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Abstract

HOX genes belong to a family of transcription factors characterized by a 183 bp DNA 
sequence called homeobox, which code for a 61-amino-acid domain defined as the home-
odomain. These genes play a central role during embryonic development by control-
ling body organization, organogenesis, and stem cell differentiation. They can also play 
a role in adult processes such as embryo implantation, hematopoiesis, and endothelial 
differentiation. Since endothelial cell differentiation is one of the main steps to initiate 
vasculogenesis and angiogenesis, we analyzed the role of several Hox genes in the regu-
lation of these two processes. In this chapter, we summarized the evidence to support the 
function of Hox genes in adult tissues, specifically in endothelial cell differentiation, by 
studying their mechanism of action and how their target genes regulate vasculogenesis 
and angiogenesis. Understanding the cellular and molecular mechanisms triggered by 
Hox biological effects is pivotal for designing new drugs or therapies for high prevalent 
pathologies, such as cardiovascular diseases.

Keywords: Hox genes, endothelial cell differentiation, angiogenesis, vasculogenesis, 
embryonic development

1. Overview

Hox genes are responsible for the expression of a large family of transcriptional factors that play 

a key role in embryonic development, organogenesis, and anteroposterior body orientation  
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[1, 2]. Even though the main function of these genes is well known during embryogenesis, their 

role in adults remains under investigation. Several studies have linked Hox genes with adult 
processes such as vascularization, hematopoiesis, tumor angiogenesis, and cell differentiation 
[3]. In this chapter, we will focus our attention on the origin and main role of Hox genes in adult 
tissues, especially on endothelial cell differentiation, neovasculogenesis, and angiogenesis.

2. Origin of the Hox gene cluster

The Hox genes were discovered in 1915 by Calvin Bridges in a mutant Drosophila melanogaster 

named Bithorax, which showed a partial duplication of the thorax [4]. Years later, another 

mutation in the Hox genes was identified resulting in a mutant fly exhibiting legs instead of 
antenna named Antennapedia [5]. The Hox genes were then grouped into these two com-

plexes (Bithorax and Antennapedia), which are located on chromosome 3 and play a key role 

in conferring the identity along the anteroposterior axis of the body. The role of these genes 

in establishing the anteroposterior axis is highly conserved in vertebrates [5, 6]; however, the 

Hox gene cluster has changed during its evolution, evidenced by different numbers of clusters 
between species (Figure 1). For example, whereas invertebrates typically possess a single clus-

ter, vertebrates such as mice and humans possess four gene clusters coding for the three differ-

ent axes: cervical, thoracic, and lumbosacral [2, 6]. Despite these differences, Hox genes have 
been identified in all species, which reflects the important role of these genes in the regulation 
of body structure [1, 7]. In humans, the 39 mammalian Hox genes are grouped into four chro-

mosomal clusters named HOXA, HOXB, HOXC, and HOXD, located on chromosomes 7p14, 

17q21, 12q13, and 2q31, respectively [8]. This large family encodes homeodomain transcrip-

tion factors that share highly conserved DNA sequence formed by 183 bp called “homeobox,” 

which encodes a polypeptide core of 61 amino acids formed by three alpha helices known 

as the homeodomain. Most homeodomains recognize highly conserved DNA elements that 

Figure 1. The composition and evolutionary differences of the HOX gene cluster between Drosophila melanogaster, 

mouse, and Homo sapiens. The HOX gene clusters and their chromosomal location were compared between Drosophila 

melanogaster, mouse, and Homo sapiens. Genes were grouped according to the distribution of the three axes corresponding 

to the anteroposterior part of the body (cervical, thoracic, lumbosacral).
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serve as a promoter for many genes (motif TAAT) being a T in the direction 5′ determinant for 
this coupling acknowledgment [9]. Hox transcription factors are well known for playing a key 

role during cell and tissue differentiation in developing embryos; however, other studies have 
shown that these homeotic genes also play a role in adult process such as hematopoiesis and 

embryo implantation by promoting neovasculogenesis and angiogenesis [10].

3. Hox genes in adult-related processes

3.1. Endometrial tissue

Hox genes are crucial during endometrium redevelopment and corpus luteum formation 

because they regulate cell growth and differentiation during each reproductive cycle [10]. 

Expression of HoxA10 in human epithelial and stromal endometrial cells has been signifi-

cantly higher in the intermediate and late phase of the menstrual cycle, suggesting that it 

could favor the implantation of the embryo [11–13]. Mechanistically, the protein encoded by 

this gene regulates the expression of several proteins related to endometrial development 

such as Emx2/EMX2, integrin β3, insulin-like growth factor-binding protein-1 (IGFBP-1), 
cyclin inhibitors, Wnt family genes, and the prostaglandin receptors EP-3 and EP-4 [14, 15].

Endometrium development is regulated by estrogen and progesterone; thus, any regulation 

of Hox genes by these hormones suggests that these genes play a role in the growth and 

development of the endometrium. For example, 17β-estradiol and progesterone significantly 
increased the expression of HoxA10 in endometrial cells [16] and primary culture of stromal 

endometrial cells, respectively, with a higher response induced by progesterone compared to 

17β-estradiol [17] and even higher when both hormones were used in combination [17, 18].

HOXA11 is another hox gene from the A cluster that has been closely associated with morphologi-

cal alterations [19]. During the development of the female reproductive tract, HOXA11 is normally 

expressed in the cervix and lower uterine segment. When the expression of this gene is impaired, it 

promotes aberrant epithelial cell differentiation leading to epithelial ovarian neoplasia [20, 21]. In 

addition, HOXA11−/− mice exhibit reduced development of the stroma in the glandular tissue and 

decidua during pregnancy [18, 22], suggesting a role in myometrium preparation to implantation.

More recently, Yim et al. suggested that HOXA11 promotes metastasis by regulating the 

expression of gene coding for metastasis-related proteins [23]. These findings indicate that 
HOXA11 plays a role in the aggressive nature of ovarian cancer cells through HOXA11-

mediated expression of target genes such as matrix metalloproteinase (MMP) and VEGF.

3.2. Implantation

Implantation is a series of sequential biological events triggered after fertilization in which the 

blastocyst migrates from the fallopian tube into the uterus. The fertilized egg is then attached to 
the uterine wall and subsequently implanted in the endometrium. Implantation occurs only in 

a very specific time period and place during the mid-secretory phase of the uterine cycle [24]. 

During this period, the uterus becomes more receptive by promoting a series of cellular and 
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molecular events favoring the implantation of the embryo. In this stage, the role of several inter-

cellular mediators has been implicated, which include specific cytokines, growth factors, adhe-

sion molecules, lipid mediators, steroid hormones, and Hox transcription factors [25]. Like in 

endometrial tissue, HOXA10 also plays a role during embryo implantation as it has been shown 

that despite the fact that HOXA10-deficient mice (HOXA10−/−) exhibited normal ovulation cycle, 

the implantation did not occur. Interestingly, implantation was restored when embryos from 

HOXA10−/− were transferred to wild-type mice; however, wild-type embryos were not implanted 

in HOXA10−/− female mice [18], suggesting that HOXA10 is required to have an adequate implan-

tation environment. Moreover, HOXA10−/− and HOXA11−/− mice also exhibit poor implantation 

due to insufficient development of stromal glandular tissue and decidua during pregnancy 
[26]. In humans, the expression of both HOXA10 and HOXA11 genes rises gradually during 

the proliferative phase of the menstrual cycle, showing a peak of expression in mid-cycle, when 

implantation typically occurs [13, 27]. Interestingly, this peak of expression was not observed 

in women with endometriosis or in mice with induced endometriosis [13, 27], suggesting that 

HoxA10 and HoxA11 peaks require a healthy endometrium to support and continue with the 

implantation process. Several studies have shown that Hox10 not only promotes implantation 
directly but also inhibits detrimental factors such as empty spiracles homeobox 2 (EMX2), P300/
CBP-associated factor (P/CAF), and gamma-aminobutyric acid (GABA). Studies by Taylor and 
colleagues demonstrated that HoxA10 repressed EMX2 expression, which in turn inhibited the 

proliferation of endometrial cells [28], suggesting that HoxA10 is a pro-proliferative and pro-

implantation factor in these cells. Zhu and colleagues demonstrated that HoxA10 repressed the 

promoter activity of P/CAF, which impairs endometrial receptivity and embryo implantation by 
downregulating integrin β3 [29]. Recent studies have also shown that HoxA10 decreased mRNA 

levels and protein translocation of GABA receptor [30], which plays a role in the generation of 

uterine contractions and labor [31]. Thus, the quiescent uterus is required for adequate implan-

tation and embryo development, along with reduced expression or activity of GABA receptor.

3.3. Hematopoiesis

Hox genes are highly expressed in hematopoietic stem cells (HSC) and immature progenitor 
cells [32]; however, this expression is gradually decreased upon cell differentiation. Moreover, 
overexpression of genes from the HOXA cluster impairs B and T lymphocyte differentiation, 
affects erythropoiesis, and reduces stem cell bone marrow homing, favoring the induction of 
myeloproliferative disorders and leukemias [33]. In fact, overexpression of HOXA1, HOXA4, 

and HOXA6 genes has been shown to favor the generation of permanent cell lines [34]. Studies 
by Wang et al. showed increased proliferation and higher self-growth and self-renewal of 

hematopoietic stem progenitor cells (HSC) (Line 9 and Line H1) when HoxA6 was overex-

pressed compared to normal conditions [34]. The authors observed that overexpression of this 

gene sustained HSC self-renewal and multipotency by promoting mature erythroid lineage 
cells and partial apoptosis of erythroid progenitors.

Another gene involved in this process is HOXA5. Overexpression of HoxA5 in HSC isolated from 
umbilical cord blood, bone marrow [35], or mice [36] promotes a significant shift toward myeloid 
differentiation in relation to erythroid differentiation when compared to respective control cells 
[35, 36]. Then, the authors evaluated genes affected by HoxA5, and they observed downregula-

tion of several genes involved in cell proliferation, differentiation, and metabolism [35, 36].
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HOXA9 has also been associated with the regulation of myeloid cell differentiation. The acti-
vation of HoxA9 complex favors the recruitment of CREB-binding protein (CBP/p300), his-

tone acetylation, and activation of a number of transcription factors and proto-oncogenes, 

including Erg, FLT3, and SOX4 Myb, which regulate hematopoiesis [37].

Another Hox gene family member linked to hematopoiesis is HOXA10. The expression of 

this gene is high in myeloid progenitor cells, and it decreases during cell maturation [38]. Bei 

et al. [39] studied the expression of HoxA10 in bone marrow from patients with human acute 

myeloid leukemia (AML), and they observed increased expression of this gene in patients with 

poor prognosis. Then, they developed a HoxA10-overexpresing mouse model identifying 

CDX4, a caudal gene that contain homeodomain and code for transcription factor that plays 

an important role in hematopoiesis, as a HOXA10 target gene [39]. Overall, their results dem-

onstrated that HOXA10 was contributing to AML pathogenesis via CDX4-positive feedback. 

Other groups demonstrated that HoxA13 was associated with the development of monocytes 

and macrophages, and its expression was observed more often in monocytic leukemia cell lines 

in comparison with other types of leukemia [40]. Moreover, the expression of genes HOXB3 

and HOXB4 has been found to be altered in patients with AML with poor prognosis [41].

4. Hox genes in vascularity and angiogenesis

The development of the vascular system involves two processes called vasculogenesis and 

angiogenesis [42]. During vasculogenesis, angioblasts derived from different sources, including 
mesodermal embryonic layer or bone marrow, differentiate into endothelial cells and subse-

quently form a primitive network of tubular structures called blood vessels [43]. Vasculogenesis 
occurs largely during embryonic development; however, the presence of a population of cir-

culating endothelial progenitor cells (EPCs) derived from the bone marrow in adults strongly 
suggests that this process may occur in the postnatal period [44]. In contrast, angiogenesis refers 

to the formation of new blood vessels from preexisting vessels by cell migration and remod-

eling of the primitive vascular network [45]. Vasculogenesis and angiogenesis are involved in 
the development of the functional vascular system in the embryo and the formation of blood 

vessels in the postnatal period. Both vasculogenesis and angiogenesis are under the regulation 

of several growth factors, which include vascular endothelial growth factor (VEGF), fibroblast 
growth factor 2 (FGF2), platelet-derived growth factor (PDGF), and transforming growth factor 
β1 (TGF-β1), among others [45]. Interestingly, different research groups have found that Hox 
genes regulate the expression of these growth factors and, in turn, endothelial cell differentia-

tion. In the next section, we will describe supporting evidence about the role of Hox genes in 

endothelial differentiation, vasculogenesis, and angiogenesis (Figure 2).

4.1. HOXA3

The HOXA3 gene is required for modeling the anterior body plan during embryogenesis, 

but they can also play a role in promoting angiogenesis [46, 47]. It has been shown that 

activation of HOXA3 favors the migration of endothelial cells and keratinocytes, associ-

ated with increased expression of urokinase-type plasminogen activator receptor (uPAR) in 
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both in vitro and in vivo studies using mice [46, 47]. Similar results were demonstrated by 
Hansen et al. who confirmed that HOXA3 is a potent inducer of angiogenesis in vivo and also 

promotes direct keratinocyte migration [48]. These results suggest that HOXA3 potentiates 

two key processes involved in efficient wound repair: angiogenesis and reepithelialization  
[46, 48]. Gene transfer studies of HOXA3 suggest that this gene also functions as a potent 

inducer of wound repair in genetically modified diabetic animals. A single application of pro-

tein HoxA3 resulted in complete healing of wounds after 42 days, while wounds treated with 

the control plasmid without HOXA3 (β gal) required 77 days for complete tissue repair. In 
addition, it was demonstrated that secreted protein HoxA3 or HoxA5, coming from respective 

genes and derived from composite skin constructs, exhibits decreased expression of CCL-2 

and CxCL-12 inflammatory mediators, which play a key role in the attraction of monocytes, 
macrophages, and other wound immune cells [48]. Thus, reduced recruitment of leukocytes 

mediated by HOXA3 may contribute to the prolonged integrity and viability of the composite 

skin constructs expressing HOXA3, by reducing inflammation during wound healing process. 
Taken together, the combined actions of HoxA3 on endothelial cells and keratinocytes lead to 

increased angiogenesis, normal epidermal differentiation, reduced expression of inflamma-

tory mediators, and reduced graft contraction. These effects suggest that HoxA3 may have 
therapeutic benefits in wound repair by improving the integrity of composite skin grafts.

4.2. HOXA9

The HOXA9 gene code for two different proteins, HA-9A and HA-9B isoform A (HA-9A) and 

HoxA9 protein isoform B (HA-9B) [49] that share a common homeodomain [15]. The expression 

of HA-9A has been observed exclusively during fetal development, whereas the HA-9B has been 

found not only in fetal but also in adult organism and specifically in endothelial cells [49, 50].

In 2004, Bruhl et al. showed that HOXA9 was able to regulate angiogenesis [51]. These authors 

using human umbilical vein endothelial cells (HUVECs) with sense/antisense oligonucleotides 
or siRNA for this gene observed that HOXA9 expression was essential for endothelial cell migra-

tion and tube formation. Also, they evaluated the regulation of ephrin type-B (Eph) receptor B4 

Figure 2. HOX genes modulate the expression of crucial target genes to promote the differentiation of mature 
endothelial cells. Hox genes promote the differentiation of endothelial progenitor cells, which exhibit an immature 
phenotype (CD70+CD34+Oct-4+), into mature endothelial cells that express endothelial nitric oxide synthase (eNOS), 
vascular endothelial growth factor receptor 2 (VEGFR2 or KDR), CD31, von Willebrand factor (vWF), and the lectin-type 
oxidized LDL receptor 1 (LOX-1). To promote this phenotype, some Hox genes upregulate crucial genes such as fetal 

liver kinase 1 (Flk1), angiopoietin 2 (ANG2), ephrin type-B receptor 4 (EphB4), and FI3K receptor, whereas other Hox 
genes downregulate other factors such as hypoxia-induced factor type 1α (HIF1α), cyclooxygenase-2 (cox-2), ephrin 
type-a receptor 1 (EphwA1), and VEGFR2.
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(EphB4) by HOXA9, since previous reports [52, 53] showed that Eph receptors were homeobox 

protein potential targets. Then, they decided to study EphB4 since it was specifically associated 
with angiogenesis and cell migration processes [54, 55]. After elegant experimentation and anal-

ysis, they conclude that HoxA9 regulated endothelial cell migration and tube formation by pro-

moting the expression of EphB4. Later in 2012, Zhang and colleagues established that HoxA9 

was essential for postnatal neovascularization in vivo. In addition, they found that HoxA9 was 

able to regulate the expression of endothelial genes such as endothelial nitric oxide synthase 

(eNOS), vascular endothelial growth factor receptor 2 (VEGFR2), and VE-cadherin in vitro in 
mature endothelial cells exposed to “shear stress” [56]. Furthermore, the HOXA9−/− mouse model 

showed a reduced number of circulating endothelial progenitor cells (EPCs) as well as reduced 
overall postnatal neovascularization after ischemia compared to wild-type mice. Altogether, 

these results demonstrated that HoxA9 is critical for postnatal neovascularization [57].

4.3. HOXA13

The central function of the placenta is to allow the formation of a vascular labyrinth, a juxta-

posed series of finely branched blood vessels and trophoblast that regulate the exchange of 
nutrients and residues while maintaining the separation of maternal and fetal blood supplies. 

The study by Shaut et al. showed a morphological alteration in the labyrinth endothelial cells, 
branching of the vessels, and in the integrity of the vessels when HOXA13 was dysfunctional 

[58, 59]. These findings suggest that HOXA13 regulates a number of genes in the vascular endo-

thelium required for vessel adhesion and branching, providing a functional explanation of the 

mean gestational lethality exhibited by HOXA13 mutant mice. The same authors identified 
that EphA6 and EphA7 were direct transcriptional targets of HOXA13 in the genital tubercle 

vascular endothelia [59]. Altogether, these findings provide a new genetic pathway to consider 
when placental pathologies or placental evolutionary ontogeny are characterized. Evidence 

for this coordination is observed in the labyrinth endothelium, where the genes required for 

cell adhesion and vascular branching are affected concomitantly by the loss of HOXA13 func-

tion, including Neuropilin-1, Enpp2, Lyve1, Caveolin-1, Foxf1, and Tie2, resulting in reduced 

levels of provascular factors required for the vascular development of the labyrinth [58].

Besides HoxA genes, the HoxB and HoxD loci have also been involved in endothelial and angio-

genesis regulation processes [60]. HUVECs, for example, express several genes from these loci [7], 

and it has been shown that some of these genes inhibit in vitro proliferation of HUVECs, whereas 
others have been associated with increased capillary morphogenesis and vasculogenesis [61].

4.4. HOXB1

Previous studies have revealed an overlap between HoxA1 and HoxB1 functions during the 
specification of the rhombomeres, a transiently divided segment of the developing neural 
tube, from which neural crest cells emerge. It has been demonstrated that both HoxA1 and 

HoxB1 functions are required for the heart development [62, 63]. HoxB1−/− embryos were pre-

viously described as embryos with normal pharyngeal arch arteries and cardiac neural crest-

derived tissue remodeling [64]. However, more recently, Roux et al. observed one HoxB1 

mutant embryo with an aortic arch artery defect, which is characteristic of a developmen-

tal failure of the left pharyngeal arch arteries (PAA) [65]. These data suggest that HOXB1 is 
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important for PAA formation, and the authors provide a novel model to study the molecular 
origin of great artery defects, which are often observed in human patients.

4.5. HOXB3

The function of the HOXB3 gene was studied after finding the function of its paralogous 
gene, HOXD3. While HOXD3 is required for mediating the invasive and migratory behavior 

of endothelial cells during the early stages of neovascularization, HOXB3 is required for the 

morphogenesis of new capillary tubes, suggesting that these paralogous Hox genes may per-

form complementary functions [53]. The authors also found that the capillary morphogenesis 

induced by HOXB3 was mediated by ephrin A1 ligand (EFNA1) [53].

4.6. HOXB5

The HOXB5 gene, also known as Hox-2.1, codes for a potent transcriptional regulator pres-

ent in several adult tissues. Similar to HOXA9, HOXB5 has been associated with vascular 

alterations. In this regard, studies have shown that HOXB5 homeobox protein regulates the 

expression of VEGFR2, the earliest marker of endothelial precursors, by direct binding to the 
HOXB5-binding element (HBE) in the VEGFR2 gene [66]. They also found that overexpres-

sion of HoxB5 increased the number of angioblasts during embryonic stem cell differentia-

tion and the number of mature endothelial cells, which in turn have been associated with 

high expression of platelet endothelial cell adhesion molecule (PECAM) and the formation 
of primitive blood vessels [66]. Years later, the same research group investigated the in vivo 

role of HoxB5 in angiogenesis using the chick (Gallus gallus) chorioallantoic membrane assay. 

They concluded that HoxB5 exerted an activating effect on angiopoietin 2 (ANG2), which 
was essential for endothelial cell sprouting and vascular growth [60]. More recently, the same 

group investigated the role of HoxB5 overexpression during revascularization in ischemic dis-

ease using femoral artery ligation in C57BL/6 mice. They observed that HoxB5 enhanced per-

fusion restoration and increased capillary density in vivo via monocyte chemotactic protein-1 

(MCP-1) and interleukin-6 (IL-6) upregulation and increased endothelial cell migration [67].

Furthermore, other studies have shown that HoxB5 is a transactivator of the promoter of VEGFR2, 
an early marker of endothelial precursors [66], which might be involved in the differentiation 
of mesoderm-derived precursors toward an endothelial phenotype [66, 68]. In fact, it has been 

described that overexpression of HoxB5 leads to differentiation of mesoderm-derived precursors 
toward the endothelial phenotype, which in turn lead to high expression of angiopoietin 2 (ANG2) 

and therefore enhance vascularization in a model of fertilized white Leghorn chicken eggs [68].

4.7. HOXB7

HOXB7 has been associated with tumor progression and angiogenesis [61]. Care et al. in 2001 pro-

vided evidence that HoxB7 promotes tumor-associated angiogenesis by increasing the expression 

of VEGF, melanoma growth stimulatory activity/growth-related oncogene alpha, interleukin-8, 
and angiopoietin 2 (ANG2) in SkBr3 cells [69]. The authors concluded that HoxB7 acted as a key 

factor in a tumor-associated angiogenic switch [69]. In 2008, Murthi et al. identified differences in 
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the expression of HoxB7 between micro- and macrovascular endothelial cells [70]. They observed 

higher expression of HoxB7 in macrovascular HUVECs and placenta compared to microvascu-

lar endothelial cells such as human placental endothelial cell (HPEC) line, human microvascular 
endothelial cells (HMVEC), and freshly isolated placental microvascular endothelial cells (PLEC). 
Storti et al. found that HoxB7 was expressed in 10 out of 22 multiple myeloma patients analyzed 
at the diagnosis related to high bone marrow angiogenesis [61]. They also found that HoxB7 

was overexpressed in about 40% of myeloma cell lines compared with normal plasma cells [61]. 

Furthermore, they observed that HoxB7 overexpression in multiple myeloma cells significantly 
modified their transcriptional and angiogenic profile by upregulating VEGF, fibroblast growth 
factor 2 (FGF2), metalloproteinase-2 (MMP-2), platelet-derived growth factor A (PDGFA), and 
WNT5a, while HoxB7 also downregulates thrombospondin-2, an inhibitor of angiogenesis [61]. 

Finally, the homeobox gene HoxB7 is overexpressed across a range of cancers and promotes 

tumorigenesis by inducing cell proliferation, survival, invasion, and tumor angiogenesis in pan-

creatic adenocarcinoma [71], cervical cancer [72], glioblastoma tumors [73], and breast cancer [74].

4.8. HOXD1

HOXD1 is specifically expressed in mature endothelial cells compared to early-stage EPC [62, 

75]. However, not only HoxD1 is expressed in these cells, but also microarray studies have 

revealed that several Hox genes from the cluster on chromosome 2 such as HOXD1, HOXD3, 

HOXD4, HOXD8, and HOXD9 were highly expressed in blood-derived endothelial cells [62]. 

In particular, HOXD1 regulates endothelial cell migration and cell adhesion on fibronectin by 
targeting integrin β1 (ITGβ1) in mature endothelial cells [75].

4.9. HOXD3

HOXD3 is a member of the HOXD cluster on chromosome 2, and it can be induced by 

extracellular matrix protein, Del-1, and integrin alphavbeta5 interaction on resting endo-

thelium. Del-1 is a protein that accumulates around angiogenic blood vessels and promotes 

angiogenesis in the absence of exogenous growth factors [76]. Zhong et al. showed that 

Del-1 initiates angiogenesis by binding to integrin alphavbeta5 on the resting endothe-

lium, resulting in expression of HoxD3 [76]. HoxD3 was then promoting angiogenesis by 

inducing the expression of the pro-angiogenic molecule integrin alphavbeta3 (integrin β3) 
[76]. These findings provide evidence for an angiogenic switch that can be initiated in the 
absence of exogenous growth factors indicating that the angiogenic matrix protein Del-1 

may be a useful tool for the therapy of ischemic disease [76]. A year later, Chen and Ruley 

demonstrated the role of HoxD3 expression in human brain vessels [52]. They showed 

that HoxD3 expression significantly induced cerebral angiogenesis, increased focal cere-

bral blood flow, and reduced vascular leakage by inducing integrin β3. These data suggest 
that HoxD3 plays an important role in regulating angiogenesis. Other studies reported that 

HoxD3 mediates the basic fibroblast growth factor (bFGF)-induced expression of integrin 
β3 and urokinase plasminogen activator (uPA) in HUVECs [77] and promotes angiogenesis 

in in vivo models [78, 79]. Furthermore, HOXD3 has been shown to be involved in cerebral 

angiogenesis in mice [52].
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Figure 3. HOX genes regulate angiogenesis. Differential expression of Hox genes tightly regulates endothelial cell 
proliferation, migration, adhesion, and blood vessel formation (angiogenesis) by activating or silencing relevant target 

genes, such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), platelet factor 4 (PF4) or 
chemokine (C-X-C motif) ligand 4 (CXCL4), interleukin-8 (IL-8), integrin beta 1 (ITGβ1), and both vascular endothelial 
growth factor receptors 1 and 2 (VEGFR1/VEGFR2).

4.10. Hox genes with anti-angiogenic effects

As previously described, several transcription factors encoded by Hox genes contribute to 

anti-angiogenic activity such as HOXA5, HOXC9, and HOXD10 [79].

4.11. HOXA5

It has been shown that the presence of HoxA5 was associated with the upregulation of throm-

bospondin-2 (TSP-2), a naturally occurring inhibitor of angiogenesis. In addition, HoxA5 
expression was also associated with downregulation of pro-angiogenic genes such as Ephrin 

A1 (Efna1), VEGFR2, hypoxia-inducible 1α (HIF1α), and cyclooxygenase-2 (COX-2) [80].

4.12. HOXC9

HOXC9 is a transcription factor expressed in blood vessels in mice [81] and in the cardinal 

vein of zebrafish [82]. Kroll’s group investigated this transcription factor in human vascular 
endothelial cells and zebrafish, and they observed that this protein was a negative regula-

tor of circulating endothelial cells. They found that HoxC9 was highly expressed in resting 

endothelial cells; however, its expression was downregulated under hypoxic conditions, and 

overexpression of this factor inhibited endothelial migration, tube formation, and endothe-

lial cell proliferation by targeting IL-8 transcription [82]. Finally, using a zebrafish model, 
they observed in vivo that HoxC9 overexpression inhibited the development of their vascular 

structure; this defect was rescued with exogenous IL-8. This data suggests that HoxC9 plays a 

negative role in the induction of endothelial cell growth by inhibiting IL-8 production [81, 82].

4.13. HOXD10

HOXD10 is another negative regulator gene for angiogenesis as its overexpression inhibited 

dermal microvascular endothelial cell migration in vitro [53]. In addition, it has been shown 

that HoxD10 reduces the expression of GATA-binding protein transcription factor, a family of 

transcription factors that contain two zinc finger motifs and bind to the DNA sequence (A/T)
GATA(A/G), from where it acquires its name. HoxD10 via those transcription factors is able to 

regulate expression of VEGFR1 and VEGFR2 in differentiated endothelial cells [83]. Therefore, 
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these observations suggest that there is an overlapping and complementary role between Hox 

genes to maintain a balance between pro-angiogenic and anti-angiogenic states (Figure 3).

5. Hox genes and adult stem cells

Hox genes act as transcriptional regulators, which have been involved in the differentiation 
of stem cells into several lineages and different cell types. One of the main steps to initiate 
vasculogenesis and angiogenesis is the differentiation to endothelial lineage from pluripotent 
stem cells. Studies have suggested that Hox genes contribute to the differentiation of EPCs 
into mature endothelial cells (Table 1). In the next section, we will present the evidence for the 

role of Hox genes in the differentiation of adult stem cell.

5.1. Endothelial progenitor cells

Several members of the Hox family play an important role in the embryonic development of 
the cardiovascular system and regulate angiogenesis in adults [84]. In addition, some Hox 

transcription factors such as HoxD3, HoxC6, and HoxC8 modulate the expression of proteins 

in mature endothelial cells, whereas HoxB5 appears to be involved in the in vitro differentia-

tion of embryonic precursor cells toward endothelial lineage [66, 81]. HoxA9 is important for 

myeloid, erythroid, and lymphoid hematopoiesis [88, 89] and stem cell expansion [90]. It is 

also essential for the migration and tube-forming capacity of mature endothelial cells [51] and 

could serve as a switch toward endothelial commitment during progenitor cell maturation. 

The HOXD3 gene is also involved in the differentiation of EPC to endothelial cell. The expres-

sion of HOXD3 retained endothelial cells in an invasive state and prevented vessel maturation 

leading to vascular malformations and vascular tumors. Therefore, HoxD3 regulates endo-

thelial cell gene expression associated with the invasive stage of angiogenesis. The expression 

Cellular type Hox 

genes

Period of 

expression

Target gene Regulation Functions Reference

Pro-angiogenic

Endothelial cells of 

the human dermal 

microvasculature

HoxA3 Late embryogenesis 

and wound healing

uPAR + Endothelial cell 

migration

[47]

MMP-14 +

HUVECs HoxA9 Post birth 
neovasculogenesis

EphrinB4 + Angiogenesis [51]

eNOS + Endothelial cell 

proliferation

[84]

VEGFR2 + Endothelial cell 

activation

Cellular line 

(MDA-MB-231, T47D, 

MTLn3)

HoxB2

Endothelial cells of 

the human dermal 

microvasculature

HoxB3 Neovascularization Ephrin A1 + Endothelial cell 

vessel formation

[53]
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of HoxD genes has been shown to be temporally regulated as the expression of HoxD10 is 

maximal 3 days after stimulation with angiogenic factors, whereas the expression of HoxD3 

increases after 3 days, indicating that the differentiation and maturation of endothelial cells 
work alongside with changes in the expression of Hox genes [90].

6. Conclusions

Hox genes have been traditionally recognized as genes involved in the embryonic devel-

opment; however, further research showed that homeobox genes also play a role as master 

regulators of tissue and organ patterning in adults. These genes can regulate cell differentia-

tion, proliferation, and migration to tissues exposed to constant turnover, such as vasculature, 

Cellular type Hox 

genes

Period of 

expression

Target gene Regulation Functions Reference

Angioblasts (rat) HoxB5 Neovascularization VEGFR2 + Endothelial cell 

activation

[66]

HUVECs HoxD3 Neovascularization Collagen1A1 + Adhesion and 

migration of 

endothelial cells

[77]

Human 

microvasculature 

endothelial cells

Integrin-α + [78]

Murine embryonic 

stem cells

HoxA13 Postnatal 
neovascularization

EphA4 + Organización 

células endote-

liales y formación 

de vasos

[54]

EphA7 +

Vascular smooth 
muscle cells

Prx1 Late embryogenesis TN-C + Proliferation of 
smooth muscle 

cells

[85]

α-Actin + [65]

Vascular smooth 
muscle cells

Prx2 Late embryogenesis TN-C + Proliferation of 
smooth muscle 

cells

[85]

Human pulmonary 

endothelial cells

Hhex Vascular insult Myh10 + Plasticity smooth 
muscle cells

[84]

Human brain 

endothelial cells

Meox2 Postnatally MLL77 — Endothelial cell 

apoptosis

[66]

Anti-angiogenic

HUVECs HoxA5 Postnatally VEGFR2 – Endothelial cell 

activation

[86]

Ephrin A1 – Endothelial cell 

migration

[87]

Human endothelial 

cells

HoxD10 Postnatally Integrin-α — Endothelial cell 

migration

[53]

uPAR, urokinase receptor; MMP-14, matrix metalloproteinase-14; EhB4, ephrin type-B receptor 4; eNOS, endothelial 
nitric oxide synthase; VEGFR2, vascular endothelial growth factor receptor 2; Myh10, myosin heavy chain 10; MLL, 
histone-lysine N-methyltransferase; HUVEC, human umbilical vein endothelial cell.

Table 1. Regulation of the Hox genes in vascular cells.
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endometrium, and bone marrow. Thus, it has been shown that Hox genes can play a role 

in defining an endothelial phenotype and/or promoting neovascularization; however, other 
genes from the Hox family can also play an anti-angiogenic role by preventing angiogenesis. 

These genes regulate different processes by targeting key proteins related to angiogenesis 
such as VEGF, IL-8, Efna1, and TSP-2 among other gene targets.

Since Hox genes play a role in the regulation of stem cell differentiation into endothelium, 
angiogenesis, and vasculogenesis, the manipulation of these genes could lead to a useful gene 

therapy in patients with vascular damage. A better understanding of the cellular and molecular 
mechanisms related to the biological effects of Hox genes is essential for designing new drugs 
and treatment to treat worldwide prevalent diseases such as cancer and cardiovascular disease.
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