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Abstract

Multipath is the major concern in GPS receivers that fade the actual GPS signal causes
positioning error up to 10 m so special care need to be taken to mitigate the multipath
effects. Numerous methods like hardware based antenna arrays technique, receiver based
narrow correlator receiver, double -delta discriminator, Adaptive Multipath Estimator,
Wavelet Transformation and Particle filter, Kalman filter based post receiver methods etc.
used to resolve the problem. But some of the methods can only reduce code multipath
error but not effective in eliminating carrier multipath error. Most of these techniques are
based on the assumption that the Line-of-Sight (LOS) signal is stronger than the Non-Line
of-Sight (NLOS) signals. However, in the scenarios where the LOS signal is weaker than
the composite multipath signal, this approach may result in a bias in code tracking. In this
chapter, different types of multipath mitigation and its limitation are described. The recent
development in sparse signal processing based blind channel estimation is investigated to
compensate the multipath error. The Rayleigh and Rician fading model with different
multipath parameters are simulated to test the urban scenario. The inverse problem of
finding the GPS signal is addressed based on the deconvolution approach. To solve linear
inverse problems, the suitable kind of appropriate objective function has been formulated
to find the signal of interest. By exploiting this methods, the signal is observed and the
carrier and code tracking loop parameters are computed with minimal error.

Keywords: GPS, multipath, Rayleigh, Rician, sparse, de-convolution, ISTA
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1. Introduction

Global Positioning System (GPS) is a satellite based navigation system designed and devel-

oped by US Department of Defense (DoD) to provide instantaneous 3D position, velocity and

time information almost anywhere on or above the surface of the earth at any time, and in any

weather. The GPS receiver receives right-hand circularly polarized signals from minimum four

satellites to find the user position. The commercial GPS receivers operate at L1 (1575.42 MHz)

and L2 (1227.6 MHz) which are modulated on to 50-bps data stream [1]. The positional

accuracy provided by GPS is deteriorated by various errors originating at the satellites, Clock

error, Ephemeris, Ionospheric, Tropospheric, orbital errors, satellite clock errors, Selective

Availability, Receiver Noise and multipath errors. With the use of differential techniques it is

possible to remove many of the common-mode error sources, but the error effects of multipath

have proven much more difficult to mitigate.

Multipath effect is one of the prominent problems in Wireless communication environment

that effects in radio signals reaching the receiving antenna by two or more versions of the

transmitted signal arrive at the receiver at slightly different times cause severe degradation in

signal reception. Multipath propagation occurs in GPS receivers caused by reflection, refrac-

tion, atmospheric ducting, and reflection from nearby objects, water bodies, other reflecting

surfaces etc. [2]. The reflecting surface may be buildings, hills, ground, water, or any object that

happens to be a radio reflector. The Multipath error result when the receiver receives the direct

or line-of-sight (LOS) satellite signal via multiple paths that can be constructively or destruc-

tively combined at the receiver antenna to give a resultant signal which can vary widely in

amplitude and phase, depending on the distribution of the intensity and relative propagation

time of the waves and bandwidth of the transmitted signal. A generic multipath propagation

scenario diagram is shown in Figure 1.

1.1. Overview of GPS signal

The nominal signal strength of a GPS signal would be around 45–55 dB-Hz. The GPS signal

power level lies approximately 15 dB under the noise background level. The GPS falls in the

category of spread spectrum signal having processing gain of 45 dB. By consequence, if an

interfering signal is introduced in the receiver with power 45 dB higher than the noise floor,

then the receiver is completely jammed [3]. Interference signals may be in the form of Narrow-

band and wideband interference. Narrowband can be modeled as continuous wave or pulsed

interference at a specified frequency that can be characterized by a pulse duty cycle. Similarly

the wideband interference can be modeled as additive white Gaussian noise having flat power

spectral density over a wide range of frequencies.

In case, the GPS signal is severely degraded due to Multipath, the signal should be carefully

processed by different Multipath algorithms to counteract the effect of diffraction, scattering,

Reflection, Refraction, Shadowing etc. The spectrum of the undisturbed (noise free) GPS signal is

plotted for a sampling frequency of 5.714 MHz with an IF frequency of 1.6205 MHz in Figure 2.

Multifunctional Operation and Application of GPS4



Figure 1. Typical multipath scenario.

Figure 2. Spectrum of GPS signal with nominal power level.
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1.2. Overview of multipath channel model

In mobile (outdoor) radio channels, the Rician distribution is commonly used to describe the

statistical time varying nature of the received envelope of a flat fading signal, or the envelope

of an individual multipath component. In the channel model, incoming signal is delayed due

to different types of obstacles and reached at the receiver side with different time delays with

attenuated amplitude and change in phase for each path is shown in Figure 3(a). The complex

baseband received signal is given by

y tð Þ ¼
XL�1

i¼0

αix t� τið Þe�j2πf cτi (1)

αi-attenuation in amplitude, τi- phase.

As a signal is transmitted, a series of attenuated and delayed versions of the original signal is

received leading to a typical multipath channel response. Furthermore, this channel response

changes over time.

On the other hand, the indoor propagation channels are characterized by severe multipath

propagation. In past two decades, classical Jakes fading model is widely used. In the Jake’s

Doppler spectrum, the receiver (or transmitter) is assumed to move at certain speed to model

the Rayleigh channel. However, in fixed wireless communication systems, both the transmitter

and the receiver are stationary and time-variations are actually due to moving scatterers.

Filtering White Gaussian Noise (FWGN), AR Model and Sum of Sinusoidal (SOS) exhibits the

property of the Rayleigh model [4]. The typical FWGN and ARModel are shown in Figure 3(b)

and (c).

From Figure 4(a), the faded envelope is obtained by considering the carrier frequency of

1.6205 MHz and number of multipath components N = 10, the Doppler value is kept around

Figure 3. (a) Tapped delay line Multipath Channel model. (b) IDFT model fading simulators. (c) AR model fading

simulators.
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(slow moving receiver) 500 Hz and it is observed that the fading severely degrades the

amplitude of the GPS signal and mean variation of the signal is around 0.22 with respect to

time when compared to the actual value. To show the effectiveness of the fading the spectrum

of the faded signal with SNR of �15 dB is plotted in Figure 4(b). A code discriminator in a

tracking loop is used to estimate the arrival time of the satellite code. The discriminator

function, which is known as the S-curve as shown in Figure 5 and it is given by

D τð Þ ¼ RE � RL (2)

where τ is the time of the reference signal. RE and RL are the samples of the early and late

correlation functions respectively. The estimated arrival time is the time at which the discrim-

inator is zero. However, in the presence of multipath signals, the autocorrelation function

(ACF) will be distorted so that the discriminator will fail to estimate the true arriving time,

resulting in pseudo-range estimation error. Due to multipath, the ideal triangular function

Figure 4. (a) Faded envelope. (b) Spectrum of distorted GPS signal with SNR -15 dB.

Figure 5. Multipath free discriminator function (s curve) used in tracking stage.
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loses its symmetry. The distortion of the correlation function is illustrated in Figure 6. When

one path is a LOS receives at the receiver which is in phase with the direct signal that follows

the ideal triangular shape but in the case of composite 10 path scenario, the correlation

function is distorted by 0.4 chips as denoted in the dotted line.

2. Existing multipath mitigation techniques

To alleviate multipath problem several pre-filtering and post correlation based methods are

introduced. In Many literatures, the problem of multipath is treated inside i.e. signal

processing chain of the receiver especially at the stage of tracking and also before signal arrives

at the RF front end i.e., at the antenna side, on the other hand some methods describe the effect

of multipath is reduced even in the position calculation stage.

2.1. Miscellaneous methods

The sparse channel estimation can be estimated by using any one of the estimation techniques

like sparse like blind channel estimation or least square based estimation. Once impulse

response of the channel is estimated the inverse filter (channel equalizer) is designed to

compensate the multipath error. The equalizer output is a delayed version of an impulse

response positioned anywhere on the time, finally the LOS signal is observed by subtracting

the strongest component from the composite signal. This method combined both estimation

and mitigation techniques which is used to compensate the code and carrier tracking error.

Some of the other methods deal with mitigation is also given in this section.

Figure 6. Auto correlation plot with and without multipath component.
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2.2. Antenna-based mitigation

Microstrip antennas are frequently used antenna type in GPS receivers because of its added

advantage for airborne application, materialization of GPS receiver and easy construction.

However, for geodetic needs, antennas are designed to receive both carrier frequencies L1

and L2 [5]. Also they are protected against multipath by extra ground planes or by using choke

rings. A choke ring consists of strips of conductor which are concentric with the vertical axis of

the antenna and connected to the ground plate which in turns reduces the multipath effect [5].

This involves improving the gain pattern of antenna to counter the effects of multipath. These

antenna-based methods include the use of special antennas, processing in spatial domain with

multi-antenna arrays, antenna location strategies and long-term signal observation for infer-

ring multipath parameters [6, 7]. The circularly polarized antenna facilitates the rejection of

multipath signals.

2.3. Receiver code tracking loop

The methods include all receiver technologies that are used to mitigate multipath. Usage of

Narrow Correlators, Multipath Elimination Technique (MET), Edge Correlator, Strobe Corre-

lator, and Multipath Estimation Delay Lock Loop (MEDLL) and simulation of multipath error

in DLL [16] are some of the examples under this category and they will be discussed in detail

this section. These techniques, however, are not very effective for short delay multipath [17],

due to close-by reflectors. These methods cannot be operated in conjunction with all existing

receivers and would need manipulation at the receiver hardware end to work. This remains as

one of the major issues with using receiver related techniques [7].

a. Early-minus-late delay lock loop: GPS receiver uses classical correlation-based code track-

ing structure based on a feedback delay estimator implemented via a feedback loop. The

well-known feedback delay estimator is the Early-Minus-Late (EML) DLL, where two

correlators spaced one chip apart are used in the receiver in order to form a discriminator

function, whose zero crossings determine the path delays of the received signal [8]. The

classical EML usually fails to cope with multipath propagation. Therefore, several

enhanced EML-based techniques have been introduced in the literature for last two

decades in order to mitigate the impact of multipath, especially in closely spaced path

scenarios. A first approach to reduce the influences of code multipath is based on the idea

of narrowing the spacing between the early and late correlators, i.e., nEML or narrow

correlator spacing depends on the receiver’s available front-end bandwidth along with the

associated sampling frequency.

b. Adaptive Filtering: Multipath Mitigation in GPS/Galileo Receivers with different Signal

Processing Techniques has been introduced by Benachenhou et al. [10] efficiently mini-

mize the code and carrier tracking error. Yedukondalu et al. [18] used an adaptive filtering

method of estimation and mitigation of Multipath interference in GPS receivers. In this

chapter, to estimate the effect of multipath interference at the receiver antenna, a technique

based on both code and carrier phase measurements using Code minus Carrier (CMC), is

carried out to mitigate multipath for static applications. Different adaptive filters using
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algorithms such as Least Mean Squares (LMS) and various Recursive Least Squares (RLS)

are considered to mitigate the error [12]. The estimated multipath error for a typical signal

is 0.8 and 2.1 m on L1 and L2 carriers, respectively.

2.4. Other filtering methods

In a simulated multipath environment, the reflection geometry is used in combination with a

special GPS antenna arrangement to detect and track multipath. In the highly non stationary

environment, Researchers also used Kalman Filter, particle filters and multiple differential GPS

receivers to remove multipath errors in final positioning [13]. Code multipath is calibrated and

estimated using spherical harmonics in static applications, similarly for kinematic applications,

the multipath error mitigation is carried out by Mozaviet et al. [14] using wavelet transform.

The estimation of frequency components of multipath error signal using spectral analysis and

its effective mitigation using time varying digital filters are designed by Yedukondalu et al.

[11]. The four types of filters, namely, Butterworth, Type I and II Chebyshev and Elliptic filters,

are examined for mitigation of multipath and their performance are compared. It is observed

that by applying digital filters of different cut-off frequencies over the spectrum of the

multipath, one can significantly reduce the multipath errors. It was found that Butterworth

filter reduced the error most effectively.

3. Works related to sparse signal processing-based multipath mitigation

Sparse Signal Processing otherwise known as compressive Sensing (CS), is a classical Signal

Processing technique efficiently acquiring and reconstructing a signal completely from

reduced number of measurements, by exploiting its compressibility. CS has become a very

interesting research area in recent years due to its theoretical and practical utility to capture a

wide range of signals at a rate significantly lower than the Nyquist rate representing signal

with lesser number of coefficients.

Optimal demodulation and decoding in wireless communication systems often requires accu-

rate knowledge of the channel impulse response. Typically, this is accomplished by searching

the channel with a known training sequence and linearly processing the channel with sparse

impulse response. On the other hand, conventional linear channel estimation schemes, such as

the least-squares method, fail to take advantage of on the anticipated sparsity of the channels.

In contrast, it is observed that a CS channel estimate obtained as a solution significantly

outperforms a least-squares based channel estimate in terms of the mean squared error (MSE)

when it comes to learning sparse (or approximately sparse) channels.

This section highlights some of the most prominent state-of-the-art techniques, which have

gained a lot of interest in the research community. The Critical review of literature indicates that

exhaustive research has been done by several researchers to develop techniques to improve the

performance of software GPS receivers under multipath environment. Researchers have

Multifunctional Operation and Application of GPS10



concentrated the methods based on compressive sensing implemented in software based GPS

receivers for accurate undisturbed reception and positioning.

Dragunas and Borre et al. [19] proposed the sparse deconvolution based Projection onto

Convex Sets (POCS) method which is used to mitigate the multipath in indoor environments.

The author compared the several multipath mitigation techniques suitable for the indoor

environments. By using the proposed method the author chooses one of the secondary paths

as LOS signal. In this method, the author achieves better resolution than the conventional

methods. An extension to this work, Dragunas et al. [20] presented a modified Projection onto

Convex Sets (POCS) that optimizes the Coarse/Acquisition codes employed in Global Position-

ing Systems. The author deals with the problem of joint LOS code delay and carrier phase

estimation of GPS signals in a multipath environment. The modified POCS algorithm acts as

the most resistant in closely-spaced multipath static channels both when LOS code delay and

carrier phase estimation are concerned. Another sparse based modified iterative Projection

onto convex sets (POCS) method proposed by Negin Sokhandan and Ali Broudman [21] is

used to reduce the multipath error in harsh environment. The algorithm estimates the channel

impulse response (CIR) and removes the spurious noise peaks at each iteration. This method is

carried out to estimate the LOS time of arrival from the position of its first non-zero element

that passes a certain threshold. The modified POCS algorithm correctly estimates the code

delay and carrier phase for GPS signals with few iterations. Hence, faster performance has

been achieved when compared to conventional POCS.

Kumar and Lau et al. [22] implemented the deconvolution approach for the code phase and

carrier phase estimation. The deconvolution approach shows that it is very different from

POCS approach where each path can be estimated. The deconvolution approach can accu-

rately estimate the Line of Sight (LOS) signal. Initially the channel impulse response is com-

puted and by getting the deconvolution filter coefficients, multipath can be removed by

convolving the measurements with deconvolution filter coefficients and the code and carrier

phase can be estimated and finally the LOS is found.

The novel sparse reconstruction method for mitigating the multipath induced code delay

estimation has been implemented by Fei and Liao et al. [23] in GPS receivers. The author

exploited to enhance the direct signal without affecting the accuracy of the GPS code delay

estimates. The coherent accumulation of received GPS signals and by transforming it into

frequency domain and parameters of multipath signals are estimated by sparse reconstruction

algorithm. The author estimates the code delay without affecting the accuracy of the GPS by

sparse reconstruction method. Tian and Li et al. [24] proposed a novel method based on

nonnegative matrix factorization (NMF) spectral unmixing for land seismic additive random

noise attenuation. In this method, the noisy seismic signal is first decomposed into a collection

of intrinsic mode functions (IMFs) instead of being directly processed. Then, a sparse NMF is

used to unmix the STFT spectrum of each IMF. By separating the sub-spectrums by the inverse

STFT, the sub-signals can be easily acquired. Finally, the desired signal is reconstructed from

the sub-signals by K-means clustering algorithm. Bostan and Kamilov et al. [25] proposed a

novel statistically-based discretization paradigm and derive a class of maximum a posterior

(MAP) estimators for solving ill-conditioned linear inverse problems. It proposes the theory of
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sparse stochastic processes, which specifies the continuous –domain signals as solutions of

linear stochastic differential equations. It provides the algorithm that handles the nonconvex

problems and by applying it to the reconstruction algorithm and finally compares the perfor-

mance of estimators, associated with the models of increasing sparsity.

Broumandan and Lin et al. [15] established a way to enhance the performance of GNSS time

arrival estimation techniques in multipath environments by determining the multipath chan-

nel estimation using equivalent discrete-time linear time-invariant system method which is

modeled as a Moving Average system. It modeled the multipath channel as a sparse channel

by describing the number of parameters of the channel is less than the number of unknowns in

the Moving Average model. The author compares the performance of the sparse estimation

with the Cramer-Rao Lower Bound (CRLB) of the parameter estimation problem and the least

square estimate. It provides the better sparse signal recovery method to estimate the channel

impulse response.

3.1. Sparse signal deconvolution

Sparse de-convolution finds variety of application in accurate estimation of multipath channels

with sparse impulse response of a channel is calculated by degradation version of convolution

matrix. After down conversion to baseband, the signal from all the satellites can be represented

in complex baseband representation as.

ð3Þ

where α(s) is the channel attenuation from the sth satellite to the receiver, τ is the time delay or

code phase of the C/A code and fd is the Doppler frequency for the sth satellite.

We assume that the observed GPS signal y from a multipath channel can be written as

y ¼ Hxþ n (4)

where x is the signal of interest which is to be estimated, n is additive noise, and H is a matrix

representing the degradation process. The estimation of actual GPS signal x from the faded

version y can be treated as a linear inverse problem. An appropriate objective function, J(x) has

been formulated to solve linear inverse problems and to find the signal x, by minimizing J(x).

Generally, the chosen objective function is the sum of two terms:

J xð Þ ¼ D y;Hxð Þ þ λR xð Þ (5)

where.

D(y, Hx) measures the discrepancy between y and x.

R(x)—Regularization term (or penalty function).

λ—Regularization parameter (positive value).
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To find a signal x, so that Hx is very similar to y, i.e., here it is needed to find a signal x which is

consistent with the observed data y. For D (y, Hx), the mean square error can be calculated as

D y;Hxð Þ ¼ y�Hxk k22 (6)

The squared error between y and Hx is minimized by finding the norm difference of D (y, Hx)

that will give a signal x, which is as consistent with y as possible, according to the square error

criterion. To minimize D (y, Hx) by setting x = H�1y; however, H may not be invertible. Let

convolution filter be {1,-1, 1,-1….M} and signal be of length M. Convolution sum will have

length equal to N + M-1. So H in this case will have N � M-1dimension

H ¼

1 0 0 ⋯ 0

�1 1 0 ⋯ 0

0 �1 1 ⋯ ⋮

⋮ 0 �1 1 0

0 ⋮ ⋯ �1 1

0 0 … 0 �1

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

which is definitely invertible. Even if H were invertible, it may be very ill-conditioned, in

which case, this solution amplifies the noise, sometimes to such an extent that the solution is

useless. The role of the regularization term R(x) is exactly to address this problem. The

regularizer R(x) should be chosen so as to penalize the undesirable/unwanted behavior in x.

3.1.1. L1-norm regularized linear inverse problem

By assuming that the GPS signal of interest after acquisition x, is known to be sparse. i.e., x has

relatively few non-zero values, i.e., x consists of a few impulses and is otherwise zero. In this

case, the R(x) may be defined to be the number of non-zero values of x. R(x) is not a convex

function of x, which is not differentiable then the objective function J(x) is very difficult to

minimize and therefore J(x) will have many local minima. To minimize J(x), it is better to

choose J(x) to be a convex function of x that measures sparsity, but which is also convex. For

this reason, when x is known to be sparse, the regularization function R(x) is often chosen to be

the L1-norm. Hence, the approach is to estimate x from y by minimizing the objective function,

J xð Þ ¼ y�Hx
�

�

�

�

2

2
þ λ xk k1 (7)

3.1.2. Soft-thresholding algorithm (ISTA)

The requirement for development of fast algorithm is to minimize the equation and its related

functions. This is carried out by another significant algorithm called iterated soft-thresholding

algorithm (ISTA), also referred as Thresholded Landweber (TL) algorithm. ISTA is a combina-

tion of the Landweber algorithm and soft-thresholding. To minimize J(x), consider first the

minimization of the simpler objective function
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J xð Þ ¼ y�Hxk k22 ¼ y�Hxð ÞT y�Hxð Þ (8)

J xð Þ ¼ yTy� 2yTHxþ xTHTHx (9)

Because J(x) in Eq. (8) is differentiable and convex, thus one can obtain its minimizer by setting

the derivative with respect to x to zero. The derivative of J(x) is given by

∂

∂x
J xð Þ ¼ -2HT þ 2HTHx

Setting the derivative to zero gives a system of linear equations,

∂

∂x
J xð Þ ¼ 0 implies HTH

� �

x ¼ HTy:

So the minimizer of J(x) in Eq. (9) is given by

x ¼ HTH
� ��1

HTy (10)

3.1.3. Majorization-minimization (MM) approach

However, it is not able to solve these equations easily. Since GPS data is a very long, then H

will be very large matrix and solving the system of equations may require huge memory and

computation time. Moreover, the matrix HT H is not invertible, or ill-conditioned. By using the

Majorization-minimization (MM) approach to minimize J(x) in Eq. (10), solving a system of

linear equations can be avoided. At each iteration k of the MM approach, a function Gk(x) that

coincides with J(x) at xk has been found. A majorizer Gk(x) has introduced that can be mini-

mized more easily without solving a system of Eqs.

A function Gk(x) that majorizes J(x) by adding a non-negative function to J(x),

Gk xð Þ ¼ J xð Þ þNon� negative function of x (11)

When Gk(x) coincides with J(x) at x = xk, the non-negative function added to J(x) should be

equal to zero at xk then Gk(x) to be

Gk xð Þ ¼ J xð Þ þ x� xð ÞT αI �HHT
� �

x� xkð Þ (12)

The function which is added to J(x) is clearly zero at xk so that Gk(x) equals to J(xk) as required.

To ensure the function added to J(x) is non-negative, for all x, the scalar parameter α must be

chosen to be equal to or greater than the maximum eigenvalue of HTH, i.e., α≥ max eig (HTH).

Then the matrix αI- HTH is a positive semi-definite matrix, meaning that vT (αI- HTH) v ≥ 0.

Now, using MM procedure, to obtain xk + 1, function Gk(x) is minimized. Expanding Gk(x) in

(12) gives

Gk xð Þ ¼ yTy� 2yTHxþ xTHxþ x� xkð ÞT αI �HTH
� �

x� xkð Þ (13)
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Note that the quadratic term in Eq. (12) is simply xTx instead of xTHTHx. Therefore, we can

minimize Gk(x) more easily

∂

∂x
Gk xð Þ ¼ �2HTy� 2 αI �HTH

� �

xk þ 2αx, Setting,
∂

∂x
Gk xð Þ ¼ 0

x ¼ xk þ
1

α

HT y�Hxkð Þ (14)

Hence, by using MM procedure to obtain x value at each iteration is given by Landweber

update equation as

xkþ1 ¼ xk þ
1

α

HT y�Hxkð Þ (15)

4. Results and discussion

In this simulation, four multipath components are considered with time varying amplitude

and the phase. Initially the GPS signal needs to be framed in the form of sparse signal. This can

be done in the acquisition stage only, the sparse representation of this signal easily

decomposed in the form of basis function and the coefficient term. Then one can easily

reconstruct the sparse coefficient of minimum number of non-zero coefficient by random by

l1 minimization. The code and carrier tracking loop of the software GPS receiver has to be

synchronized if and only if the lock is achieved. Due to multipath error, the code loop error

may be varied more than 1 chip delay and the carrier loop (Costas) is also intercoupled with

this, so error may be introduced in the carrier tracking loop also hence, both the tracking errors

should be carefully minimized to certain extent to achieve the lock.

The objective function (J) and the 2000 samples of the recovered GPS signal after ISTA algo-

rithm is plotted in Figures 7 and 8 respectively. The recovered signal is further given to the

acquisition stage to find the visible satellites (SVN’s) and allocate those SVN to initiate the

tracking stage. The code and carrier tracking error is observed after recovering the GPS signal

using MMmethod. The significant improvement in carrier tracking is achieved within 50 msec

Figure 7. Objective function.
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Figure 8. Recovered GPS signal through ISTA algorithm.

Figure 9. Carrier loop tracking error for SVN-12.

Figure 10. Code loop tracking error for SVN-12.
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period where as in the case of code tracking, error is settled down quickly within 100 msec of

GPS data as shown in Figures 9 and 10. The lock has been achieved with 0.5 chips spacing of

early, late and prompt code replicas, hence the navigation data can easily be demodulated and

the pseudorange is calculated for each satellite.

5. Conclusion

In this Chapter, various techniques have been discussed to nullify the effect of the multipath,

we have provided an in depth review of existing multipath mitigation techniques. These

techniques were classified in categories according to the involved process before and after

correlation with the C/A code. Compressive sensing is a promoting tool for the next generation

communication systems. However, it still faces a number of challenges in the real time imple-

mentation. In multipath applications, compressive sensing exploits the GPS signal need to be

converted to a sparse equivalent structure then the channel impulse response of the filter is

determined from the convolution matrix. For reconstruction, the challenge resides in how to

separate the LOS signal from composite signals in multi-channel environments, where the

channel powers and behaviors evolve over time. A comparison of several compressive tech-

niques was given and discussed. The sparse recovery of the signal is obtained from

unconstrained optimization algorithms.
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