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Abstract

The function and physiology of the central nervous system (CNS) can be affected by 
of bacterial, fungal, protozoan, and viral infections. The neurological effects of viruses 
are associated with direct infections of structures of the CNS, the migration of infected 
leukocytes to the CNS, or/and the immune response to control the infection. In all these 
situations, we have reactive oxygen species (ROS) generation. ROS induces several cel-
lular effects, including cell cycle progression, apoptosis, DNA damage, senescence, and 
neurodegeneration. The control of ROS involves the glutathione (GSH) balance, owing 
to antioxidant activity. Moreover, GSH is related with the transport of endogenous/exog-
enous molecules to extracellular medium by ABCC1/MRP1 activity. The depletion of 
GSH levels characterizes viral infections and associated-disease progression. Many stud-
ies correlated the GSH levels with immune response and suggest adding the glutathione 
replenishment to highly active antiviral treatment. Thus, it is important to review the 
relationship between the CNS, immune response, and GSH levels during neurological 
viral diseases.

Keywords: GSH, JC virus, CMV, HIV-1, HTLV-1, central nervous system, neurological 
viral diseases, ABCC1/MRP1, immune response

1. Introduction

There are many infectious pathogens that are etiologic agent of central nervous system (CNS) 

diseases, including the broad categories of bacteria, fungi, parasites, and virus. These infec-

tions are an important cause of morbidity and mortality in the world. The viral CNS infections 

are associated with meningitis and encephalitis development principally. However, the viral 

infections also are related with diseases in the CNS characterized by the presence of leukocyte 
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infiltration and inflammation, inducing a progressive damage [1], such as the progressive 

multifocal leukoencephalopathy with the John Cunningham virus (JC), AIDS-related demen-

tia complex observed in HIV-1-infected patients, neurodevelopmental sequelae (mental retar-

dation, cerebral palsy, and sensorineural hearing loss) caused by congenital cytomegalovirus 

(CMV) infection or cerebral mass lesions in immunocompromised adults CMV-infected, 

and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) that affects the 
human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals.

In normal oxidative metabolism, the free radical formation is expected. During the 1950s, 
researchers observed the occurrence of reactive oxygen species (ROS) during molecule irra-

diation with X-rays and as an effect of normal enzyme metabolic activity. They started to 
propose that the formation of oxygen free radicals induced tissues and cell damage [2]. At 
the same time, it was suggested that the mice treatment with glutathione (GSH) inhibited the 

animal deaths caused by X-ray irradiation [2, 3].

GSH is a tripeptide synthesized in all mammalian cells from the amino acid precursors 

l-glutamate, l-cysteine, and glycine, through the reactions catalyzed by γ-glutamylcysteine 
and GSH synthetase. Physiologically, 98% of intracellular glutathione is found in reduced 
form, and only 2% is detected under oxidized form (GSSH) or joined with other molecules 
[4]. Glutathione (GSH) has an important role in cellular physiology and metabolism, includ-

ing antioxidant activity and induction of cellular proliferation [5]. Furthermore, the GSH-

dependent antioxidant enzymes (glutathione peroxidase-1, glutathione reductase, glutathione 
S-transferase) cooperate and are interconnected reactions that eliminate ROS or controlled 

the redox state. Dysregulation of GSH synthesis was associated with many diseases, such 
as diabetes mellitus, cholestatic liver disease, endotoxemia, alcoholic liver disease, cancer, 

and neurodegenerative diseases. During aging the GSH content was decreased in the liver, 
lung, kidney, red blood cells, spleen lymphocytes, cerebral cortex, and cerebellum. This GSH 

concentration decline was related with the reduced expression of proteins involved in GSH 

synthesis. The GSH levels have been studied in Alzheimer’s and Parkinson’s diseases and 
others conditions [6]. However, the CNS is exposed to many situations that can induce a cell 

and tissue damage associated with ROS production. In this chapter, we will discuss some 

aspects of the balance of GSH levels and oxidative stress during viral infections in the CNS.

2. Intracellular levels of GSH in viral-infected cells and related 

cellular alterations

The JC virus is a double-stranded (ds) DNA virus from Polyomaviridae family. The mechanism 
of human-to-human transmission of the JC virus has not been established. It has been suggested 

that the ingestion of contaminated water and food represents the portal of entrance of this virus 

in human. The virus entry in the CNS goes through the blood-brain barrier (BBB), infecting the 
brain microvascular endothelium cells. The virus also infects B lymphocytes in the periphery 
that like a Trojan horse infiltrated the CNS in immunocompromised patients. There the virus 
infects oligodendrocytes and astrocytes [7]. JC virus is an etiologic agent of progressive multifo-

cal leukoencephalopathy (PML), a demyelinating disease. Unfortunately, this disease is currently 
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untreatable and fatal. The relationship between progressive multifocal leukoencephalopathy and 

GSH still remains unknown. Moreover, JC virus has also been related with CNS tumors, astrocy-

tomas, glioblastomas, neuroblastomas, and medulloblastomas in immunosuppressed and non-

immunosuppressed individuals [8]. However, GSH and GSH-related enzymes constitute an 

important mechanism of drug and multidrug resistance to glioblastomas, as described below [9].

CMV is a member of beta-herpesvirus subfamily, in the family Herpesviridae. It is the largest 

human herpesvirus, with a 230-kb ds DNA genome infection. Virus is spread from infected 
individual to noninfected individual by body fluids, such as urine, saliva, blood, tears, semen, 
and breast milk. In addition, a CMV-infected woman can pass the virus to her developing 

baby during pregnancy [10]. Congenital CMV infection causes serious neurodevelopmental 

sequelae, including mental retardation, cerebral palsy, and sensorineural hearing loss. CMV 
also is an increasingly important opportunistic pathogen in immunocompromised patients, 

inducing cerebral mass lesions. Antiviral therapy of children with symptomatic CNS congeni-
tal CMV infection is effective at reducing the risk of long-term disabilities [11].

In muscle cells the CMV infection induces ROS production minutes after entry. This phenom-

enon is associated to the virus life cycle. The increase in ROS levels activates the transcrip-

tional factor NF-κB, leading transactivation of the viral genes and inducing the transcription 
of viral proteins [12]. On the other hand, the infection induces increased levels of GSH to con-

trol the ROS generation in vitro. This GSH augment is essential to produce the viral progeny. 

These data suggested that CMV infection coordinates conditions where ROS levels should 

be controlled and oxidative stress minimized [13]. However, the CMV infection in periph-

eral blood erythrocytes of pregnant women induces reduced of GSH and GSH peroxidase 

levels, leading an increase of H
2
O

2
 levels. These effects were associated with hemolytic ane-

mia in pregnant women [14]. Although the CMV infection has been demonstrated in human 
brain cells in vitro, such as endothelial cells, astrocytes, neuronal cells, oligodendrocytes, and 

microglia [11], these studies did not investigate the role of GSH in CMV infection.

HTLV-1 and HIV were classified to the genus Lentivirus within the family of Retroviridae, sub-

family Orthoretrovirinae. This virus infects leukocytes, which circulate in the blood and lym-

phatic vessels and may infiltrate in the spinal cord or brain, inducing a neurological diseases 
[7]. These viruses can be transmitted vertically from mother to child during transplacental 
transfer, delivery, or breastfeeding, by sexual contact and parenterally through the transfu-

sion of the blood, organ transplant, and blood components or through contaminated needles.

HTLV-1 is the etiological agent of the adult T-cell leukemia/lymphoma and HTLV-1-associated 
myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic progressive disabling disease 
characterized by demyelination, axonal loss, neuronal degeneration, and gliosis. The main 

site of neurodegeneration is the thoracic spinal cord; this leads to a slowly progressive spastic 

paraparesis with low back pain and bowel, urinary, and sexual dysfunction. The treatment 

consists in diminishing the symptoms, using corticosteroid therapy [15, 16]. It was demon-

strated that Tax, a HTLV-1-viral protein, induces an increase in ROS generation, causing DNA 
damage and cellular senescence [17]. Moreover, it was observed that the persistence of the 

virus in infected cells involves mitochondrial ROS production modulated by viral protein 

p13 [18]. The CD4+ T lymphocytes are the main targets of HTLV-1 infection, but it has been 
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shown that other leukocytes and glial cells are also infected [19–21]. The infected cells can 

migrate to the spinal cord and induced the HAM/TSP development. HTLV-1-infected indi-
viduals present a spontaneous T-lymphocyte proliferation. This phenomenon is related to 

the HTLV-1-proviral load and the persistence of the infection. The spontaneous proliferation 
induced by HTLV-1 infection depends on intracellular GSH levels. Using a GSH synthesis 
inhibitor, DL-Buthionine-[S,R]-sulfoximine (BSO), the spontaneous proliferation induced by 
HTLV-1 was impaired in peripheral blood mononuclear cells (PBMC) from infected donors. 
On the other hand, the GSH precursor induces an increase in mitogen-stimulated cellular 

proliferation in HTLV-1-infected individuals [19]. Thus, modulation of GSH levels could be 

proposed as a therapeutic target in HTLV-1-associated diseases.

HIV infection is associated with acquired immune deficiency syndrome (AIDS) development. 
Combinations of antiretroviral drugs administered as highly active antiretroviral therapy 

(HAART) reduced the AIDS mortality. However, since 1997 it has been described that 10–20% 
of virus-infected individuals present HIV-associated dementia [22]. Moreover, the HIV infection 

also causes mild neurocognitive disorder and demyelinating neuropathy with motor and sensory 

impairments. The treatment of neurological diseases in HIV-1-infected individuals is established 
based at the symptoms in association or not with HAART. After virus entry in the CNS, it infects 
and replicates in microglia that acquire inflammatory phenotype, inducing a neurological dam-

ages [7]. Several groups showed a GSH deficiency in the HIV-infected tissues. Initially, the stud-

ies demonstrated that low levels of GSH were related to the impairment of T-cell functions. In 

this work, the authors observed an increase of survival of AIDS patients after the oral treatment 
with N-acetylcysteine (NAC) administration, a precursor of GSH [22, 23]. In addition, the thi-

ols level analysis in the cerebrospinal fluid (CSF) from HIV-infected patients indicated a signifi-

cantly reduction in GSH and cysteinyl-glycine levels. Furthermore, the treatment of HIV-infected 

patients with S-adenosylmethionine, a precursor of homocysteine that is used in GSH synthesis, 

induced an increase of GSH levels in CSF [24]. Together, these findings suggested the impor-

tance of GSH modulation during HIV infection, but the pathway involved to alter the GSH lev-

els remained unknown. The mechanism of neurodegeneration involves the viral protein, gp41. 
Neurons’ death was observed when these cells were incubated in the presence of lentivirus lytic 
peptide (LLP-1) that expresses the carboxy terminal cytoplasmic domain of gp41 from HIV-1. 
In addition, the incubation the neuron cell lines with LLP-1 induced a decrease in GSH levels, 
mitochondrial membrane depolarization, and H

2
O

2
 production rapidly. The combination of GSH 

or NAC with LLP-1 prevented the mitochondrial membrane depolarization and cell death [25].

The development of neurological HIV disorders depends on virus entry in the CNS. To access 

the CNS, HIV virus particles and the infected cells induce the BBB disruption. HIV envelope 
protein gp120 and the regulatory virus protein, Tat, are involved in BBB breakdown. The 
incubation of endothelial brain cells with gp120 and Tat reduced the GSH intracellular levels 
and decreased GSH/GSSG ratio. These proteins also caused an increase in lipid peroxidation, 

suggesting that gp120 and Tat played an important role in BBB disruption by induction of 
oxidative cellular stress in endothelial cells [26].

The antioxidant response signals induce the activation of nuclear factor erythroid-derived 

2-like-2 (Nrf2). It is a transcription factor that translocates into the nucleus and binds in the 

Glutathione in Health and Disease68



promoter regions of detoxifying and antioxidants genes [27]. Viral protein Tat enhanced cel-

lular expression of Nrf2 and its translocation into the nucleus. Nrf2 overexpression inhibited 

the Tat effects, reducing the intracellular ROS and increasing intracellular levels of GSH [28].

The effects of gp120 and Tat can be observed in vivo using a mice model. The administration 
of gp120 and Tat together or alone decreased GSH and GSH peroxidase brain levels. Animals 
also presented a reduction of tight junction protein ZO-1, suggesting other effects into BBB, 
and exhibited augment in lipid peroxidation in the brain [29]. In Figure 1, the direct effects of 
HIV infection in GSH levels and the consequences of this modulation are summarized.

3. HTLV-1 and HIV-1 infection and GSH active transport

GSH is related with the transport of endogenous and exogenous molecules to extracellular 

medium. GSH is a physiological substrate of ABCC1. Multidrug resistance-related protein 
1 (ABCC1) transports several compounds in a GSH-dependent manner; its activity could 
be stimulated by the GSH intracellular levels. The members of the ABCC family are ATP-
dependent efflux pumps, belonging to the ABC family of transport proteins, and they are also 

Figure 1. Levels of GSH during HIV-1 infection. In HIV-1-infected patients lower levels of GSH in the peripheral blood 
and CSF were observed. Alterations in intracellular levels of GSH cells were showed in vivo and in vitro. HIV proteins—
gp120, Tat, and gp41—reduced intracellular levels of GSH in endothelial cells, astrocytes, and neurons. The effects of 
HIV-1-viral proteins also involved BBB breakdown, lipid peroxidation, and cell death.
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involved in resistance against anticancer drugs. ABCC1 is expressed in tumor cells [30] and 

normal tissues, such as the brain [31] and lymphocytes [32]. ABCC1 expression depends on 
Nrf2 activation and translocation to the nucleus [33].

It was already described in this charter; JC virus was detected in CNS tumors, such as glio-

blastomas. This brain tumor is highly proliferative and invasive and presents mechanisms of 

multidrug resistance (MDR). It was found that MDR glioblastoma cells displayed lower levels 
of endogenous ROS and high levels of GSH. On the other hand, the redox state disequilibrium 
or down modulation of GSH made these MDR cells more sensitive to chemotherapy [9]. In JC 

virus-infected glioblastoma cells, it is possible to find the same MDR feature. However, the 
influence of proteins from virus in MDR mechanisms expression remains unknown.

T lymphocytes CD4+ and CD8+ from HAM/TSP asymptomatic and symptomatic individuals 
presented a reduced ABCC1 expression and activity when compared to uninfected ones [34]. 

However, a lower ABCC1 expression was detected in CD4+ T lymphocytes from symptomatic 
patients. This result was directly correlated to the proviral load; a lower expression of ABCC1 
was observed in patients with higher proviral load [34]. The pharmacological inhibition of 

ABCC induced a proliferation increase induced by mitogen of lymphocytes obtained from 
HTLV-1-infected individuals [19]. The expression and activity of ABCC1 transporter in BBB 
during HTLV-1 infection still remain unknown. It was suggested that dysregulations of ABC 
efflux transporters were implicated with the BBB breakdown during neurological diseases 
[35]. In infectious diseases this phenomenon can be involved in virus entrance in the CNS.

The incubation of astrocytes with gp120 enhanced the mRNA and protein levels of ABCC1. 
This effect was followed by the increase in substrate fluorescent or GSH transport and decreas-

ing of GSSG efflux. Together these results suggested that the balancing of oxidative cellular 
status involves the increase in active GSH efflux to extracellular medium [36]. HIV protease 

inhibitors—ritonavir, indinavir, saquinavir, nelfinavir, and zidovudine—were described as 
ABCC1 substrate [35], suggesting that the overexpression of ABCC1 in infected cells makes 
these cells more resistant to chemotherapy.

4. Role of GSH in HIV and HTLV-1 immune response

T CD4+ lymphocyte differentiation involves the antigen-presenting cells (APCs) that display 
antigen complexed with major histocompatibility complex class II (MHC II) on their surfaces. 
The antigens are associated to MHC II molecule that interacts with T-cell receptor of T CD4+ 

lymphocytes, leading the antigen recognition and, subsequently, activation. T-CD4+ lympho-

cyte activation can generate some profiles (named Th), which depend on molecules present 
in the microenvironment. The cell phenotype is related with a group of cytokines and other 

immune products produced by T cell, generating inflammatory or anti-inflammatory cells. 
During viral infections the activation of inflammatory T-cell phenotype can be associated with 
virus eradication. However, in the CNS the exacerbation of inflammatory response is related 
with neurodegeneration [37]. Mice infected with the retroviral complex LP-BM5, a murine 
model of AIDS, presented GSH and/or cysteine reduction in lymphoid organs (spleen and 

lymph nodes). This GSH down modulation was followed by change in cytokine profile. The 
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infected mice exhibited a higher increase in interleukin (IL) IL-5, IL-4, and IL-2 than IL-12 and 
interferon-γ (IFN-γ), suggesting an important alteration in cytokine profile from Th1 to Th2 
(Figure 2) [38].

Macrophages and dendritic cells are an important group of APCs. During infections mac-

rophages can acquire specialized functional phenotypes. Macrophages classic activated are 
involved in inflammatory responses and are denominated M1. Macrophages alternative acti-
vated exhibit an antagonic inflammatory profile and named M2 [37]. Macrophages HIV-1 and 
LP-BM5 infected exhibited a decrease in GSH and cysteine intracellular levels. In addition, 
low intracellular levels of GSH were correlated with defective processing of antigens in APCs, 
indicating that GSH may be a critical factor in antigen processing [39]. During the LP-BM5 
infection, macrophage polarization into alternative profile was observed, suggesting that M2 
cells were driving the T-cell phenotype. LP-BM5-infected mice treatment with GSH replace-

ment changed the macrophage polarization to M1 profile, inducing an increase in Th1 cytokine 
production and augmented antiviral response [38]. Thus, GSH modulation causes immune 

response phenotype alteration, leading to an important impact in virus elimination (Figure 2).

T lymphocyte CD8+ is a cytotoxic T cell. They recognize the antigens through binding between 

TCR and MHC class I associated with antigen peptide. The control of viral infection is directly 

linked with efficiency of CD8+ cytotoxic response [37]. The treatment with NAC induced an 
increase in surface activation molecule CD69 expression on unstimulated CD8+ T lymphocytes  

Figure 2. Role of GSH in HIV-1 immune response. The infection induced generation of M2 macrophages and T 
lymphocytes with Th2 phenotype. However, the GSH replacement led macrophages to M1 differentiation and CD4+ 

lymphocyte secretion of Th1 cytokines.
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obtained from HTLV-1-infected individuals. This result suggested that the increase in CD69 
expression on CD8+ lymphocytes from HTLV-1 infected donors was correlated with an aug-

mentation of GSH. Thus, increases in GSH levels could be beneficial to the activation of HTLV-
1-specific CD8+ T cell and to the elimination of HTLV-1-infected cells [19].

The neurodegeneration is associated with decontrolled inflammatory responses into the 
CNS. Inflammatory cytokines induce nitric oxide (NO) and ROS production for innate 
immune cells and microglial cells. The incubation of microglia cells in the presence of viral 

protein gp120 was observed to increase in ROS production [36]. Besides, gp120 induces secre-

tion of tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), 
leading to neuronal cell death, subsequently [40]. The inflammatory microenvironment 
reduces the glutamate uptake, inducing accumulation of this excitatory amino acid and exci-

totoxic neurodegeneration. Although, any study has not related the viral infection, GSH intra-

cellular levels, and excitotoxic neurodegeneration, the literature suggested that antioxidant 

responses can prevent the neuron death directly or indirectly.

5. Effects of antiviral therapy in GSH levels in the CNS

The strategy used to treat children with symptomatic CNS congenital CMV infection and immu-

nosuppressed individuals CMV-infected is based on doses of ganciclovir. This is an acyclic 

deoxyguanosine nucleoside analogue [41]. In vivo studies using mice model infected with CMV 

demonstrated that the treatment with ganciclovir reduced a viral load and TNFα levels. Moreover, 
the results suggested that antiviral therapy suppressed the oxidative damage by downregulation 

of malondialdehyde and upregulation of GSH levels in mice serum [42]. Unfortunately, the role 
of ganciclovir in CNS oxidative damage related with CMV infection remains unknown.

No antiviral treatment intervention exists for HTLV-1 infection. The HAM/TSP treatment is 
limited to symptomatic therapy. Usually, symptomatic patients are treated with corticosteroid 
pulse therapy. During last decades the antiviral therapy against HIV was improved, resulting 
in a significant reduction AIDS-related mortality and increasing HIV-infected patient sur-

vival. The highly active antiretroviral therapy (HAART) is started with the combination of 
two nucleoside analogue transcriptase reverse inhibitors and one non-analogue nucleoside 

transcriptase reverse inhibitor or protease inhibitor plus ritonavir-boosted. The analysis of T 

CD4+ lymphocytes obtained from the peripheral blood of HIV-1-infected patients showed an 
increase in GSH levels and decrease in GSSG levels during HAART at 1 year. In this study 
the patients received one protease inhibitor (indinavir or ritonavir) in combination with two 

nucleoside analogs (lamivudine plus zidovudine or plus stavudine), suggesting that the 

HAART ameliorates the oxidative alterations related with HIV-1 infection [43]. However, the 

effects of HAART on GSH levels may be different in other cell types. Human aortic endo-

thelial cells pre-exposed to HAART produced higher levels of ROS than untreated cells after 
phorbol myristate acetate stimulation. After the HAART treatment, T-lymphocyte cell adhe-

sion on human aortic endothelial cell monolayer increases significantly. However, the addi-
tion of NAC or GSH induced the inhibition of these effects, suggesting that the modulation of 
antioxidant levels activated the endothelium [44].
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The first approved antiretroviral drug was zidovudine (AZT), a nucleoside reverse transcrip-

tase inhibitor. The relationship between AZT and GSH has been studied since 1998. Mice 
treatment with AZT did not exhibit a significant decrease in GSH in total muscle homogenate, 
but the GSSG concentration increases, leading an increase in GSSG/GSH ratio. Furthermore, 

AZT treatment induces a skeletal muscle mitochondrial peroxide production [45]. Similar 

results were observed in monocytic cell lines incubated in the presence of AZT. The AZT 
treatment induced a significant reduction in GSH levels and destruction of mitochondria [46]. 

AZT is the antiretroviral drug with the best intracerebral penetration, however this substance 
virus resistance mutations in periphery and CNS [47]. The effects of AZT in GSH levels in 
the CNS have been remained unknown. Zang et al. demonstrated that mouse neuron expo-

sure for short term to AZT did not present alteration in mitochondrial DNA levels. However, 
the results suggested that AZT long-term exposure caused deletion of mitochondrial DNA 
and neuron death [48]. Furthermore, AZT or the combination AZT plus indinavir (protease 
inhibitor) induces oxidative stress in human brain microvascular endothelial cells. These cells 

represent an important model to study BBB. The combination AZT plus indinavir induced an 
increase in ROS production, disruption in membrane mitochondrial potential, reduction in 

intracellular GSH levels, augment permeability of endothelial layer, leading cell death [49]. 

Together these results suggested that this antiretroviral therapy compromises the BBB and 
could be associated with HIV-1 neurological diseases.

These findings suggested that the replacement of GSH, reducing the oxidative stress in HIV-
1-infected patients, is an interesting therapeutic approach. In some therapeutic strategies, to 

restore the GSH levels NAC or pro-GSH molecules in combination with HAART have been 

used. Moreover, the higher levels of GSH improve the antiviral immune response, collaborat-

ing in viral load reduction and in maintaining normal T-CD4+ lymphocyte count [50].

6. Discussion and conclusion

In this chapter we explore some aspects about neurodegenerative diseases associated with 

viral infection, GSH, and oxidative stress. Worldwide, many individuals are afflicted by JC, 
CMV, HTLV-1, and HIV-1 and develop some neurological diseases. However, studies that 
describe how the oxidative stress is involved in disease development remain insufficient. The 
oxidative stress in the CNS is associated to many neurodegenerative diseases. ROS, including 

reactive nitrogen species, are important mediator of brain and spinal cord damage. They are 

related with inflammation and mitochondrial and proteasomal dysfunction. The vulnerability 
of the CNS is associated with the higher consumption of oxygen than other tissues. Oxygen 

is important in ATP generation process, which is responsible for energy support used during 
normal CNS function. Physiological ROS levels are essential to neuronal functions, such as 
enhancing synaptic plasticity, long-term potentiation, and memory formation. However, the 

brain endogenous antioxidant defenses have not been enough to your demand. Moreover, the 

complexity of the cell composition of this tissue and the elevated oxygen levels corroborate 

to elevated capacity of the CNS in ROS production. All cellular macromolecules are suscep-

tible to oxidative harm. ROS level elevation activates the detoxification and repair pathways. 
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The failure in these processes produces oxidation of proteins; lipids and DNA; consequently, 
organelle dysfunction; and after that neuronal damage. The critical organelle affected is the 
mitochondria, whose disruption induces reduction in ATP generation and apoptosis or necro-

sis [51]. As previously described the viral infection induced an increase in ROS production 
directly in CNS cells or indirectly by the infiltrated activated immune system cells, which use 
ROS release as mechanism to control the infection (Figure 3).

Glial cells (astrocytes and microglia) play important roles in maintaining CNS homeostasis 

through some processes, including reduction of oxidative stress. During neurodegenerative 
disorder glial cells release some factors to reestablish integrity and repair damaged cells. 

However, during the chronic inflammation, the glial activation causes an increase of ROS pro-

duction and other neurotoxic mediators, leading a neuronal damage [52]. The principal cell 

type involved in CNS inflammation is the microglia. Microglia expresses some pattern recogni-
tion receptors that are engaged by pathogen-associated molecular patterns, triggering microg-

lia activation. Activated microglia produced inflammatory mediators, such as prostaglandin 
E

2
, interleukin-1β TNFα, ROS (peroxide—H

2
O

2
, superoxide—O

2
•−), and reactive species nitrog-

enous (RNS: NO; NOO_ peroxynitrite). This phenomenon induces neuron damage. Damaged 
dopaminergic neurons release matrix metalloproteinase 3, α-synuclein, and neuromelanin that 
superactivated microglia, inducing reactive microgliosis, enhancing of the neurotoxicity-related 

mediators, such ROS (Figure 3). Moreover, ROS exerts an important effect on microglia as the 

Figure 3. The imbalance of pro-oxidants induces oxidative stress and cell damage. The vulnerability of the CNS: ↓GSH 

and ↑O
2
 consumption. Inflammation triggers microglia. Activated microglia releases inflammatory cytokines, ROS, and 

RNS. Microglia and astrocytes can be activated via pattern recognition receptors. During astrocyte activation, these 
cells released ROS, RNS, and chemokines. In this microenvironment neurons presented macromolecule oxidation, 

mitochondrial disruption, and, consequently, cell death.
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second messenger, modifying inflammatory gene transcription and, consequently, amplifying 
the inflammation. During reactive microgliosis an increase of GSSG levels is observed. Studies 
in Parkinson have been suggested that dopaminergic neurons from substance nigra can be 
associated to GSH deficiency, becoming these cells more vulnerable to ROS [53].

The glutathione transferase (GST) activity can be relate to sensibility of neurons of ROS. GSTs 

conjugate molecules, including xenobiotics, with GSH, and then, this conjugated molecules 
can be actively transported to extracellular medium by ABCC transporters. Moreover, GSTs 
are involved in c-Jun N-terminal kinase (JNK) signaling pathway. ROS causes GSTs-JNK-c-Jun 

complex formation blocking JNK signaling pathway and preventing the events associated with 

this signaling cascade. GST gene polymorphisms have been identified and produce an impor-

tant impact in enzyme activity. Some studies demonstrated that GST gene polymorphism 

carries have a positive correlation with brain cancer, Alzheimer’s disease, and Parkinson’s 
disease development risk [54]. The positive correlation between GST gene polymorphisms 

and hepatocellular carcinoma caused by hepatitis B virus chronic infection [55] and uterine 

cancer associated to human papilloma virus infection was described [56] (Figure 3). However, 

the relationship between GST gene polymorphisms and viral diseases of the CNS remains 

unknown.

The major studies relating viral infection and glia cells have been developed in HIV-1 model 
infection. Microglial cells exposed to HIV viral protein Nef release IFNβ. Then, IFNβ induces 
iNOS expression and NO production [57]. Furthermore, HIV-1 protein Tat induces NADPH 
oxidase activity in astrocytes. ROS produced by NADPH oxidase activity was related to che-

mokine (CCL2, CXCL8, and CXCL10) production, and it was inhibited by the treatment of 
astrocytes with NAC or NADPH oxidase inhibitors [58]. Together these results suggested 

that the HIV infection induces glia cell activation, ROS, and RNS which are directly involved 

in production of inflammatory mediators. The imbalance of prooxidants induces oxidative 
stress and cell damage (Figure 3).

The studies in viral diseases of the CNS have suggested an important link between GSH, 

immune response, and antiviral response. The findings indicated that the GSH replenishment 
can be used in highly active antiviral treatment. However, in asymptomatic HTLV-1 carries, 
this clinical approach should be the opposite result. The importance to study the relationship 

between GSH levels and viral neurological diseases is clear.
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