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Abstract

Empty fruit bunch of oil palm tree (EFBOPT), solid waste of palm oil industries, is 
potential for raw materials of biofuel especially bioethanol production because of 
its cellulose and hemicellulose contents. There are four steps to produce bioethanol, 
called the second generation bioethanol, from EFBOPT or other lignocellulosic materi-
als. The steps are (a) pretreatment of lignocellulose biomass into cellulose/hemicellu-
lose, (b) hydrolysis of cellulose/hemicellulose into monosaccharides, (c) fermentation 
of monosaccharides into bioethanol, and (d) recovery of bioethanol from medium 
fermentation broth. Pretreatment steps are the key success factor to convert lignocel-
lulosic materials into bioethanol. This paper will review EFBOPT and pretreatment 
steps, including physical pretreatments, physicochemical pretreatments, and biologi-
cal pretreatments.

Keywords: bioethanol, biomass, empty fruit bunch of oil palm tree, lignocellulose, 
pretreatment

1. Introduction

Depletion of fossil fuels, increasing of climate changes, and improvement of world energy 

consumption [1] have directed towards the development of biofuel production [2]. Biofuels 

are able to replace petroleum-based fuels, decrease greenhouse gas emission [3], and have 

significant potential sustainability [4]. Biofuels can be as gaseous (methane or hydrogen) or 

liquid (biodiesel, biobutanol, or bioethanol) forms and are commonly generated from agricul-

tural materials. Either agricultural commodities or agricultural waste materials can be used 

for developing biofuels; for example, vegetable oil [5, 6] is used for biodiesel and agricultural 
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wastes [7, 8] were processed for developing methane or hydrogen gases. Meanwhile, bioethanol  

can be produced either from agricultural high starch/sugar-containing commodities such 

as corn [9] and sugarcane [10] or from agricultural solid wastes such as non-edible parts of 

cassava [11], banana peels [12], cocoa-pod waste [13], rice straw [14, 15], sugarcane bagasse 

[16–19], sorghum bagasse [20], and empty fruit bunch of oil palm tree (EFBOPT) [21–24]. 

Bioethanol produced from starch/sugar containing commodities is called the first generation 
bioethanol, and one produced from agricultural solid wastes or lignocelluloses is called the 

second generation bioethanol.

Among agricultural materials, oil palm tree (Elaeis guineensis Jacq.) is considered as a major 

source of biofuel. In the world, oil palm tree is planted in about 43 developing countries and 

plantation area increased eight time in the past four decades to over 12 million ha in 2009 [25]. 

In a good condition, oil palm tree can yield about 4.5 ton oil and 7–8 ton EFBOPT/ha/year. 

Unlike palm oil which can be processed directly into biodiesel, EFBOPT has to be pretreated 

before converted into bioethanol [26].

There are four steps to produce bioethanol, called the second generation bioethanol, from ligno-

cellulosic materials [27–29] such as EFBOPT. They are (a) pretreatment of lignocellulose biomass 

into cellulose/hemicellulose, (b) cellulose/hemicellulose hydrolysis into monosaccharides, (c) 

monosaccharides fermentation into bioethanol, and (d) bioethanol recovery (Figure 1) [30].  

The key success factor to convert EFBOPT into bioethanol is pretreatment step [31]; therefore, 

this paper will review the EFBOPT pretreatment and discuss recent research results which 

significantly enhanced enzymatic saccharifications.

Figure 1. Steps of second generation bioethanol production from agricultural waste biomass. Source available from [30]: 

Knauf and Moniruzzaman.
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2. Empty fruit bunch of oil palm tree

EFBOPT is solid waste residue generated from palm oil factories. Fresh fruit bunches are har-

vested from oil palm tree (Figure 2) and then sterilized in a steam sterilizer for inactivating 
enzymes that present in pericarp and loosening fruits from bunches. The sterilized bunches 
are then fed into a rotary drum thresher to separate the sterilized fruit from bunches without 
fruit, which are called as empty fruit bunch of oil palm tree (EFBOPT). The sterilized fruits 
are further processed for palm oil production and the EFBOPT (Figure 3) are conveyed to 

the damping ground and left unused. It was reported that each 100 ton of fresh fruit bunches 

yielded 14 tons oil-rich fiber and 20–22 tons of EFBOPT [32]. EFBOPT is dry and brown; its 

shape is not uniform with low bulk density; and its length and width can vary from 17 to 

30 cm long and 25 to 35 cm wide depending on the size of fresh fruit bunch [32].

Like other lignocellulose materials, native EFBOPT fiber is mainly constructed from a complex 
matrix of three main polymers (Figure 4) [33], namely cellulose, hemicellulose, and lignin. 

The EFBOPT fiber consists of 44.2–50.0% cellulose, 22.0–33.5% hemicellulose, and 20.4–21.0% 
lignin [34, 35].

Cellulose, a major constitutes of FEBOPT, is closely associated with hemicelluloses and lignin, 

and the separation of the cellulose from hemicelluloses and lignin requires intensive physical 

and chemical treatments. Cellulose is a linear polymer of D-glucopyranose units bound by 

β-1-4-glycosidic linkages (Figure 5). The successive glucose units are rotated by 180o rela-

tive to each other to form a cellobiose unit as a repeating unit of cellulose chains ended by a 

hydroxyl group. The hydroxyl (OH) groups in the cellulose act as functional groups which are 

able to interact each other or with O-, N-, and S-groups forming hydrogen bonds. Hydrogen 

bonds also occur between the OH-group of cellulose and water. Through hydrogen bond, 

cellulose chains are packed together to set up highly crystalline microfibrils. An individual 
microfibril contains ten of glucan chains in a parallel orientation [36]. This microfibril fraction 
can be hydrolyzed into glucose either by enzymatic or by chemical methods [37].

Figure 2. Oil palm tree (A) with fresh fruit brunches (B). Source available from: http://www.thestar.com.my/~/media/
online/2014/09/07/08/01/str2_ma_0809_p10a-lead-pic.ashx/?w=620&h=413&crop=1&hash=B2A67ABD156961DCE9E42C

52EA4D72C3F9503686 (accessed on February 25, 2018).
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Hemicellulose is a polymer consisting of heteropolymers of D-xylose, D-mannose, D-glucose, 

D-galactose, and L-arabinose, in the form of linear and branched (Figure 6). Its structure is not 

crystalline and is, therefore, easier to hydrolyze than cellulose [38]. Hemicelluloses usually 

form cross-linked to other polysaccharides, proteins, or lignin. Xylans are considered to be the 

main interface between lignin and other carbohydrates [39].

Lignin is a cross-linked aromatic, hydrophobic, and complex polymer consisting of three 

different phenyl-propane precursor monomer units which are very difficult to biodegrade 
(Figure 7). Lignin is mostly observed as an integral part of the plan cell wall, embedded in a 

polymer matrix of cellulose and hemicellulose. Thus, lignin is the most non-biodegradable 

component of the plant cell wall [36].

Figure 3. Empty fruit bunch of oil palm tree (EFBOPT) on damping ground. Source available from: https://s3-ap-
southeast-2.amazonaws.com/ecostore-static-assets/Page+images/Palm+Oil+Page/Empty-fruit-bunches.jpg (accessed on 
February 25, 2018).

Figure 4. Polymer structure of lignocellulosic biomass. Source [33] Quintero-Ramirez.
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Figure 5. Chemical structure of cellulose. Source: available from https://www.intechopen.com/books/cellulose-
fundamental-aspects/cellulose-microfibril-angle-in-wood-and-its-dynamic-mechanical-significance (accessed on 
February 26, 2018).

Figure 6. Chemical structure of hemicellulose. Source: available from https://www.researchgate.net/figure/Chemical-
structure-of-hemicellulose-compounds-xylan-and-glucomannan-are-the-most_fig4_266026683 (accessed on February 
26, 2018).
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3. Pretreatments

Pretreatment is actions given to biomass materials such as EFBOPT for enhancing the cel-

lulose reactivity with cellulase enzymes and for increasing the yield of fermentable sugars. 
There are eight requirements for effective and economical pretreatment; they are (a) produc-

ing higher reactive cellulose fibers for enzymatic attachment, (b) producing less residues, (c) 
avoiding formation of compound inhibitors for hydrolytic enzymes and fermenting microor-

ganisms, (d) avoiding destruction of celluloses and hemicelluloses, (e) reducing of material 

cost for setting upper-treatment reactors, (f) minimizing the energy demand, (g) reducing 
the cost of size reduction for feedstock, (h) consuming little or no chemical, and (i) using a 
cheap or no chemical [40]. The goal of pretreatment is to disrupt the crystallinity of cellulose, 

to open lignin and hemicellulose protection, to increase EFBOPT surface accessibility, and to 

decrease the degree of hemicellulose acetylation [41]. Pretreatment can increase significantly 
bioethanol or biogas yield and productivity. Effects of pretreatment on the degrading enzyme 
accessibility, bioethanol or biogas yield, and productivity from lignocellulosic materials were 

diagrammatically (Figure 8) shown by Taherzadeh and Karimi [40].

Based on actions given to biomass materials, pretreatment methods are classified into three 
groups, namely physical, chemical and physicochemical, and biological pretreatment methods 

[40]. The physical methods include milling (ball milling, colloid milling, hammer milling, two-

roll milling, and vibrant energy milling), irradiation (electron-beam irradiation, gamma-ray irra-

diation, and microwave irradiation), and expansion, extrusion, high pressure, hydrothermal,  

Figure 7. Chemical structure of lignin. Source: available from http://palaeos.com/plants/glossary/images/Lignin.gif 
(accessed on February 26, 2018).
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and pyrolysis. The chemical and physicochemical pretreatments consist of acid (hydrochloric 

acid, phosphoric acid, and sulfuric acid), alkali (ammonia and sodium hydroxide), explosion 

(ammonia fiber explosion/AFEX, CO
2
 explosion, SO

2
 explosion, and steam explosion), gas 

(chlorine dioxide, nitrogen dioxide, and sulfur dioxide), oxidizing agents (hydrogen perox-

ide, ozone, and wet oxidation), and solvent extraction of lignin (benzene-water extraction, 
butanol-water extraction, ethanol-water extraction, ethylene glycol extraction, and swelling 

agents), and biological. Biological pretreatments commonly utilize fungi and actinomycetes 
as microbial producing enzymes which can degrade lignin compounds. Advantages and dis-

advantages of some different pretreatments are well tabulated (Table 1) by Brodeur et al. and 

Maurya et al. [42, 43].

3.1. Acid pretreatments

The main objective of the acid pretreatment is to solubilize lignin and hemicelluloses chemi-
cally so that the cellulose is more accessible to enzymes. Either diluted or concentrated acid can 
be utilized to perform this acid pretreatment. The diluted acid pretreatment method is more 
attractive because of less inhibitor compound formation, such as furfural, 5-hydroxymeth-

ylfurfural, phenolic acids, and aldehydes. In addition, diluted acids are less toxic, corrosive, 

hazardous, and corrosive, as well as more feasible for industrial scale. The diluted acid pre-

treatment methods have been developed in different types of reactors including percolation,  

Figure 8. Effects of pretreatment on degrading-enzyme accessibility, and bioethanol or biogas yield and productivity.  
Source: available from Taherzadeh and Karimi [40].
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Pretreatment 

method

Advantages Disadvantages

Acid • Yield of glucose is high

• Hemicellulose is solubilized

• Costs of acids are high

• Acid recovery is needed

• Costs of corrosive resistant equipment are 

high

• Fermentation inhibitors are formed

AFEX • Effectiveness for herbaceous material 
is high

• It is suitable for low lignin content 

biomass

• Cellulose becomes more accessible

• Recycling of ammonia is needed

• Process effectiveness decreases with increas-

ing biomass lignin content

• Formation of inhibitors is low • Lignin structure changes

• Costs of ammonia are high

Alkali • Lignin is efficiently removed

• Formation of inhibitors is low

• Costs of alkaline catalyst are high

• Alteration of lignin structure

Ammonia recycle 

percolation

• Majority of lignin is removed

• Cellulose content after pretreatment is 

high

• Herbaceous materials are most affected

• Energy costs and liquid loading are high

Biological • Energy requirements are low

• Lignin is removed

• Degree of cellulose polymerization is 
reduced

• Hemicelluloses are partial hydrolyzed

• Chemicals are not required

• Environmental conditions are mild

• Process rate is slow

• Treatment rate is very low

• It is not very effective for commercial 
application

CO
2
 explosion • Accessible surface area increase

• Inhibitory compounds are not formed

• It is non-flammability and relatively 
cheap

• Recovery after extraction is easy

• It is environmentally acceptable

• Pressure requirements are very high

Liquid hot water • Hemicellulose is separated from rest of 

feedstock

• It is no need for catalyst

• Hemicellulose is hydrolyzed

• Energy/water input is high

• Solid mass left over will need to be dealt with 

(cellulose/lignin)
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plug flow, shrinking-bed, batch, flow-through reactor and countercurrent reactors [40]. There 

are two approach processes of dilute acid pretreatment methods, namely (a) high tempera-

ture (e.g., 180°C) during a short period of time and (b) lower temperature (e.g., 120°C) for 

longer retention time (30–90 min). The most widely used acid is dilute H
2
SO

4
 which provides 

high hydrolysis yields [37, 44]. Other acids used for cellulosic material pretreatments are ace-

tic acid, C
2
H

4
O

3
, formic acid, hydrochloric acid (HCl), maleic acid, oxalic acid, phosphoric 

acid, and nitric acid [45–49].

3.2. AFEX pretreatment

AFEX is one of the physicochemical pretreatments which treated lignocellulosic biomass with 

liquid ammonia at relatively moderate temperature (90–100°C) for about 30–60 min, then 

followed by a rapid pressure release [50]. A rapid expansion of the liquid ammonia causes 

swelling and physical disruption of lignocellulosic fibers and partial reduction of cellulose crys-

tallinity. AFEX process is able to either modify or effectively decrystallization of cellulose and 
lignin fractions [51]. AFEX removes the least acetyl groups of biomass by deacetylation process, 

so that the digestibility of lignocellulosic biomass increases [52, 53]. The main advantage of the 

AFEX is that it does not produce inhibitors for the downstream biological processes, so water 

wash is not needed. AFEX is more effective for agricultural residues [54]. The AFEX process 

conditions (ammonia loading, temperature, blowdown pressure, moisture content of biomass, 

and residence time) have been optimized [55]. At the optimal conditions, AFEX can convert over 

90% cellulose and hemicellulose to fermentable sugars for a broad variety of biomass materials 
including EFBOPT. Due to high volatility, ammonia is easy to be recovered and recycled [56], 

and leaving the dried biomass ready for enzymatic hydrolysis [57]. After pre-pretreatment, 

ammonia must be recycled in order to reduce the cost and protect the environment [56].

Pretreatment 

method

Advantages Disadvantages

Milling • Cellulose crystallinity and degree of 

polymerization are decreased

• Particle size decreases

• Specific surface area and pore size 
increase

• Power and energy consumptions are high

Steam explosions • It is low cost

• Lignin transforms

• Hemicellulose is solubilized

• Yield of glucose is high

• Partial hemicellulose degrades

• Acid catalyst is needed to make process effi-

cient with high lignin content material

• Toxic compound is formed

Wet oxidation • Majority of hemicellulose and lignin are 

solubilized

• Inhibitor compounds are avoided

• Costs of oxygen and alkaline catalyst are high

Table 1. Advantages and disadvantages of different pretreatment methods of lignocellulosic biomass [42, 43].

Pretreatment Empty Fruit Bunch of Oil Palm Tree for Improving Enzymatic Saccharification
http://dx.doi.org/10.5772/intechopen.76587

63



3.3. Alkali pretreatment

Alkali pretreatment is commonly utilized ammonium, calcium, sodium, and potassium 
hydroxides at certain temperature and pressure. The main advantage of this pretreatment 

is that lignin is efficiently removed from the biomass (Table 1). This process eliminates ace-

tyl and uronic acid groups at hemicelluloses; as a result, the accessibility of enzyme that 
degrades hemicellulose increases [58]. Xylan ester linkages on hemicellulose residues are also 

hydrolyzed [56]. The advantages of alkali pretreatments are able to largely improve the cel-

lulose digestibility, solubilize lignin more effectively, exhibit less cellulose, and hemicellulose 
solubilization compared to the acid pretreatments [59]. Alkali pretreatments can also be per-

formed at lower temperature, pressure, and time ranging from hours to days. NaOH solu-

tion is more effective than other alkalis [60, 61]. Alkali pretreatments were shown to be more 

effective on decreasing the degree of polymerization and crystallinity, increasing the internal 
surface area of cellulose, and disrupting the lignin structure [41].

Besides NaOH, Ca(OH)
2
 (lime) is another alkali widely used. It also eliminates lignin-carbo-

hydrate ester and acetyl groups, and enhances cellulose digestibility [37]. Lime pretreatment 

has been proven successful for several biomass pretreatments, such as wheat straw, poplar 

wood, switchgrass, and corn stover [61, 62]. This pretreatment has lower reagent cost and 

less safety requirements compared to NaOH or KOH pretreatments. In addition, lime can be 

easier recovered from hydrolysate by reaction with CO2 [37]. The air/oxygen addition to the 

alkaline pretreatments (NaOH or lime) can increase lignin removal [59].

3.4. Ammonia recycle percolation

Ammonia recycled percolation (ARP) is an another type of ammonia-based pretreatment in 

which aqueous ammonia (5–15 wt %) passes through a packed of bed reactor along with biomass 
materials at high temperature (140–210°C) for 90 min and the rate of percolation is maintained at 

5 mL/min [56, 64]. ARP can remove hemicellulose and lignin from the biomass as the liquid phase 

[31] although requires high liquid loading or process temperature. To reduce energy cost, soaking 

in aqueous ammonia (SAA) at lower temperatures (40–90°C) for longer reaction times has been 

used. This approach can preserve most of the glucan and xylan in the biomass samples which are 

then fermented using the simultaneous saccharification and cofermentation (SSCF) method [63].

3.5. Biological pretreatment

Biological pretreatments are treatments to biomass materials with microbes such as white 

rot fungi. Like conventional physicochemical methods, the objectives of biological pretreat-

ments are to degrade lignin. The biological pretreatment is considered as a cheap, ecofriendly, 

and efficient method [64]. This method is carried out using cellulolytic and hemicellulolytic 

microbes, such as filamentous fungi which are ubiquitous and can be isolated from soil, liv-

ing plants or lignocellulosic waste material [65, 66]. The most effective microorganisms for 
the pretreatment of most of the biomass materials are white-rot fungi [52], such as Ceriporia 

lacerata, Ceriporiopsis subvermispora, Cyathus stercoreus, Phanerochaete chrysosporium, 

Pleurotus ostreatus, Pycnoporus cinnabarinus, and P. chrysosporium. These fungi produce 

Biofuels - State of Development64



lignin peroxidases—lignin-degrading enzymes and manganese-dependent peroxidases—
which show high delignification efficiency on various biomass materials [52, 67]. Some 

advantages of biological pretreatments include low-capital cost, low energy requirement, 

no chemical requirement, and mild environmental conditions (Table 1). However, the main 

drawback of the biological methods is that hydrolysis rate is very low [56]. To solve this draw-

back, some researches have to perform to find out isolates which have ability to delignify the 
biomass materials more quickly and efficiently.

3.6. CO
2
 explosion pretreatment

CO
2
 explosion pretreatment utilizes CO

2
 as a supercritical fluid. The fluid displays gas like mass 

transfer properties and a liquid-like solvating power. This method can remove lignin effectively 
so that enzymes can digest biomass materials effectively [68]. Supercritical CO

2
 has been mostly 

used as an extraction solvent because of its several advantages including easy recovery after 

extraction, environmental acceptability, non-toxicity, non-flammability, and relatively low cost 
(Table 1) [69]. In aqueous solution, CO

2
 reacts with H

2
O to form carbonic acid and increases 

hydrolysis rate. Because of their small size, CO
2
 molecules are able to penetrate small pores 

accessible to ammonia and water molecules. In this pretreatment, cellulose and hemicellulose 

structures disrupt so that the surface area of the substrate increases and can easily attack by 
the digestive enzymes. For several substrates, the CO

2
 explosion pretreatment is more cost-

effective than ammonia expansion and produces lower inhibitors than steam explosion [70].

3.7. Liquid hot water pretreatment

Liquid hot water (LHW) is one of the hydrothermal pretreatment without rapid decompres-

sion and any catalyst or chemical additions and performs under high pressure in order to 

maintain the water in the liquid state at high temperatures. It is usually carried out at tem-

perature range between 170 and 230°C and pressure (5 MPa) [71]. LHW eliminates hemicel-

lulose from biomass materials so that the cellulose is more accessible to enzymatic attack 
(Table 1). After pretreatment, the obtained slurry is able to be filtered to yield two fractions, 
namely a solid cellulose-enriched fraction and a liquid fraction containing high hemicellulose 

derived sugars. Better pH (4–7) of this pretreatment can be controlled in order to minimize 
the non-specific degradation of polysaccharides and also to avoid the formation of inhibitors 
[37]. To promote more effective contact between the biomass materials and the liquid water, 
three methods have been developed, namely co-current, countercurrent, and flow-through 
methods. In co-current method, water and biomass slurry are heated to the desired tempera-

ture and held at the pretreatment conditions for a certain residence time before being cooled. 

Countercurrent method is designed to move water opposite to biomass through the pretreat-

ment system. Hot water flows through passage system over a stationary bed of biomass which 

hydrolyzes and dissolves biomass components and brings them out of the system [72, 73].  

LHW pretreatments are generally preferred because it is required lower costs due to no need 

chemicals and corrosion-resistant materials for hydrolysis reactors. In addition, the LHW pre-

treatments produce lower concentration of the solubilized hemicellulose and lignin products 
due to high water input (Table 1). Lower formation of inhibitory components and higher 
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pentose recovery can be achieved in this LHW pretreatment compared to the steam explo-

sion. However, this method has not yet developed at a commercial scale due to higher water 

demand and high energy input.

3.8. Milling pretreatment

Milling pretreatment is commonly used for reducing size biomass and altering the inherent 
ultrastructure of biomass and degree of crystallinity so that the biomass can be easier accessed 

by cellulase enzymes [74]. This pretreatment is performed prior to enzymatic hydrolysis or 
even other chemical pretreatment processes [74, 75, 76, 77]. There are several kinds of mill-

ing, such as ball, tow roll, hammer, colloid, and vibro energy millings [40]. Milling is able to 

improve susceptibility to enzymatic hydrolysis because of reducing the biomass size [78], 

decreasing the biomass crystallinity, [79] and increasing the biomass area.

3.9. Steam explosion pretreatment

Steam explosion pretreatment is a treatment with high pressure saturated steam for few 

seconds (30 s) to several minutes (20 min), and then pressure is suddenly reduced. These 

pretreatments are the most commonly used for treating biomass materials [80, 81]. Steam 

explosion—typically a combination of mechanical forces and chemical—is able to hydro-

lyze (autohydrolyze) acetyl groups of hemicellulose. At high temperatures (160–260°C), 
autohydrolysis occurs and produces acetic acid from acetyl groups of the biomass materials 

[82, 83]. In addition, water is also able to act as an acid at high temperatures. Reducing pres-

sure suddenly produces explosive decompression so that biomass fibers separate each other. 
This process is able to degrade hemicellulose and lignin because of explosive decompression, 

and thus increase the potential of cellulose hydrolysis [82].

Steam explosion processes have several advantages compared to other pretreatment methods 

(Table 1). The advantages include high sugar recovery, less hazardous process chemicals and 
conditions, lower environmental impact, lower capital investment, possibility of using larger 

chip size, no acid catalyst additions except for softwoods, more efficient in energy usage, and sig-

nificant improvement in enzymatic hydrolysis as well as its feasibility at industrial scale [84]. The 

main drawbacks of steam explosion pretreatment are the partial degradation of hemicelluloses 

producing inhibitor compounds that can affect the enzymatic hydrolysis and fermentation pro-

cess [85, 86]. Thus, an inhibitor compound separation becomes necessary (e.g., addition of acti-

vated charcoal, over liming, and ion exchange) and will increase the overall process cost [31, 87].

3.10. Wet oxidation pretreatment

Wet oxidation is treated biomass materials with water and air/oxygen at temperatures higher 

than 120°C for 30 min [88]. This wet oxidation pretreatment is suitable for pretreatment of 

biomass materials containing high lignin content. The most effective parameters in the wet 
oxidation process are temperature, reaction time, and oxygen pressure [87]. This pretreat-

ment yields acid compounds from the hydrolytic processes and oxidative reactions of bio-

mass materials.
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Wet oxidation pretreatments affect all three main components of lignocellulosic materials, 
namely, cellulose, hemicellulose, and lignin. The hemicelluloses are extensively hydrolyzed 
to low molecular weight sugars that become soluble in water. Lignin is cleaved and oxidized, 
and cellulose is partly degraded and becomes highly susceptible to enzymatic hydrolysis. 
Addition of some alkaline compounds, such as sodium carbonate make easier to hydrolyze 
hemicellulose components and also minimizes the formation inhibitor compounds, such as 
furan-based degradation products [89].

The main advantage of wet oxidation is efficient lignin removal and less inhibitor formations 
(Table 1). The main disadvantage of this method is requirements for high temperature and 

pressure maintenances and the presence of strong oxidizing agents such as H
2
O

2
. These require-

ments cause to high costs of maintenance and also require large-scale reactors. Therefore, 

application of this process is limited in large-scale pretreatment of biomass materials.

4. Conclusions and future perspectives

Empty fruit bunch of oil palm trees have been described in terms of their physical and chemi-

cal characteristics. As solid waste products of palm oil factories, physical EFBOPT characteris-

tics are brown, not uniform, low bulk density, varying in length from 17 to 30 cm, and varying 

in width from 25 to 35 cm depending on the size of fresh fruit bunch. EFBOPT fiber is mainly 
constructed from a complex matrix of three main polymers, namely, cellulose, hemicellulose, 

and lignin. The main chemical component of EFBOPT is cellulose (44.2–50.0%) and the others 
are hemicellulose (22.0–33.5%) and lignin (20.4–21.0%) which should be removed through 
pretreatments before the cellulose is hydrolyzed enzymatically.

There are three kinds of pretreatment methods, namely, physical, chemical, and physico-

chemical and biological pretreatment methods. The various pretreatment methods for bio-

mass materials have been described to improve enzymatic saccharifications and ethanol 
production. Each method has its advantages and disadvantages. There is no one treatment 

method yielding 100% conversion of biomass into fermentable sugars. There is always a loss 
of biomass materials, which affects the final yield and increases the cost of finished product, 
i.e., bioethanol. Although a combination of two or more pretreatment methods has indicated 

promising results, we still feel that there is a need for extensive researches in this area so that 

either a new efficient treatment method is discovered or an existing method is upgraded to 
yield better results. Predictive models will enable the selection, design, optimization, and 
process control of pretreatment methods that are suitable for biomass materials.
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