

161

a given objective) outcome is chosen. In this paper, the objective is to select the solutions

which are not destroyable for a given feasible coalition and guarantee the service agents

telling truth.

Automated Mechanism Design (AMD) is an approach, where the mechanism is

computationally created for the specific problem instance at hand. For conducting

automated mechanism design for the coalition of service agents, we need:

• a finite set of outcomes O;

• a finite set of N service agents which are both in the same feasible coalition FC of a
given service request req;

• for each service agent agti,

• a finite set of types Θi, a probability distribution γi over Θi (in the case of correlated

types, there is a single joint distribution Γ over Θ1 ×…×ΘN);

• an utility function ui:Θi×O→R;

• an objective function whose expectation the designer wishes to maximize.
Further, we need to determine the outcome set and the type set of service agents.

Definition 3.5 (Type Set) Let FC be a coalition of service agents. The type set of a service

agent in FC is a vector set whose elements are all the permutations of the functions the

service agent can do for FC.

Definition 3.6 (Outcome Set) The outcome set is a vector set whose elements are vectors

like (s

is

s

ii FDMFDMFDMFDMFDMFDM ,,,,,,,,, 1

2

2

2

1

1

1

1

1 AAAA), s∈N, satisfying the following

two conditions:

• Each element of a vector is a function decomposition mode.

• Every Vector denotes one unique path to accomplish a function of req.
This AMD process generates deterministic mechanisms automatically. A deterministic

mechanism consists of an outcome selection function o:Θ1 ×…×ΘN→ O.
Two types of constraints are used in the AMD process, IR (individual rationality constraints)

and IC (incentive compatibility constraints). IR constraints ensure that every service agent

would gain its lower limit of payment at least. IC constraints are to ensure that the service

agents will never misreport their type.

Ex interim IR is the IR constraints used in this paper. It means that the service agent would
always participate if it knows only its own type, but not those of the others.
Definition 3.7 (Ex interim IR for a deterministic mechanism)

A deterministic mechanism is ex interim IR if for any service agent agti, and any type θi∈Θ1,

we have
1 1 1(,..., , ,...,)| 1 1[(, (,...,)) (,...,)] 0,

i i n i i i n i nE u oθ θ θ θ θ θ θ θ π θ θ δ
− +

− − ≥ in which

δ=∑MinPFuncofBeh(behk), behk∈FeasiBehi, FeasiBehi is the behaviour set composed of all the

effective behaviours of service agent agti in outcome o(θ1,θ2,…,θN).
The IC constraint used in this paper is based on Bayesian Nash equilibrium. A mechanism is

said to implement its outcome and payment functions in Bayesian Nash equilibrium if truth

telling is always optimal to any service agent when that service agent does not yet know

anything about the other service agents' types, and the other service agents are telling the

truth.

Definition 3.8 (IC based on Bayesian Nash equilibrium)
IC based on Bayesian Nash equilibrium is defined as: for any service agent agti, any type

θi∈Θ1, and any alternative type report ˆ
iθ ∈Θ1, we have:

www.intechopen.com

 Multiagent Systems

162

1 1 1

1 1 1

(,..., , ,...,)| 1 1

(,..., , ,...,)| 1 1

[(, (,..., ,...,)) (,..., ,...,)]

ˆ ˆ[(, (,..., ,...,)) (,..., ,...,)]

i i n i

i i n i

i i i n i i n

i i i n i i n

E u o

E u o

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ π θ θ θ

θ θ θ θ π θ θ θ
− +

− +

− ≥

−

This AMD process finds all the mechanisms which can satisfy all the constraints. That is an
optimal problem which can be solved by existing optimizing algorithm packages e.g.
CPLEX (CPLEX,2007). The complexity of such optimizing has been analyzed by Conitzer
and Sandholm in 2002 (Conitzer & Sandholm, 2002).

4. Solution selection and negotiation

For service agents, different solutions mean different payoffs. But for service requester,
different solutions mean different costs and service quality. Service agents always
concentrate on the payoffs, while service requester pays more attention on service quality.
A QoS ontology has been used for evaluating service quality, which includes quality
evaluation items, such as responding time, throughput, latency, Load-Balancing, and etc
(Maximilien & Singh, 2004). This Ontology can also be used to evaluate service agent. With
this QoS Ontology, service requester is able to evaluate the candidate service agent in each
quality item. We could define a quality evaluation function for deciding the quality of a
service agent agt doing a particular function Func. Suppose that n quality items are
considered in a unique evaluation interval [0,M], M∈R, the evalutaion function is as follows.

i i()=
n

i=1

1
Q agt,Func

n
ω σ∑

In which, σi∈[0,M] is the evaluation value for the ith quality item, ωi is a preference value for
the ith quality item of the requester. Then the solution selection problem can be expressed as
follows.
Definition 4.1 (Solution) Suppose there are n service agents agt1,agt2,…,agtn in a given
feasible coalition C, and m functions Func1,Func2,…,Funcm in a given service request req. pi is

the weight of Funci and 1
m

i

i=1

p =∑ . Service agent agti has ability to fulfil Funcj, and the quality

is Q(agti,Funcj)∈[0,M]. Suppose Wi⊆F, F={Func1,Func2,…,Funcm} is the set of functions which
agti has the ability to fulfil. A solution is a vector (T1,T2,…,Tn) requiring {T1,T2,…,Tn} to be a

partition of F. Ti ⊆Wi is the set of functions fulfilled by agti in solution S.
Based on this, we can introduce more notations. Let Q(S) be the quality of solution S, then

Q(S)=
i

n

j i j

i=1 j T

p Q(agt ,Func)
∈

∑ ∑ . Let Pi(S) be the payment of service agent agti in solution S, then

Pi(S)= i

j i j

j T

p Q(agt ,Func)

P(S)
Q(S)

∈
∑

. Here, P(S) is the payment function that requester is willing to pay

for solution S. Q(C) is the value that each function be assigned to the service agent who has the

best quality value of doing it, and Q(C)=
1

max
m

j i j
i

j=

p Q(agt ,Func) ∑ . Pi(C) is service agent agti's

maximal payment that it is assigned all the functions in Wi, and = i

j i j

j W

i

PQ(agt , func)

P(C) P(S)
Q(S)

∈
∑

.

www.intechopen.com

Requirements Driven Service Agent Collaboration

163

Definition 4.2 (Solution Selection Problem) Given the reservation service quality request of
the requester MinQ and the reservation payoff, MinPayi, of each service agent agti, we want
to find a solution S* which satisfies:

• + = ()
* *n n

i i

S
i=1 i=1i i

Q(S) P(S) Q(S) P(S)
max +

Q(C) P(C) Q(C) P(C)
∑ ∑ ;

• Q(S*)≥MinQ, Pi(S*)≥MinPayi, i=1,2,…,n;

We call
*Q(S)

Q(C)
 the satisfaction degree of the requester, and

*

i

i

P(S)

P(C)
 the satisfaction degree of

service agent agti. The two constraints in Definition 4.2 means a solution which maximizes
both the requester’s satisfaction degree and the service agents’ satisfaction degree under the
condition of every minimal expectant benefit being satisfied.
Theorem 4.1. The solution selection problem is an optimization problem and the complexity
is NP-complete.
Proof. Consider a special case of the problem. Let n=2; agt1, agt2 be identical and they can

fulfil all the functions. For any solution S, Q(S)=
1

m

j j

j

p Q(Func)
=

∑ is a constant. Let

MinPay1=MinPay2=
21

f(Q(S)) f(Q(S))

2P (C) 2P (C)
= , then we should assign proper functions to each service

agent such that P1(S)=P2(S). That is the 2-partition problem, which is an NP-complete problem.
For solving this problem, we define a negotiation process among service agents and service
requester. In this process, each service agent strives to get more payment, and the service
requester tries to choose a solution which could get the service quality of as high as possible.
Figure 1 shows the negotiation process which can be explained as follows:
step 1. The requester proposes a solution S0 which he prefers the most. Let S0 be the current

candidate solution Sp.
step 2. Each agti, i=1,2,…,n accepts or refuses Sp according to their preference. If all the

service agents accept Sp, the negotiation process stops; if not, the service agent who
refuses Sp should modify the solution and propose the modified solution. The
negotiation process stops if there are service agents who fail to propose a modified
solution.

step 3. The requester chooses one solution S from the modified solutions proposed by the
service agents. Let S be the current candidate solution Sp and go back to step 2 to
enter a new round negotiation..

In the first step, the requester can propose the solution S0 simply by assigning each function

Funci to the service agent which has the max Q(agt,Funci). Moreover, there should be Q(S0)≥
MinQ. The candidate solution Sp is referred to be the current considered solution. In the
second step, agti modifies the candidate solution Sp according to its preference. For example,
in solution Sp, agt1 is assigned to fulfil Func1, but agt1 prefers to fulfil Func1 and Func2. In this
case, agt1 will modify solution Sp to let agt1 fulfil Func1 and Func2, and keep the other part of

Sp unchanged. Service agent agti accepts a solution S when Pi(S)≥ MinPayi. The modified
solution by a service agent should be acceptable; otherwise this modification fails.
Additionally, the service agents never propose a solution that has been proposed by the
requester before. In the third step, the requester chooses one among all the modified

solutions. If the best solution S does not meet Q(S)≥ MinQ, the negotiation ends without any
agreement on the final solution.

www.intechopen.com

 Multiagent Systems

164

Fig. 1. Process of Negotiation

After the final solution has been chosen, we get a model of a multiple agent system which is
able to implement the required service.

5. Case study

Based on the E-Learning domain function ontology in Section 2, a case study in on-demand
e-learning domain is illistrated in this Section.
Firstly, the service agents and the service request should be given. For example,

DatabaseSearcher:=〈{OpenDatabase,ReadFromDatabase},{1,5},funBP〉

Service agent DatabaseSearcher has the ability of searching certain data in database. It has two
behaviours, OpenDatabase and ReadFromDatabase. Its expected minimum payoff for
behaviour OpenDatabase is 1 and for behaviour ReadFromDatabase is 5.

OnlineTest:=〈{CreateTestPaperWithDatabase,Test,Evaluate},{40,30,30},funFC〉.

That is a service request. It includes three functions: CreateTestPaperWithDatabase, Test, and

Evaluate. The function CreateTestPaperWithDatabase creates a test paper based on the data

from question database. Function Test manages the whole process of test and receives

testees' answers from the test terminals. Function Evaluate grades the answers and gives

comments about the test.

Service agents compute their expected payoff for this service reqest in the domain. For

example, the service agent DatabaseSearcher has a behaviours OpenDatabase which is

included in the behaviour set of request function CreateTestPaperWithDatabase. The payoff

for fulfilling function CreateTestPaperWithDatabase is 40. The payoff propotion of behaviour

OpenDatabase in function CreateTestPaperWithDatabase is 10%. So service agent

DatabaseSearcher will gain 4 for contributing behaviour OpenDatabase. As DatabaseSearcher’s

expected minium payoff for this behaviour is 1, it would participate the coalition for

fulfilling the service request.

According to the expected payoff, a service agent coalition is established for the service
request. In this case, a coalition includes four service agents is established for service request
OnlineTest. Besides DatabaseSearcher, there are three service agents, TestPaperCreater,
InterfaceAgent, and Evaluater. Table 4 gives the detail information of them.

www.intechopen.com

Requirements Driven Service Agent Collaboration

165

Agent Behaviours MinimumExpectedPayoff

TestPaperCreater
GetQuestions
CreateTestPaper

10
10

InterfaceAgent
DisplayTestPaper
GetAnswerFromUser
RecordAnswer

5
5
5

Evaluater

EvaluateTestPaper
GetStandardAnswer
CompareAnswer
CalculatePoint
WritePointToPaper
WriteCommentToPaper

10
1
5
5
1
1

Table 4. Agent TestPaperCreater, InterfaceAgent, and Evaluater

Automated mechanism design is used to guarantee the stability of the coalition. The service
agent type and the outcome set must be given firstly in AMD.
In service request OnlineTest, the appropriate functions of each service agent includes:

• DatabaseSearcher can participate to fulfil functions GetDataFromDatabase,
CreateTestPaperWithDatabase, and GetQuestionPoint.

• TestPaperCreater can participate to fulfil functions CreateTestPaper,
GetQuestionsFromPaper, and CreateTestPaperWithDatabase.

• InterfaceAgent can participate to fulfil only one function Test.

• Evaluator can participate Evaluate, JudgeWongOrRight, CalculateFinalPoint, and
GiveComment.

The possible types of DatabaseSearcher include 6 different permutations of its appropriate
functions. Different permutation means different preference of the service agent. A service
agent prefers the functions which could bring it more payoff than others. The expected
payoffs from the three appropriate functions of DatabaseSearcher are given as follows.
Function GetDataFromDatabase is a sub-function of request function
CreateTestPaperWithDatabase, and its payoff proportion is 50%. Function
CreateTestPaperWithDatabase is one of the requested functions of service request, and its
reward is 40. So the expected payoff of function GetDataFromDatabase is 20. Similarly, the
expected payoff of function CreateTestPaperWithDatabase is 20. The expected payoff of
function GetQuestionPoint is 1.8. Then the type of service agent DatabaseSearcher is

θ1=(GetDataFromDatabase,CreateTestPaperWithDatabase,GetQuestionPoint), or

θ2=(CreateTestPaperWithDatabase, GetDataFromDatabase,GetQuestionPoint).
According to definition 3.6, there are three outcomes for service request OnlineTest. They are
o1=(FuncDecMod(GetQuestionPoint), FuncDecMod(Evaluate)) for function Evaluate,

o2=(FuncDecMod(CreatePaperwithDatabase)) for function CreatePaperwithDatabase, and o3= Φ
for function Test. Utility function gives the payoffs of each type of service agent for all the
outcomes. For example, table 5 gives the utility function of service agent DatabaseSearcher.

U1 O1 O2 O3

�θ1 1.8 20 0

�θ2 1 25 0

Table 5. Utility function u1 of DatabaseSearcher

www.intechopen.com

 Multiagent Systems

166

Similarly, we can give all the type sets of other service agents and their utility function. The

type set of service agent TestPaperCreater includes permutation θ3=(CreateTestPaper,

CreateTestPaperWithDatabase, GetQuestionsFromPaper), and θ4=(CreateTestPaperWithDatabase,
CreateTestPaper, GetQuestionsFromPaper). The type set of service agent InterfaceAgent includes

only one permutation θ5=(Test). The type set of service agent Evaluator includes permutation

θ6=(Evaluate, CalculateFinalPoint, JudgeWongOrRight, GiveComment), and θ7=(Evaluate,
CalculateFinalPoint, GiveComment, JudgeWongOrRight). Table 6 lists the utility functions of the
three service agents.

U O1 O2 O3

�θ3 1.2 25 0

�θ4 1 20 0

�θ5 0 0 30

�θ6 36 0 0

�θ7 36 0 0

Table 6. Utility values for different service agent types

According to the definition of mechanism, the mechanisms satisfying all the IR and IC
constraints could be obtained by using some optimizing algorithms. In this case we use the
optimal algorithm package provided by Lingo (Lingo, 2008). The computing result is as
follows.
• {θ1,θ3,θ6}→o1

• {θ2,θ4,θ7}→o1

• {θ5}→o2

• {θ1,θ3}→o1

• {θ2,θ4}→o1
With the above mechanisms, the feasible coalitions for service request OnlineTest include:

• Coalition 1: DatabaseSearche and TestPaperCreater cooperate to fulfil function
CreateTestPaperWithDatabase, InterfaceAgent fulfils function Test, and Evaluator fulfils
function Evaluate by itself.

• Coalition 2: DatabaseSearche and TestPaperCreater cooperate to fulfil function
CreateTestPaperWithDatabase, InterfaceAgent fulfils function Test, DatabaseSearche and
TestPaperCreater cooperate to fulfil function GetQuestionPoint, and Evaluater fulfils
function JudgeWrongOrRight, CalculateFinalPoint, and GiveComment.

The functions and function decomposition modes used in coalition generation are:

Evaluate:=〈{EvaluateTestPaper},{TestPaper},{Stateof(TestPaper)=NotEvaluated},funC,{100%},funP〉.

FuncDecMod(Evaluate):=〈{GetQuestionPoint,JudgeWrongOrRight,CalculateFinalPoint,GiveComm

ent},{},funSC,{10%,20%,50%,20%},funSF〉.

CreateTestPaperWithDatabase:=〈{OpenDatabase,ReadFromDatabase,GetQuestions,CreateTestPaper
},{QuestionDatabase,QuestionBuffer,TestPaper},{Stateof(QuestionDatabase)=Read,Stateof(QestionB

uffer)=HasQuestions}, funC,{10%,20%,30%,40%},funP〉.

FuncDecMod(CreateTestPaperWithDatabase):=〈{GetDataFromDatabase,CreateTestPaper},{},funSC,

{50%,50%},funSF〉.

www.intechopen.com

Requirements Driven Service Agent Collaboration

167

GetQuestionPoint:=〈{GetQuestions,OpenDatabase,ReadFromDatabase},{QestionBuffer,QuestionDat
abase},{Stateof(TestPaper)=HasTestInfo,Stateof(QestionBuffer)=HasQuestions},

funC,{50%,20%,30%},funP〉.

FuncDecMod(GetQuestionPoint):=〈{GetQuestionsFromPaper,GetDataFromDatabase},{},funSC,{40%

,60%},funSF〉.

We simulate the negotiation process to test the negotiation. In the numerical experiment,

there are 4 groups: 10 service agents and 20 functions; 3 service agents and 21 functions; 4

service agents and 20 functions; 5 service agents and 20 functions. Each group is simulated

for 100 times and each time we randomly generate the information of service agents and

service requester, i.e. the quality of service of service agents, reservation payoff of service

agents, and reservation quality requirement of service request. Five statistic data is

concerned: the successful rate of negotiation, the result of negotiation comparing with

optimal result in theory, the negotiation rounds when the negotiation process is terminated,

the satisfaction degree of service requester, and the satisfaction degree of service agents.

Take the group with 10 service agents and 20 functions for example, the statistic data is

explained as following.

Fig. 2. Statistic Data of 10&20

www.intechopen.com

 Multiagent Systems

168

First, within 100 simulations, they all have solution with optimal total satisfaction degree. By

negotiating, 4 of them fail. That is to say, there is 4 times that service requester and service

agents could not get consensus but there is a solution which could satisfy every one. So the

successful rate of the negotiation is (100-4)/100=96%.

Second, the result of negotiation comparing with optimal result in theory is concerned.

Denote the total satisfaction degree of negotiation
*σ and optimal total satisfaction degree

σ . Figure 2(a) shows the statistic data about
* /τ σ σ= . Except for that 4 times

negotiation fails, τ is no less than 0.8. Further, most of them (65 in 96) are more than 0.9.

Third, we want to know when the negotiation terminates, i.e. how many rounds of the

negotiation. Every time service requester chooses one solution and proposes it(first time

service requester proposes one) in the modified solutions proposed by service agents, we

say that the negotiation passes one round. In our numerical experiment, we tolerate the

negotiation round no more than 100 or we stop it without waiting for its terminating. The

numerical experiment data of negotiation round is given in Figure 2(b). In the Figure,

there are 3 times those negotiation rounds are more than 10, but 97 times that are less than

10. So no matter the negotiation is successful or not, the negotiation is easy to be

convergent.

Next is the satisfaction degree of service requester. Figure 2(c) shows the numerical

experiment data of satisfaction degree of service requester. There are 96 successful

negotiations. All of them have the service requester satisfaction degree higher than 0.8.

Further, most of these negotiations (95 in 96) have the value higher than 0.9. According to

the data given in Figure 2(c), if the negotiation is successful, the service requester could get

high satisfaction degree.

How about the service agents' satisfaction degree? In our numerical experiment setting, each

agent can do averagely 6 functions. On the other hand, there are 10 service agents and 20

functions; so the average number of functions that each agent could be assigned is that

20/10=2. Then the average expect satisfaction degree could be calculated by 2/6=0.33. So

the total satisfaction degree of 10 service agents is 0.33× 10=3.3.

We record the total satisfaction degree of 10 service agents and show them in the Figure

2(d). Within 96 negotiation that are successful, 20 of them have the total satisfaction degree

of service agents lower than 3.3, and there are 76 negotiations that have the total satisfaction

degree of service agents higher than 3.3. According to the analysis given in the above

paragraph, such a result indicates that in the negotiation, service agents could frequently get

higher total satisfaction degree than expect average value.

Analysis of other three groups is similar with the group with 10 service agents and 20

service requesters. For comparison, the concrete statistic data is given in Table 7. From the

table, we see that in all the groups, the successful rate is more than 90%. All the properties

discussed in the 10&20 group remain.

According to the statistic data above, we can conclude that our negotiation framework has a
high successful rate and the negotiation result is close to the optimal. Additionally,
negotiation process is easy to be convergent. Moreover, service requester could expect high
satisfaction degree (higher than 0.8) and mostly, service agents could get higher total
satisfaction degree than expect average value. These all confirm that our negotiation
framework generates good result.

www.intechopen.com

Requirements Driven Service Agent Collaboration

169

Table 7. Statistic Data of Negotiation

6. Conclusions

This paper proposes a feasible strategy for agent-based service computing. The main

contributions of this paper may fall into two points.

Firstly, we figure out the vision of agent-based service computing. In which, both the

service requests and the available services are agents. The service requests are virtual

www.intechopen.com

 Multiagent Systems

170

agents which need the available service agents or their composition to implement the

required functionalities and give out the payoffs as rewards. And the available services

are service agents which offer their capabilities to implement required functionalities and

gain necessary payments. With some constraints, the agent society can form stable

coalitions.

Secondly, we design a process for enabling the agent-based service computing. A function

ontology has been introduced to allow the understanding between the required service

requests and the available service requests so that the required service requests can know

which available service agents they need and the available service agents can know which

required service requests they can make contributions to. Then those available service

agents who can fulfil one required service agent when they form a group form a stable

coalition by using automated mechanism design. Finally, the required service agents

negotiate with that candidate stable coalition to select the final solution via a negotiation

process on the criteria of service quality as well as the payoff.

One of the future directions is extending this work by integrating the widely-used Web

service description standards. For example, generating a BPEL-based specification of the

multiple agent system for fulfilling the required service agent from the coalition of service

agents will allow the agent-based composite service to be executable. That will help to

combine this approach with the current efforts in industry.

7. References

ABNF. (2005). Augmented BNF for Syntax Specifications: ABNF, http://tools.ietf.org

/html/rfc4234, 2005.

CPLEX. (2007). ILOG Mathematical Programming Optimizers, http://www.ilog.com/

products/cplex/, 2007.

BPEL. (2007). Ws-BPEL2.0(OASIS), http://docs.oasis-open.org/wsbpel/2.0/, 2007.

SOAP. (2004). SOAP version 1.2. http://www.w3.org/TR/soap/,2004.

OWL-S. (2004). OWL-S: Semantic markup for Web services. http://www.daml.org/

services/owl-s/1.0/, 2004.

Jaeger, M.; Engel, L.; Geihs, K. (2005). A Methodology for Developing OWL-S

Descriptions. Proceedings of First International Conference on Interoperability of

Enterprise Software and Applications Workshop on Web Services and Interoperability,

pp. 13–31. ISBN1846281512, Geneva, Switzerland, Feb, 2005, Springer Berlin,

Heidelberg.

Roman, D.; Lausen, H.; Keller, U. (2005). The Web Service Modeling Ontology WSMO.

WSMO Working Draft D2, final version 1.2. www.wsmo.org/2004/d2/, April

2005;

Roman, D.; Scicluna, J.; Feier, C. (2005). Ontology-based Choreography and Orchestration of

WSMO Services. WSMO Working Draft D14. www.wsmo.org/2004/d14/, March

2005.

Conitzer, V. ; Sandholm,T. (2002). Complexity of mechanism design, Proceedings of the 18th

Conference on Uncertainty in Artificial Intelligence (UAI02), pp. 103-110,ISBN978-

1558608979,Edmonton,Canada,Aug.2002,Morgan Kaufmann, San Fransisco.

www.intechopen.com

Requirements Driven Service Agent Collaboration

171

Christensen, E.; Curbera, F. (2001). Web services description language (WSDL)1.1,http://

www.w3.org/tr/wsdl.

Maximilien, E. M.; Singh, M. P. (2004). A framework and ontology for dynamic web services

selection. IEEE Internet Computing, Vol 8,No. 5, Sept.-Oct. 2004, 84–93, ISSN1089-

7801.

Paolucci, M. ; Sycara, K.; Kawamura, T. (2003). Delivering semantic web services.

Technical Report CMU-RI-TR-02-32, Robotics Institute, Carnegie Mellon

University.

Sandholm, T. (2003). Automated mechanism design: A new application area for search

algorithms. Proceedings of the International Conference on Principles and Practice of

Constraint Programming(CP03) LNCS2833, pp.19-36,ISBN3540202021, Kinsale,

Ireland, Spet.2003,Springer,Heidelberg.

Ankolekar, A.; Burstein, M. et al. (2002a). DAML-S:Web Service Description for the Semantic

Web, Proceedings of The First International Semantic Web Conference (ISWC)

LNCS2342, pp. 348-363,ISBN978-3540437604, Sardinia, Italy, June, 2002, Springer,

Heidelberg.

Ankolekar, A.; Huch, F.; Sycara, K. (2002b). Concurrent Semantics for the Web Services

Specification Language Daml-S. Coordination Models and Languages LNCS2315, pp.

567-577, ISBN9783540434108, Jan. 2002, Springer, Heidelberg.

Wooldridge, M. (2000). Reasoning About Rational Agents. TheMIT Press,ISBN978-

0262232135,Cambridge, MA.

Zheng, L.; Jin, Z. (2007a). Requirement driven agent collaboration. Proceedings of the 2007

International Conference on Autonomous Agents and Multiagent Systems,

AAMAS 2007, pp. 446–448,ISBN978-8190426275, Honolulu, Hawaii, May

2007,ACM New York, USA .

Zheng, L.; Jin, Z. (2007b). Requirement driven agent collaboration based on functional

ontology and AMD. Proceedings of 11th IEEE International Workshop on Future Trends

of Distributed Computing Systems, pp. 189–198. ISBN0769528104, Sedona, AZ, April,

2007, IEEE Computer Society, New York, USA .

Kreger, H. (2001). Web services conceptual architecture (WSCA 1.0). IBM Software Group

Note.http://www-306.ibm.com/software/solutions/webservices-pdf/WSCA.pdf,

2001.

CELF. (2005). Computing Research Association. Cyberinfrastructure for education and

learning for the future: A vision and research agenda. http://www.cra.org/

reports/cyberinfrastructure.pdf, 2005.

Sycara, K.; Paolucci, M. (2003). Automated discovery, interaction and composition of

semantic Web services. Journal of Web Semantics. Vol 1,No.1,Dec. 2003, 27–46, ISSN

1570-8268.

Sycara, K.; Paolucci,M. (2004). Ontologies in agent architectures. Handbook on Ontologies in

Information Systems. Springer-Verlag, 2004, 343-364, ISBN3540408347, Berlin.

Paolucci, M.; Sycara, K. (2003). Autonomous Semantic Web services. IEEE Internet

Computing. Vol 7, No.5, Sept.-Oct. 2003, 34 – 41, ISSN1089-7801.

Lingo. (2008). An Overview of LINGO. www.lindo.com, 2008.

www.intechopen.com

 Multiagent Systems

172

Casati, F.; Ilnicki, S ; Jin, L. (2000). Adaptive and dynamic service composition in eflow.
Proceedings of 12th International Conference on Advanced Information System

Engineering LNCS1789, pp. 13–31. ISBN9783540676300, Stockholm, Sweden, June,

2000, Springer Berlin, Heidelberg.

www.intechopen.com

Multiagent Systems

Edited by Salman Ahmed and Mohd Noh Karsiti

ISBN 978-3-902613-51-6

Hard cover, 426 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents an overview of some of the research issues in the

field of multi agents. It is a presentation of a combination of different research issues which are pursued by

researchers in the domain of multi agent systems as they are one of the best ways to understand and model

human societies and behaviours. In fact, such systems are the systems of the future.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Liwei Zheng, Jian Tang and Zhi Jin (2009). Requirements Driven Service Agent Collaboration, Multiagent

Systems, Salman Ahmed and Mohd Noh Karsiti (Ed.), ISBN: 978-3-902613-51-6, InTech, Available from:

http://www.intechopen.com/books/multiagent_systems/requirements_driven_service_agent_collaboration

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

