
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

Goal-Oriented Autonomic Business Process
Modelling and Execution

Dominic Greenwood and Roberto Ghizzioli
Whitestein Technologies AG

Switzerland

1. Introduction

Business processes are essential components of all enterprises and the use of models,
languages and execution engines as components of a Business Process Management (BPM)
deployment are now commonplace. By definition, these processes describe an enterprise in
terms of its organizational knowledge, structure and activities, and are often essential to
realizing an organization's competitive advantage. It thus follows that the design, execution
and, critically, responsiveness to change in the system or environment they are affecting, is
of prime significance toward establishing and maintaining efficient business operation.
Deploying a high quality and effective Business Process Management System (BPMS) is thus
utterly essential to many modern enterprises. Yet current trends toward flexible methods of
working, just-in-time organizational reaction times, distributed intra-organization and inter-
organization collaboration and constantly changing markets are creating new and complex
business landscapes. This brings about increased complexity, further motivating the need
for real-time dynamic change throughout an enterprise's business processes; ever more
dynamic environments require key business processes to be more flexible and automated in
both their design and behaviour.
Yet many companies are now discovering that investments in conventional BPMS often
suffers from poor return on investment due to a common inability to create business process
models that are both meaningful to business people and capable of offering the real-time
process flexibility and rapid process adaptation required to cope effectively with the fluid
business conditions typifying many modern enterprises. As evidenced by our work with
customers in the manufacturing domain, there is very often a need to alter executing process
structures, sometimes in real-time, without perturbing the integrity of running process
instances. If a BPMS is not built to innately support change in this manner the result can be
reductions in both dependability and visibility, especially from a management perspective.
Our observation is that many of the current procedural approaches to BPM are too inflexible
and unresponsive to change, especially in any automated fashion.
In fact many BPMS solutions provide only design-time modelling, with neither support for
run-time determination of process structure, nor direct execution of industry standard
Business Process Modeling Notation (BPMN) process models without the need for first
translating BPMN into intermediary formats, such as the Business Process Execution
Language (BPEL), in preparation for execution. In practice, these issues imply that process
models can tend to become overly complex and brittle through the necessity of coding-in all O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Multiagent Systems, Book edited by: Salman Ahmed and Mohd Noh Karsiti,
 ISBN 978-3-902613-51-6, pp. 426, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Multiagent Systems

56

possible options at design-time due to the inability to change dynamically once in execution
(Cordoso, 2006).
The alternative approach outlined in this chapter is to employ the notion of goals, which as

recognised by other BPM vendors (Tibco, 2006) and practitioners (Benfield, 2006), are an

intrinsically powerful and intuitive means to model business processes. We therefore

propose an extension to standard BPMN to support the concepts of Goals and Plans, and

moreover introduce an industry-validated process execution engine based on autonomic

technologies, capable of directly executing Goal-Oriented BPMN (GO-BPMN) models and

most importantly allowing safe, real-time alteration of both models and executing process

instances. The GO-BPMN language is detailed in section 2.

The starting point for the goal-oriented approach was an observation of business
management at the executive level which is typified by the assignment of achievement goals
and decision points. This is also true at operational levels, but the degree of abstraction
diminishes as the concrete knowledge of how to achieve goals and decision points is
introduced through pre-established, or ad-hoc, processes. For humans it is natural to set
goals, decompose goals into sub-goals, and to define or reuse plans to achieve those goals.
This also extends to routine tracking of plan execution to detect problems as they occur, or
even better before they do, in order to take timely and appropriate actions. On the other
hand, computers are more easily instructed by providing them with fixed procedures. This
is why many BPM solutions tend toward procedural automation where explicitly directed
process specifications describe precisely which actions to take in all envisaged situations
(such as with BPEL). This results in processes that are efficient in execution yet with limited
expressivity and responsiveness to change.
To maintain effectiveness without sacrificing agility, we posit that the concepts of plan and
goal be brought to center stage in BPM solutions. Our approach therefore uses a goal-
oriented business process specification that offers a clean separation between the goals to be
achieved (or maintained) and the set of task plans used to achieve or maintain them. This
results in the creation of BPM deployments that are intrinsically capable of handling higher
levels of complexity and change using directly executable goal-oriented process models
whose structure can encode multiple degrees of freedom supporting real-time decision-
making.
Goal-orientation offers a powerful, visually intuitive method of modelling and executing

processes accessible to business managers and process analysts alike. Processes are

described as goal hierarchies, with every leaf goal linked to one or more plans describing

that part of the overall process to be executed in order to achieve the goal. Because plans can

be selected at run-time, flexibility is built-in to the process structures allowing workflows to

be altered safely in real-time without any need for halting or re-starting the overall process.

Autonomic Process Execution offers process responsiveness to change by creating feedback
loops not only between the process engineer and the process model, but also between the
underlying systems (human or computational) affected by the process tasks.
The purpose of this chapter is thus to present details of our approach and the Living
Systems Autonomic Business Process Management (LS/ABPM) suite (Greenwood &
Rimassa, 2007). To illustrate deployment, a current large-scale business case is described
wherein Daimler AG is using the technology to manage their entire Engineering Change
Management (ECM) and Procurement process catalogues. The ECM (Habhouba et al., 2006)
aspect spans the documentation and execution of processes for the description, analysis,

www.intechopen.com

Goal-Oriented Autonomic Business Process Modelling and Execution

57

decision and implementation of changes to all products - from individual parts to assembled
vehicles. ECM is a mission-critical business operation for Daimler that can reap substantial
cost reduction and time-to-market benefits if handled effectively, but it is also subject to
dynamic and unpredictable environmental effects, many of which do not fall under the
direct and complete control of the enterprise.
Subsequent to this Introduction, section 2 of the chapter outlines our innovative approach to
business process modelling, known as Goal-Oriented Process Modeling. Section 3 then
describes how these models are directly executed using the Autonomic Process Navigation
Engine with section 4 introducing some of the support tooling. Section 5 describes the current
business case with Daimler AG. The final section offers a discussion and conclusions.

2. Goal-oriented process modeling with GO-BPMN

The visual modelling language Whitestein Technologies has created for specifying goal-
oriented process models is called the Goal-Oriented Business Process Modelling Notation
(GO-BPMN). This language represents an enhancement of standard BPMN with support for
the explicit modelling of goals, plans and their relationships inspired by mental modelling
as defined in the Agent Modeling Language, AML (Cervenka & Trencansky, 2007). This
unique combination of declarative modelling of business goals with procedural specification
of business processes offers a flexible way of modelling processes that is directly applicable
to the design of agile business processes with support for dynamic variation in their path of
execution.
In GO-BPMN a process model consists of goals and plans structured into one or more
hierarchies as illustrated in Figure 1. Goals represent objectives to be achieved, and plans
represent the activities to be performed in order to satisfy a goal. For example, in Figure 1
the three plans represent three different ways to achieve goal A. Plans contain BPMN
workflows of activities performed by the process engine. For human-executable activities, a
mapping with an organizational model is provided. The determination of which goals will
be activated and which plans will be selected and executed at runtime for a specific instance
of a process model depends on the values of context conditions associated with process
goals and plans.

Fig. 1. The Goal-Oriented Modelling Elements

In GO-BPMN a whole process model can be divided into several independent modules,
which represent re-usable, encapsulated, parameterizable and independently executable
parts of the business process.

www.intechopen.com

 Multiagent Systems

58

2.1 Goal concept
The common understanding of the term ‘goal’ is the result or achievement toward which
effort is directed. The goal concept in GO-BPMN is essentially identical, in that goals define
the states that must be reached or maintained by the process during its execution. GO-
BPMN defines two types of goals, achieve and maintain goals. An achieve goal represents an
explicit milestone, objective, desire, etc. that must be reached by the process during its
execution, whereas a maintain goal represents the need to keep a particular condition in a
persistent state, i.e., true. Goals can be composed into hierarchies with any goal considered
complete only when all the associated sub-goals succeed.
A business process modelled in GO-BPMN can be seen as a set of goal hierarchies that have
to be achieved or maintained. Only leaf goals in a goal-hierarchy have connected one or
more plans which contains the activities to be performed toward achieving or maintaining
the goal objective. Goals have business conditions, or rules, that control their execution, and
thus the execution of the process. For example, achieve goals are defined in terms of pre-
conditions, expressions that must be evaluated to true before the achieve goal can become
active. For more details about business conditions please refer to Section 2.4.
When a GO-BPMN model is executed the modelled goals become stateful and the
LS/ABPM Process Navigation Engine strives to achieve them. The possible states for
achieve goals are: inactive, ready, deactivated, running or failed. The possible states for maintain
goals are: inactive, ready, running or deactivated.

2.2 Plan concept
A GO-BPMN plan contains the BPMN-encoded specification of the functional activities to be
taken toward achieving or maintaining a goal. A functional activity, called task in GO-
BPMN, can be either human- or machine-executable. The LS/ABPM Process Navigation
Engine automatically performs machine-executable tasks and issues ToDo actions to process
participants for human-executable tasks. End-users, through a front-end, can browse their
ToDo list and perform the required tasks.
The BPMN encoding used for plan bodies employs all standard elements of the language
including flows, control gateways, sub-processes, tasks, BPMN start events, end events,
intermediate events, transactions etc. Figure 2 shows a very simple example of GO-BPMN
plan.

Fig. 2. Example of GO-BPMN Plan

GO-BPMN elements can be aggregated into libraries, with a Standard Library shipped with
the LS/ABPM Suite providing GO-BPMN tasks, functions and data types elements for

www.intechopen.com

Goal-Oriented Autonomic Business Process Modelling and Execution

59

general-purpose activities. According to their domain and requirements, application-specific
libraries can be created using the LS/ABPM Standard Development Kit.
During process execution, if a leaf goal has more than one plan, a selection of the most
suitable plan based on the business conditions attached to the plans is performed by the
LS/ABPM engine. The possible states for plans are not triggered, running or finished.

2.3 The GO-BPMN expression language
LS/ABPM employs an expression language to write business conditions, triggers, task
parameters, conditional flows, etc., that control the execution flow of a GO-BPMN process.
The GO-BPMN expression language is a strongly typed language. It offers two kinds of data
types: built-in types and user-defined types. The built in types are Object, Null, Boolean,
Decimal, Integer, Date, String, List, Set, Map, Reference and Closure. The user-defined types are
record types, that is, types combined through a Cartesian product operation, resulting in new
types. For examples, the business objects, which hold the application data, are represented
as record types. Record types also support sub-typing as a partial order on types used to
express if a type (subtype) is substitutable for another (supertype).
The language also supports the definition of variables, that is, typed storage slots declared
at compile-time. In GO-BPMN variables can have different scopes, that is, different
visibility. The possible scopes are GO-BPMN modules, plans or BPMN sub-processes.
Application-specific functions can also be defined. Functions are composed by a declaration
and an implementation. Function bodies can be written in Java, Groovy or using the
expression language itself.
Within LS/ABPM process models other named elements can be referred to using identifiers.
For example, process model names, goals, plans, organizational structure elements (see
later), are automatically reflected into identifiers of appropriate names. Other named
elements are modules names, module imports, module parameters, localization entities, etc.
Typed variables, functions and named elements can be used in conjunction with language
operators (e.g., mathematical, relational, logical, etc.) to construct expressions. In GO-
BPMN, all expressions have an expected type. For example, the expressions used to define
goal and plan conditions expect a Boolean type, Catch Signal Intermediate Event filters expect a
Closure type {Object: Boolean}, etc.

2.4 Business conditions
The conditions associated with goals and plans are used to control the execution flow of
process models. They are evaluated at runtime ensuring that executing process instances
remain flexible and responsive to changes in their operating environment. The conditions
supported in GO-BPMN are:

• Pre-conditions for achieve goals: if true, it runs the associated goal. Sub-goals or plans are
then triggered.

• Deactivation conditions for achieve goals: if true, it deactivates the goal. Such goals can be
re-activated using appropriate Standard Library tasks.

• Maintain conditions for maintain goals: if false, it runs the associated goal.

• Context conditions for plans: if true, the plan is considered as selectable by the Plan
Selection Algorithm.

For example, a pre-condition for an achieve goal could be something like MyGoal.state ==
achieved (), i.e., the engine tries to achieve the goal only when the referenced goal is finished.

www.intechopen.com

 Multiagent Systems

60

MyGoal.state retrieves the status of the goal whereas finished() is a Standard Library function
that represents the achieved, failed or deactivated goal states. The obtained result is that two
objectives are achieved in sequence.

2.5 Organizational structures
An essential feature of LS/ABPM is the ability to route work to the correct process
performers (e.g., workers, business roles, organizational units, business experts, etc.). This is
achieved by:

• Modelling organizational structures: a feature of GO-BPMN for visually modelling
selected organizational structures - organization units, roles, and their relationships (see
Figure 3).

• Managing Users: managing process participants (i.e., the human workers who perform
human tasks), the specification of their properties, and the connection of users to the
defined organizational structure model(s).

• Mapping of organizational models to process models: specifying the task performers
responsible for the execution of human tasks.

Fig. 3. Example of a GO-BPMN Organizational Model

LS/ABPM also supports escalation. It represents the set of activities that should be

performed when a human-activity cannot be accomplished for several unpredictable

reasons

3. Autonomic process execution

Once a process model has been created it is loaded into the autonomic process navigation
engine for execution. Note that in this respect the model itself is directly executable with no
requirement to translate it via an intermediary representation such as BPEL. The engine is
composed of two primary computational layers, as illustrated in Figure 4: the LS/ABPM
process navigation engine and the Living Systems technology Suite (LS/TS) (Rimassa et al.,

www.intechopen.com

Goal-Oriented Autonomic Business Process Modelling and Execution

61

2006) autonomic middleware platform. The middleware layer executes directly over any
J2EE compliant application server and can be seamlessly scaled across multiple machine
clusters as demanded by deployment criteria.

Fig. 4. Autonomic Business Process Navigation Engine system architecture

3.1 LS/ABPM process navigation engine
The LS/ABPM process navigation engine is an application developed for the LS/TS

middleware runtime, consisting of a collection of goal-oriented agents acting as process

instance controllers. An agent controller is assigned to each process instance, responsible for

coordinating the process algebra and task structuring within goal-plan combinations, taking

into account goal and plan preconditions.

When a process model is created using the Process Modeler it is directly loaded into a new
process controller agent, wherein process goals are mapped onto logical goals within the
goal-oriented execution engine (see section 3.2). The controller then executes the process
instance by initiating the entire goal hierarchy and waiting for appropriate triggers to be
sensed within the system environment to activate goals and move forward with process
execution.
Each process controller is at the heart of its own autonomic feedback control loop (Pautasso
et al., 2007; Tesauro et al., 2004) which uses observations made of the system1 being affected
by the process instance to effect decisions within the corresponding process instance relating
to, for example, which goals should be activated and which plans selected to meet goal
requirements. Such autonomic control allows process instances to be self-configured and
self-optimized bringing about both process flexibility and resilience.

1 The system may generally include software, hardware, human and physical resources
including the constraints and policies defining their use.

www.intechopen.com

 Multiagent Systems

62

Run-time execution agility is achieved as illustrated in Figure 5 wherein one of several
alternative paths of execution may be taken by navigating through the goal-plan hierarchy
in real time. For instance, in this example sub-goal B is satisfiable by any one of three
available plans, the third plan being selected in this case according the state of a particular
context parameter. In this manner the execution path of the process is determined as each
goal becomes active, with context variables asserting decision criteria when multiple plans
are available to satisfy any given goal.

Fig. 5. Run-time agile navigation of an executing process instance

Interactions between executing process instances are managed via signal-based
communication between the process controllers responsible for those instances. This is local
if the instance is managed by the same controller and remote if not. Interactions can be
simple bindings between the goals and plans of different processes or more complex
(potentially semantic) relationships coordinating the activities of more that one controller.
When multiple process instances are interacting, the influence from autonomic feedback
loops is carefully monitored and controlled to ensure all effects are traceably causal and
without unexpected side-effects.

3.2 LS/TS middleware
The LS/TS middleware (Rimassa, et al., 2006) is a J2EE/SE compliant runtime and
associated tool suite for the development and deployment of autonomic applications driven
by multi-agent technology. The runtime hosts the agents and services that define an
application, providing them with life cycle support, messaging, persistence, resource
management, monitoring, and more.
The tasks an agent can perform are represented as first-class objects that can be assembled

into structured compounds and can be reasoned about prior to executing them. A process-

algebraic model is employed to drive this task reification and assembly: tasks become Java

objects and their composition follows the grammar and semantics of the operators of

suitable process algebra. Building on this basic model one of the key execution engines

www.intechopen.com

Goal-Oriented Autonomic Business Process Modelling and Execution

63

available to application designers is the goal-oriented execution engine, inspired by the

Belief-Desire-Intention (BDI) concept (Rao & Georgeff, 1995). Using this engine, software

agents maintain their own belief base of logical formulae describing their observations of the

world2, and a set of desired goals, also expressed as logical formulae, which identify the

states that the agent should attempt to reach. A goal is committed to according to belief

revision from world observation, at which point it becomes an intention of the agent to

satisfy the goal by dynamically selecting suitable plans from plan libraries located either

internal or external to the agent. It is this observe-decide-act loop intrinsic to the execution

engine that allows applications to be developed that exhibit autonomic features such as self-

management.

Some of the benefits of goal-oriented programming are (i) implicit programming whereby

application logic is resolved only a run-time when goals are activated and plans selected

according to world observation (e.g., detection of available resources), (ii) encapsulation of

multiple potential strategies denoted as plan, and (iii) intuitive means of comprehending

what an application should do, especially when a logical link exists to the expression of

goals at the user level as is the case with the goal-oriented process modeler of LS/ABPM.

4. The LS/ABPM suite

The LS/ABPM Suite is currently composed of five main components: the Process Modeler for

goal-oriented process modelling, the Process Navigation Engine for autonomic process

execution, the Management Console for process deployment and administration, the GO-

BPMN Standard Library to model quickly and efficiently and the Standard Development Kit to

easily build solutions for specific needs. All components are based on standard technologies

such as J2EE application servers, JMS, DBMS, and the Eclipse environment.

Fig. 6. The LS/ABPM Suite's Components

2 The 'world' in this respect implies the system environment, e.g., process execution
environment

www.intechopen.com

 Multiagent Systems

64

For LS/ABPM-based solutions, further components can be implemented using the provided

SDK. These components include: interfaces with external systems to be integrated with the

process, the interface with the process participants (e.g., a Web application), a set of domain-

specific GO-BPMN libraries, and the GO-BPMN process models to be executed (see Figure

6).

4.1 The process modeler
The LS/ABPM Process Modeler, built using the Eclipse framework, offers facilities for model

creation, validation, and deployment. Using this component, process designer are allowed

to model in GO-BPMN their business processes, applying all the concepts presented in

section 2.

Figure 7 shows a screenshot of the GO-BPMN Process Modeler. This offers several panels

including a process explorer, visual editors with tool palette, outline list of all created GO-

BPMN elements, model problems list, model element properties, and more. As models can

often be large, the model editor panel supports model folding whereby hierarchies can be

collapsed or expanded across multiple views to ease navigation.

The process modeler is equipped with several tools to simplify model design, including

model refactoring. In particular it allows the renaming and the moving of GO-BPMN

elements across multiple GO-BPMN modules. Furthermore, the Modeler enables team

working, that is, it is possible to share the resources of GO-BPMN process models via CVS

or SVN. To facilitate task development the LS/ABPM Process Modeler allows the auto

generation of Java source code from task declarations.

Fig. 7. The LS/ABPM Process Modeler

www.intechopen.com

Goal-Oriented Autonomic Business Process Modelling and Execution

65

Every model created with the Process Modeler is automatically validated whenever the

model is saved to disk with any detected problems reported in the Problems panel.

4.2 The management console
This component of the LS/ABPM suite provides powerful tools for the deployment,

management and control of processes and other system administration tasks (see Figure 8).

One of the main features of the Management Console is to enable process instance

monitoring, controlling and debugging. At any point, a process administrator can explore

the values of context variables, the states of goals and plans and evaluate GO-BPMN

expressions. It can also alter the execution of a running process by changing the values of

context data, activate or deactivate goals or updating the process model a running process

instance is using. Additionally, process instances can be debugged, that is, the administrator

can insert breakpoints related to goal states, changing of context variables and flow

selections.

The Management Console contains other tools for browsing archived processes, deploy

process models into the execution engine, manage the process participants and their roles,

managing security rights, managing the ToDo actions assigned to the end-users and

handling logs and exceptions.

Fig. 8. The LS/ABPM Management Console

www.intechopen.com

 Multiagent Systems

66

4.3 Process navigation engine
The LS/ABPM Process Navigation Engine is an application developed for the LS/TS

middleware runtime, consisting of a collection of goal-oriented agents acting as

process instance controllers. An agent controller is assigned to each process instance,

responsible for coordinating the process algebra and task structuring within goal-plan

combinations.

LS/ABPM runs within a J2EE environment and it is available in two distributions: a self-

contained modeling suite and an enterprise suite deployable in 3rd-party J2EE servers

(e.g., IBM WebSphere). The engine is capable to interact with Web applications that are

used as front-ends with the process participants. Additionally, the engine can also be

interfaced with external systems that have to be integrated into the modelled business

processes.

4.4 Standard library
The LS/ABPM Standard Library contains a set of modules provided by the LS/ABPM Suite.

The standard library defines the data types, functions, operation overloading and task types

applicable in the following areas: reflection of the process and organization structure

models, process status changing and control, process management, signal processing, data

manipulation, support for large binary data, support for human processes,

internationalization, prototyping, and various utilities.

4.5 SDK
The LS/ABPM Standard Development Kit (SDK) allows the implementation of LS/ABPM-

based business process applications. In particular, the SDK enables the creation of:

• Application-specific GO-BPMN tasks and functions.

• Application-specific front-ends (either using a Web or other GUI technologies).

• Interface 3rd-party software components with the LS/ABPM engine.

Once the development environment is set up (see Figure 9), using the LS/ABPM Java API a

developer is enabled to implement application-specific components. The created artifacts

can be directly tested and executed within the development environment. The LS/ABPM

SDK also provides Maven and ANT scripts able to build and deploy the LS/ABPM-based

application into industry-grade J2EE runtime environments.

The LS/ABPM SDK includes a Default Web Application, that is, a simplified and domain-

independent Web front-end usable when prototyping an LS/ABPM-based application. It

allows a process participant to authenticate into the system, to create new process instances

and to perform human-executable tasks. All the requested tasks are visible in the user’s

ToDo list. In general, two types of activities can be requested:

• Input request: the user is requested to provide input to a process instance.

• Output notification: the user is notified that some event occurred.

The Default Web Application, built using the Java Server Faces technology, supports a

fully automatic, type-driven layout for input requests. This means that if the process

model uses the human tasks provided in the Standard Library, the Web input forms are

dynamically generated based on the types of the context variables bound with the task

parameters.

www.intechopen.com

Goal-Oriented Autonomic Business Process Modelling and Execution

67

Fig. 9. The LS/ABPM SDK within the Eclipse environment

5. Engineering change management for daimler AG

In 2006 DaimlerChrysler, and now solely Daimler, took the strategic decision to radically

update its approach to Engineering Change Management (ECM); the collection of integrated

processes for handling the lifecycles of its entire products and parts range. The Strategic

Automotive Product Data Standards Industry Group (SASIG) publishes a recommended

ECM reference process (SASIG, 2008) with which many manufacturing enterprises comply,

including Daimler AG. The reference process for ECM published by SASIG is illustrated in

Figure 10.

Fig. 10. SASIG ECM Reference Process

Within the context of ECM, Daimler had found that their existing BPM solution could not

cope with their increasingly pressing demands for flexibility and robustness in the processes

governing the lifecycles of their engineering assets. Product change and evolution is a

dynamic activity by definition. Changes can be provoked by a host of reasons, most of

which be neither easily be predicted nor controlled, e.g., market trends, partner integration,

competition pressure, and normative regulations. Every change must be assessed and

applied in consideration of critical factors such as quality, time-to-market and cost. Two of

www.intechopen.com

 Multiagent Systems

68

the fundamental limitations Daimler encountered with conventional approaches to BPM

were:

Rigid system design processes - the ECM process has become increasingly significant to the

management of change events calling for more flexible process development. The existing

approach offers only rigid and costly system design processes, not allowing managers to

rapidly and optimally adapt the processes to changing priorities.

Rigid process execution - the current system's process control is not capable of governing

change requests in a situation-specific and purposeful manner, that is, adapted to process

content and the project's context. For example, both minor and drastic changes follow the

same process steps. This places excessive strain on the organisation and slows down the

overall process.

A thorough examination of options to re-engineer aspects of Daimler's current BPM

approach demonstrated that these limitations could be only partially mitigated, and only in

the short term. Moreover, an evaluation of conventional BPM systems available from major

industry vendors demonstrated that they uniformly lacked the goal-orientation dimension

in their process models, a key requirement from the perspective of capturing business-level

goals at model level.

It was also apparent that few were capable of real-time adaption of process paths in

response to changing influences and goals. It was this assessment that led to Daimler's

commitment to seek a novel approach to BPM that met their requirements for process agility

and goal-orientation. The nascent LS/ABPM suite from Whitestein Technologies was

selected as the result of two global evaluation phases due to its intrinsic support for the key

requirements of Daimler. In March 2008 version 1.0 of the suite was released to Daimler,

who are now employing it to manage ECM processes, beginning with the critical

Specification and Decision for Change (see Figure 10) otherwise known as the Engineering

Change Request (ECR). A highly simplified process model typical of that governing the ECR

is illustrated in Figure 11, modelled using GO-BPMN and the Process Modeler.

The top-goal relates to the overall management of an ECR with the next level of child goals

dealing with the various business objectives comprising the ECR. Each of these sub-goals

can be active concurrently and must all be completed (unless deactivated) in order for top-

goal to be achieved. The 'plus' symbol indicted on some of these achieve goal icons indicates

that further sub-goals are present, with an additional level unfolded for the ECR_Analyzed

and ECR_Decided goals. The hierarchy can be as deep as required, although typically no

more than three or four layers of granularity are needed.

Attached to each leaf-goal in the model are the plans containing the particular BPMN-
scripted tasks to be performed when the plan is selected for execution. In the case of the
CostsAssessed goal, two plans are available for execution yet only one will be selected at
runtime according to context conditions present in the process' execution environment (set
by humans or software components perhaps activated within an earlier plan). Cost
evaluation is a highly relevant assessment criterion in ECM and requires experts to calculate
the production cost variation resulting from the change. This calculation can either be exact
or estimated, with both procedures offering benefits and tradeoffs according to the situation.
Sometimes either will do, sometimes exact costs are mandated, and sometimes estimates are
preferred to relieve the complexity in calculating exact figures. The structure of the process
lends itself to flexibility and thus plans can be added, replaced, or removed at runtime. For

www.intechopen.com

Goal-Oriented Autonomic Business Process Modelling and Execution

69

Fig. 11. A simplified model of the ECM Change Request process

example, the CalculateCost plan could be replaced with an alternative plan perhaps
containing a new cost calculation function. Otherwise a new CalculateCost_
HighPrecision plan could be added to accompany the two existing plans, offering a high
precision calculation which may be preferred if time is available and/or extremely accurate
cost assessment is required.
The goal-oriented approach thus allows the expression of a wide and diverse set of solutions

while minimising the combinatorial complexity of process definition and execution.

The interface between the process structure and the environment it is affecting are actual

plan tasks, typically grouped into general purpose and domain-specific task libraries. A

general purpose task may be to generate a Web form, ask a human for input, or activate

some domain agnostic software service. Domain-specific tasks are uniquely intended for use

in processes used within a particular domain, such as ECM. Of particular interest are tasks

that directly invoke SOA services, or service compositions, as is commonly the case with

Service Delivery Platforms (SDPs) in the telecommunications domain. At this time we are

preparing an adjunct product to LS/ABPM capable of performing goal-oriented dynamic

service composition and invocation3.

6. Discussion and conclusions

This chapter has introduced a novel, industry-proven BPMS employing a goal-oriented

approach to modelling and executing agile business processes. We have demonstrated that

this is an inherently flexible approach, allowing processes to be designed and executed

3 LS/ASCO - Living Systems® Autonomic Service Composition and Orchestration.

www.intechopen.com

 Multiagent Systems

70

following the logical ways in which humans naturally comprehend processes. Moreover, the

approach uses autonomic self-management allowing processes to self-configure and self-

optimize according to strategic requirements and changing operational constraints.

Three of the primary facets of the approach are illustrated in Figure 12: process governance,
process optimization and process automation, all three with particular aspects of autonomic
behaviour.
Process governance uses goal expressions to capture the purpose of a process in terms of

business-level objectives and strategies. In this respect business-level knowledge and

intention is expressed directly in the model providing a coherent relationship between the

'why, what, and how' of a process and a clean delineation of domain knowledge and

execution logic. We have found through customer reports that goal modelling is an intuitive

technique accessible to both Business Managers and Process Analysts alike.

Process optimization allows the structural and parametrical adaption of processes. Manual
optimization of a model structure can induce automatic update of the corresponding
process instances. Equivalently autonomic optimization of process instances can induce
automatic update of process model structures in response to events/conditions arising in
operational environments/controlled systems. Persistent monitoring of active models and
process instances to ensure that change to in either respect is properly and safely reflected to
the other. All optimizations are verifiable and reversible.

Fig. 12. Business Process Governance, Optimization and Automation

Process automation takes designed models and directly executes them using the process

navigation engine. Visual process models are directly rendered into the goal-oriented

execution logic of software agent process controllers; one process instance to one software

agent. The activities, tasks, and resources required to attain goal objectives are selected or

assembled dynamically at run-time. Executing process instances interact through inter-agent

www.intechopen.com

Goal-Oriented Autonomic Business Process Modelling and Execution

71

communication. Messages are as simple as required by the process context with advanced

semantic communication available for complex interactions.

Autonomic behaviour is manifested at the governance level through the use of maintain

goals in process models to express iteratively sustainable process objectives. At the

optimization level it is manifested as automatic model/instance evolution through feedback

loops propagating change and thereby keeping the entire system in balance. At the

automation level, it is manifested as implicit parametric control of model execution.

As a product suite the combination of LS/ABPM and LS/TS offer a unique and compelling

approach to BPMS developed with the needs of today's evolving, globally connected

enterprise in mind. The suite is domain agnostic by design with the automotive, and in

particular the ECM, domain being our first large scale deployment. The case described in

the latter part of the chapter is currently in the early stages of full deployment and

integration, with the customer, Daimler AG, working in close collaboration to assist with

ongoing product refinement and next-stage development.

We are currently in the process of approaching several other domains of application

including telecommunications, data center management and financial systems. In particular,

the transformation to all-IP network architecture and SOA-driven software architecture is

creating a pressing need for innovative approaches to BPM in the telecommunications

domain. At the time of publication we have several showcases demonstrating the

application of our goal-oriented LS/ABPM technology to telecommunications-specific

processes (Whitestein Technologies, 2008), especially those associated with conventional

and Next-Generation Networking (NGN) Product Lifecycle Management (PLM) and Order

Management.

7. References

Benfield, S. (2006). Beyond BPM: Using goal-seeking agents to tackle highly-complex SOA
applications, SOA World Conference, New York, U.S.A.

Cardoso, J. (2006). Complexity analysis of BPEL web processes, Software Process: Improvement
and Practice Journal - Special Issue on Design for Flexibility, 12(1):35-49

Cervenka, R. & Trencansky, I. (2007). A Comprehensive Approach to Modelling Multi-Agent
Systems, Birkhauser, ISBN 978-3764383954, Basel, Switzerland

Greenwood, D. & Rimassa, G. (2007). Autonomic goal-oriented business process
management, Proceedings of the Third International Conference on Autonomic and
Autonomous Systems (ICAS), 43, Athens, Greece

Habhouba, D., Desrochers, A. & Cherkaoui, S. (2006). Engineering change management and
decision-making assistance using software agent. Proceedings of the Canadian
Conference on Electrical and Computer Engineering, 1694-97, Ottawa, Canada

Pautasso, C., Heinis, T. & Alonso, G. (2007). Autonomic resource provisioning for software
business processes. Information Software Technology, 49(1):65-80

Rao, S. & Georgeff, M.P. (1995). BDI-agents: from theory to practice. Proceedings of the First
Intl. Conference on Multiagent Systems, 312-319, San Francisco, USA

Rimassa, G., Greenwood, D. & Kernland, M. (2005). The Living Systems Technology Suite:
An autonomous middleware for autonomic computing. Proceedings of the Second

www.intechopen.com

 Multiagent Systems

72

International Conference on Autonomic and Autonomous Systems (ICAS), 33, Santa
Clara, USA

SASIG: Strategic Automotive Product Data Standards Industry Group. (2008). Engineering
Change Management (ECM) reference process.

Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart, J.O., & White,
S.R. (2004). A multi-agent systems approach to autonomic computing. Proceedings of
the 3rd Intl. Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 464-
471, New York, USA

Tibco. (2006). Goal-driven business process management: Creating agile business processes
for an unpredictable environment. Tibco Whitepaper

Whitestein Technologies. (2008). Solution Profile Telecoms: Autonomic Business Process
Management for Next Generation Networks. Whitestein Technologies Whitepaper

www.intechopen.com

Multiagent Systems

Edited by Salman Ahmed and Mohd Noh Karsiti

ISBN 978-3-902613-51-6

Hard cover, 426 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents an overview of some of the research issues in the

field of multi agents. It is a presentation of a combination of different research issues which are pursued by

researchers in the domain of multi agent systems as they are one of the best ways to understand and model

human societies and behaviours. In fact, such systems are the systems of the future.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dominic Greenwood and Roberto Ghizzioli (2009). Goal-Oriented Autonomic Business Process Modelling and

Execution, Multiagent Systems, Salman Ahmed and Mohd Noh Karsiti (Ed.), ISBN: 978-3-902613-51-6,

InTech, Available from: http://www.intechopen.com/books/multiagent_systems/goal-

oriented_autonomic_business_process_modelling_and_execution

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

