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Abstract

Human mesenchymal stem cells (MSCs) are potential candidates for various applica-
tions in the fields of immunotherapy. Their multilineage differentiation capability and 
immune modulatory features allow their prospective application for the management of 
different immunological circumstances. However, the local microenvironment, in addi-
tion to the source of the MSCs can control diverse biological features of the cells. Indeed, 
throughout their therapeutic application, MSCs may interact with their microenviron-
ment through their expressed toll-like-receptors (TLRs), producing immune modulating 
reactions. Stimulation of MSCs before or within the potential treatment procedures with 
distinct TLR ligands may assist as an effective step controlling the biological function of 
the MSCs as needed in different therapeutic stages of the disease.

Keywords: TLR, immunotherapy, immunomodulation, mesenchymal stem cells

1. Introduction

Human mesenchymal stem cells (MSCs) are potential candidates for various applications in 

the fields of immunotherapy [1, 2]. Their multilineage differentiation capability and immune 
modulatory features allow their prospective application for the management of different 
immunological circumstances [1, 2]. However, the local microenvironment, in addition to the 
source of the MSCs can control diverse biological features of the cells [1, 2]. Indeed, through-

out their therapeutic application, MSCs may interact with their microenvironment through 
their expressed toll-like-receptors (TLRs), producing immune modulating reactions of the 
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cells. Thus, by comprehending these TLR-promoted properties on immune regulating func-
tions of MSCs, potential therapeutic applications of these cells can be optimized [1, 2].

Toll-like receptors (TLRs), major molecules connecting the innate and adaptive immune 
responses, are germ line-encoded pattern-recognition receptors (PRRs), identifying specific 
pathogen-associated molecular patterns (PAMPs), thus supporting the activation of immune 
cells [3, 4]. They work as sensors for different pathogens and play an important role in the 
pathogenesis of autoimmune, chronic inflammatory and infectious diseases [5]. So far, 10 
functional human TLRs have been categorized [2, 6]. Depending on their PAMP ligands and 
their cellular localization, TLRs are divided into intracellular and extracellular receptors. 
Extracellular TLRs are expressed on the cell surface and generally identify constituents of 
microbial membranes as lipids and lipoproteins (TLR1, TLR2, and TLR6), lipopolysaccharide 
(LPS) (TLR4), and flagellin (TLR5). The intracellular group is expressed inside the cells, where 
they recognize double-stranded RNA (TLR3), single-stranded viral RNA (TLR7 and TLR8) 
and unmethylated CpG DNA of viruses and bacteria (TLR9) [7].

Multipotent stromal cells (MSCs) of diverse origin have been presented to express functional 
TLRs in definite patterns [2, 8], turning them selectively sensitive to specific microbial com-

pounds. When activated by these compounds, TLRs can control MSCs’ proliferative, immu-
nomodulatory and differentiation potentials [9]. Differential expression profiles of functional 
TLRs 1–10 were described on MSCs from various tissues of the human body [10]. Results 
displayed that the specific profile of expressed TLRs differs according to the tissue origin of 
the MSCs, which endorses different immunomodulatory and therapeutic potentials of these 
cells during transplantation in infectious and inflammatory environments in-vivo [1, 10].

2. The immune system

Defending the human body against potential threats of invading pathogens depends on a 
number of natural mediators which are capable of recovering the homeostasis and preserv-
ing it [11]. This biological process of protection involves cells and molecules opposing the 
microorganisms detected by the immune system, originally developed in the human embryo. 
This mechanism starts with hematopoietic stem cells that differentiate into the key players 
of the immune reaction of our bodies (granulocytes, monocytes, and lymphocytes). Through 
the various activities of these major units of immunity, the immune response holds two chief 
divisions, the innate and the adaptive immune reactions. The innate immunity includes dif-
ferent protective walls of microbiological, as well as chemical and physical nature but also 
delivers the immune components responsible for abrupt actions against the invading threats. 
Though this defensive response is fast, it lacks specificity and could damage some normal 
tissues. On the contrary, the adaptive immune response provides a higher accuracy in its 
defensive process, nevertheless it takes several days or weeks to develop. This can be clarified 
by the development of an immunological memory through the adaptive immunity, which 
permits specific reactions against the pathogens with less harm to the normal tissues than the 
innate response.
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2.1. The innate immune system

The innate branch of the immune system refers to none- or partially-specific defensive mecha-

nisms starting directly or after a short interval of a pathogen’s invasion of the body [12–14]. 
In this immune reaction, the genetic memory of the germline-encoded receptors enables the 
detection of certain molecular patterns of common pathogens [12, 15]. It is responsible for pri-
mary steps of protection against microbial threats. Simple chemical and physical barriers as 
epithelial layers and mucous secretions lining numerous tracts, such as the oral mucosa or the 
gastrointestinal tract, contribute to this defensive first line [16–18]. Furthermore, soluble pro-

teins and bioactive molecules within biological body fluids as cellular secretions of cytokines 
or complement proteins are able to weaken a varied spectrum of invading pathogens [16]. 
Cellular constituents of the innate reaction consist of dendritic cells, macrophages and natu-

ral killer cells [16–18]. In order to confirm its role restoring the homeostasis and clearing the 
invading microorganisms the innate immune response has to accomplish the fundamental 
mechanism of early pathogen recognition. This mechanism primarily is initiated by a group of 
receptors termed the Pattern Recognition Receptors (PRR). These receptors are able to detect 
conserved microbial patterns known as Pathogen-Associated Molecular Patterns (PAMPs) [19].  
One of the most important PRRs are TLRs, as they are able to recognize bacteria, fungi and 
viruses [20, 21]. Following PAMP-PRR detection, a reaction cascade is introduced by cells 
of the innate immunity creating antimicrobial mediators as reactive oxygen. In conjunction 
with that reaction, produced chemokines and cytokines enable recruitment of immune cells 
favoring the clearance of pathogens. Likewise, the ligation of PRR promotes the synthesis of 
antimicrobial acute phase proteins, such as complement factors. The initiated innate immune 
response is essential for the inception of the adaptive response as both divisions of the immu-

nity do not function separately, but depend on their inter-reliant activities [7, 22].

2.2. The adaptive immune system

Consecutive to the innate immune reaction the second branch of immunity begins. This adap-

tive or acquired reaction is unalike the innate response considered highly specific against 
certain microbes. This is endorsed by a special capability of the cells of this arm of immunity 
to perform a recombination of their antigen receptors, creating the immunological memory, 
by which pathogens can be identified specifically [17]. As this mechanism may need 3–5 days, 
the innate response has to coordinate to fulfill its functions, creating the first line of defense 
in the body [23]. The adaptive immune response is composed of a number of specialized 
cells that originate during hematopoiesis from lymphoid cell lineage. Among these cells are 
CD4+ and CD8+ T-cells as well as B-lymphocytes, which are accountable for antibody pro-

duction [24]. The antibodies deliver the humoral immunity, a main defense against patho-

genic invasion. After pathogen detection, the antibodies bind to the microbes, triggering 
their neutralization and averting the pathogenic access into the host cells. Other functions of 
antibodies implement an incitement of phagocytic immune cells including macrophages and 
neutrophils, as well as natural killer cells. Through forming the first step of complement cas-

cade activation by antigen-antibody complexes, they also allow the phagocytosis of unrecog-

nized bacteria. This is enabled through the opsonisation mechanism to microbial pathogens. 
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Additionally, killing infected cells is operated by T cells, a second cellular constituent of the 
adaptive immune response [17].

3. Toll-like receptors

3.1. Discovery and description

The TLRs family is considered the first PRR group of to be discovered. The Toll protein was 
identified in 1985 and categorized as being substantial for embryonic growth of the fruit fly, 
Drosophila melanogaster [25]. An alternative function described in auxiliary studies is facilitating 
host responses to fungal infections and encouraging the release of antimicrobial mediators [26].  
In 1997 a human toll like homolog was described [27]. This protein was named the TLR and 
displayed an important function in interplay between innate and acquired immunity [28]. 
TLRs are extracellular and intracellular proteins, which differentiate classes of various mol-
ecules. This allows the innate immune reaction to utilize the TLRs for detecting microbial 
pathogens [29]. By recognizing definite microbial products or patterns by the TLRs the early 
immune response can be commenced [30]. Among PAMPs activating TLRs are, peptidogly-

can, lipoproteins, lipopolysaccharide, bacterial DNA, as well as double-stranded RNA [30]. 
Resulting from this TLR-PAMP complex, expressions of defensive or pro-inflammatory genes 
are induced within the cells. Simultaneously, signaling pathways are initiated promoting 
NF-κβ and MAPK pathways, along with supporting cytokine production, leading to the insti-
gation of the adaptive immune response [31].

3.2. Identification of TLRs

The first reported mammalian TLR was TLR4 [28, 32]. The PRR-PAMP complex associated 
with TLR4 presented a critical function in identifying the bacterial element LPS [33]. Further 
studies reported a family of 13 TLRs in mammalian species [34], with functional TLRs 1–10 in 
human cells [6]. TLRs show a resemblance to IL-1 receptor family in their cytoplasmic frag-

ment. Due to this correspondence, the intracellular areas of TLRs were called Toll/IL-1 recep-

tors (TIRs). Extracellularly the TLRs display leucine-rich replications, while IL-1 receptors 
show immunoglobulin-like domains [27, 35]. Due to their functionality, most reliable inves-

tigations have been pointing attention to TLRs 1–10 in humans, as wells as other mammalian 
species.

3.3. TLR activating PAMPs and their signaling pathways

Investigations have presented different molecular components and patterns of pathogenic 
microorganisms, comprising combinations of nucleic acids, lipids, proteins, and carbohy-

drates functioning as ligands (PAMPs) stimulating the TLRs. Among the these PAMPs, bac-

terial lipoproteins, lipopolysaccharides, flagellin and viral RNA are considered significant 
components detected by TLRs [30, 36, 37]. By triggering TLRs through their specific ligands, 
signaling pathways are initiated, promoting elements as MyD88 and NF-κβ within the cells. 
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MyD88, a structurally related molecule to the IL-1R family, was reported as one of the major 
factors employed to initiate the signaling pathway of most TLRs, producing the transcription 
factor NF-κβ [38]. This nuclear factor can induce both pro- and anti-inflammatory reactions 
and promotes the expression of different genes, as cytokines, chemokines and adhesion mol-
ecules [39]. Through these intracellular responses, the innate immune reaction is commenced 
and a signaling cascade is provided to resist the pathogenic invasion. This important step is 
the first defensive tool of the cells against the pathogens, leading to the adaptive response as 
a second stage defense to defend the cells by specific means [31]. Corresponding to their spe-

cific PAMPs, TLRs can be categorized into subfamilies. Studies have displayed the detection 
of lipids by (TLRs 1, 2 and 6), nucleic acids by (TLRs 7, 8 and 9) and different ligands by TLR4 
[30, 31]. TLRs can also be classified regarding their cellular expression, as TLRs 1, 2, 4, 5, 6 and 
11 are existent on the cell surface, while the rest are expressed inside the cells [30].

3.4. TLR subgroups

3.4.1. TLR1, TLR2, TLR6 and TLR10

TLR2 has the ability to recognize a wide range of PAMPs. These include pathogenic lipo-

proteins, gram-positive bacterial lipoteichoic acid and peptidoglycans, Porphyromonas gin-

givalis fimbriae and fungal zymosan, as well as mycobacterial lipoarabinomannan [30, 40]. 
Additionally, bacterial LPS originating from Porphyromonas gingivalis, Capnocytophaga ochracea 

and Bacteroides fragilis can also be identified by TLR2 [30]. Two possible processes have been 
suggested considering the TLR2 identification of different pathogenic components. In the first 
mechanism, TLR2 produces heterophilic dimers with other TLRs that show structural similar-

ity to it, as TLR1, TLR6 and TLR10. Therefore, TLR1, TLR6 and TLR10 are considered associa-

tive in their function with TLR2, being able to identify correlated types of PAMPs as diacyl 
and triacyl lipopeptides [20, 29]. The second model proposes the TLR2 mediated recognition 
of fungal proteins. This feature explains why TLR2 associates with dectin-1, a fungal cell 
wall constituent [41]. Through this functional coordination with different types of proteins, 
TLR2 gains its aptitude to detect various pathogenic invasions at early stages, activating the 
immune reactions.

3.4.2. TLR3

TLR3 primarily identifies dsRNA formed in the replication phase of most viruses. It activates 
the formation of NF-κβ and type I Interferon [42]. TLR3 can also homodimerize with TLR4 
and TLR9 creating an intercommunicative response against invading pathogens [43, 44].

3.4.3. TLR4

TLR4 is a significant receptor identifying PAMPs as LPS from different bacterial species [30].  
This LPS pattern shows structural variances from the LPS detected by TLR2, seen in the 
number of acyl chains of the bacterial protein [45]. Other molecules of endogenous nature, 
as heat shock proteins (HSP60 and HSP70), also showed activation of TLR4 in higher 
 concentrations [46].
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3.4.4. TLR5

TLR5 can detect flagellin through a process of physical interaction with the pathogens [30, 46]. 
Its expression has mainly been reported on epithelial cells of mucosal surfaces of the lung [47] 

and the intestine [48], promoting the detection of microbes at these surfaces.

3.4.5. TLR7 and TLR8

TLR7 and TLR8 both show the capability to distinguish similar ligands in certain conditions. 
Studies have reported that the two are stimulated by organic materials as Imidazoquinoline 
[30] and viral ssRNA [49–51], whereas host ssRNA is not identified by them [29]. The recog-

nition process initiates by internalization and replication of the virus releasing its viral RNA 
into the cellular endosomes. The interaction mechanism between the viral ssRNA and TLR7/8 
triggers the recruitment of MyD88 and production of NF-κβ, as well as proinflammatory 
cytokines [52].

3.4.6. TLR9

TLR9 is capable of distinguishing bacterial DNA [30]. This DNA contains unmethylated CpG 
promoting immunostimulation dissimilar to the vertebrate DNA that contains methylated 
CpG only [53]. By triggering of TLR9 by bacterial DNA the production of cytokines as IL-12, 
IFN-α and TNF-α is potentiated [54]. The proficiency of TLR9 to induce IFN-α production 
and to identify unmethylated CpG designates that it may also play a role in processes of viral 
pathogen identification [55].

4. Human mesenchymal stem cells

4.1. History and description

Human mesenchymal stem cells were defined originally by Friedenstein et al. [56] and des-

ignated as bone marrow isolated, non-hematopoietic and plastic-adherent cells, holding the 
abilities of self-renewal and multipotent differentiation in vitro [57–59]. These undifferenti-
ated cells arise from different niches of the human body [60].

The multilinenage ability and the potential of self-renewal both describe the main character-

istics of MSCs [61]. Self-renewal is the mechanism through which stem cells can expand their 
number throughout development. This capacity is essential for MSCs to allow their expan-

sion within the tissues and plays a very important role in stem cell related therapies [62]. 
Investigations on this characteristic displayed its dependence on the life span of the cells. 
Most human MSCs are limited to a maximum of 44 weeks [63] or 55 population doublings in 

vitro [64].

Multilineage potential, or multipotency of MSCs forms the exceptional capacity of the cells for 
differentiating into other mesodermal lineage cells, as osteocytes, chondrocytes and adipo-

cytes. Nevertheless, they can correspondingly differentiate forming cells of other embryonic 
lineages [65].
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These exceptional features of MSCs as well as their communication with specific signals and 
mediators of the human body display great therapeutic prospectives and may develop into 
possible treatments for different diseases in the future [66, 67].

4.2. Identification of mesenchymal stem cells

The identification of MSC populations and the verification of their “stemness” have been con-

fronting researchers in recent years. Without an ability to recognize MSCs among mixed cell 
populations’ cultures of MSCs of higher purity would be very effortful to achieve.

Considering this, numerous studies investigated different characteristics of MSCs identifica-

tion. In 2006 the plastic adherence of MSCs maintained under basic culture conditions was 
defined [68]. In addition, the multilineage differentiation potential of MSCs in-vivo or in-vitro 

after stimulation by specialized media was postulated by a number of studies [68–70].

Another widely reported method for MSCs’ recognition is the analysis of the expression of 
specific surface markers of the cells by flow cytometry. Markers as CD29, CD44, CD71, CD73, 
CD90, CD105, CD106, CD120, CD124, CD166 and Stro-1 show positive expressions on the cell 
surface, while markers as CD11, CD14, CD18, CD31, CD34, CD40, CD45, CD56, CD80 and 
CD86 are missing or weakly expressed [59, 68, 71]. Colony forming units (CFUs), which are 
cellular colonies formed by the MSCs after isolation, were also reported as a method of MSC 
recognition by CFU assays [71, 72].

4.3. Sources of adult mesenchymal stem cells

Hazards and morbidity risks of stem cell based therapies have turned into one of the most 
debated subjects in the latest years. These discussions led to multiple studies regarding the car-

cinogenic potential of embryonic stem cells [73–75]. Simultaneously, ethical discussions about 
the use of these cells have raised many disagreements within the scientific society, promoting a 
large number of investigators to discover potential sources for safer adult (somatic) stem cells. 
Although bone marrow has been established to be the primary source of adult mesenchymal 
stem cells [76, 77], several efforts and investigations are being prepared to establish new stem 
cell bases that could deliver large quantities of MSCs with less risks and donor site morbid-

ity. Among these niches, umbilical cord blood (UCB) [78, 79], placental tissue (PT) [80, 81],  
adipose tissue (AD) [82, 83] and Wharton jelly (WJ) [84] have been described as possible sources 
of MSCs. Additionally, MSCs can be extracted from oral tissues as gingiva [72, 85–87], alveo-

lar bone proper [88, 89], periodontal ligament [90], dental follicle [91] and dental pulp [92].  
Despite the phenotypic resemblance of MSCs isolated from various niches of the body, differ-

ences in their actions and functions of have been reported, emphasizing the individuality of 
MSCs derived from every source [10, 93].

4.4. Immunobiology of MSCs

4.4.1. MSCs mediated immunomodulation

Among the MSCs characteristics presented recently, their therapeutic ability to modulate 
immune inflammatory reactions by various means has been noticeably highlighted [94]. This 

Toll-Like Receptors: The Key of Immunotherapy in MSCs
http://dx.doi.org/10.5772/intechopen.76644

129



communication between active MSCs and different immunological aspects in the human 
body presents a significant role played by them for restoring damaged tissues, as well as 
protecting them during inflammatory conditions [95].

Tissue injuries endorse the stimulation of inflammatory cells, as CD4+ T cells and CD8+ T 
cells, the macrophages and neutrophils, promoting the release of specific factors, as IL-1β 
and TNF-α [94]. These inflammatory alterations lead to a differentiation and organization 
of MSCs to repair the damaged tissue. In an inflammatory environment produced media-
tors as IL-1, TNF-α and IFN-γ, besides the tissue hypoxia trigger MSCs to release growth 
factors like epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived 
growth factor (PDGF) and vascular endothelial growth factor (VEG), playing an important 
role in regeneration and repair of damaged tissues [96–98]. In some studies, even myo-
cardial infarction was reported to be recovered by MSCs related factors [99]. Furthermore, 
MSCs can release a number of other molecules as stem cell factor (SCF), macrophage colony-
stimulating factor (M-CSF), and angiopoietin-1 (Ang-1), promoting the repair mechanism 
intrinsically [96, 100, 101].

Supplementary to the tissue repairing ability, immunomodulatory effects of the MSCs were 
further demonstrated [94]. Recently, the immunosuppressive capacity of MSCs has been 
reported in combination with an environment containing IFN-γ and inflammatory cytokines 
as TNF-α, IL-1α or IL-1β [94]. In such inflammatory higher expressions of adhesion molecules 
and chemokines are promoted, bringing the immune cells closer to the MSCs and enhancing 
their effectiveness of immunosuppression [102, 103]. Nevertheless, in other reports, MSCs 
showed the ability to raise the immune reactions and support the pro-inflammatory milieu 
[104]. This designates the immunomodulatory flexibility of MSCs, depending on many fac-
tors, as the source of the MSCs, or the level of inflammation surrounding them [1, 2].

4.4.2. MSCs and expression of TLRs

TLRs are considered one of the most significant factors directing the immunomodulatory 
role of MCSs into pro- or anti-inflammatory reactions. Observing these results, the profiles 
of TLRs expression and their effects on immunomodulation have become a central field of 
scientific investigations to understand possible interplay of TLR ligands with MSCs in inflam-

matory and non-inflammatory sites. Multiple studies have been implemented on TLR expres-
sion profiles in human MSCs. The reported outcomes displayed different expressions of TLRs 
depending on the tissue origin of these cells. Although bone marrow-derived MSCs displayed 
an expression of TLRs 1, 2, 3, 4, 5, 6, 8, 9 and 10 [10, 105, 106], MSCs isolated from the umbilical 
cord blood and Wharton jelly presented the same outcomes with an exclusion of TLR8, TLR10 
[107, 108] and TLR4 [10, 109]. Studies on oral tissue related MSCs, showed an expression of 
all TLRs except TLR7 in periodontal ligament MSCs [106], in addition to TLRs 2, 3 and 4 in 
MSCs derived from dental follicle [110, 111] and dental pulp [110, 112]. On the other hand, 
MSCs isolated from the free gingiva showed an expression of all TLRs 1–10 [2]. Moreover, 
the evidence has revealed the potential modulation of this pattern of expression by micro-
environmental factors surrounding the MSCs. Inflammatory conditions have been suggested 
to upregulate the expression of TLR2 [105, 113], TLR4 [105, 114] and TLR7 [113]. On the other 
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hand, TLR6 was downregulated under the same conditions [2, 105] . Likewise, in human bone 
marrow MSCs (BM-MSCs) viral infections [115, 116] and hypoxia [115] encouraged an aug-

mented expression of TLRs 1, 2 and 3 and TLRs 1, 2, 5, 9 and 10 respectively.

In many circumstances the results of TLRs’ activation on MSCs and the delivered immune 
response appears to be linked to the origin of cells, as well as the type of TLR triggered. Recent 
studies have shown no significant alteration by TLR activation on human adipose tissue 
MSCs (AD-MSCs) [117], BM-MSCs [10], UCB-MSCs [107], as well as Wharton jelly MSCs’ [10] 

immunosuppressive effect. However, other scientific results confirmed the BM-MSCs medi-
ated immunosuppression by TLR ligands explained by different mechanisms. Regarding 
TLR3 and TLR4, some groups detected the increased immunosuppressive effect after TLR 
activation without association with IDO activity or PGE2 levels [9]. Others presented differ-

ent results showing the indirect induction of IDO1 production leading to a similar effect by 
TLRs on BM-MSCs [118]. In another study TLR3 and TLR4 ligands were reported to have 
reducing effects on human BM-MSCs facilitated suppression of T-cell proliferation [6], while 
other examinations reported the opposite result by stimulated TLR3 and TLR4 in the same 
type of MSCs [118]. Furthermore, TLR3 activation enhanced the suppressive role of DF-MSCs 
and DP-MSCs and G-MSCs to the local immune response, while activated TLR4 promoted 
the immunosuppression in DF-MSCs and decreased it in DP-MSCs and G-MSCs [1, 2, 110].

Furthermore, TLRs of MSCs have presented the aptitude to elicit the production of pro- and 
anti-inflammatory cytokines modulating the immune response [119]. The kinetics of TLR stim-

ulation, besides the concentration and timing of the active ligand, have been reported as the 
main factors controlling this cytokine and mediator release [119]. This function also appears 
to be contingent on the TLR type and the MSC niche. TLR4 activation endorsed the produc-

tion of pro-inflammatory mediators as IL-6 or IL-8. TLR3 activation on the contrary enhanced 
anti-inflammatory responses by triggering molecules as IL-4, IDO, or PGE2. These cytokines 
act in concert together, directing the immune reaction against the invading microorganisms. 
While pro-inflammatory immune modulating responses increase the production and stimu-

lation of immune cells and cytokines, this mechanism is counter-regulated at the same time 
by the anti-inflammatory mediators on cellular and humoral levels [120]. Correspondingly, a 
pro- and anti- inflammatory influence was reported in relation to MSC TLR3 and TLR4 acti-
vation on the level of lymphocyte proliferation [119]. MSC induced secretion of mediators by 
TLR activation has also shown a modulating effect on neutrophils as another mechanism of 
their immune regulating function. TLRs of BM-MSCs delayed neutrophil apoptosis by trig-

gering the production of cytokines as IL-6 and IFN-γ. This outcome was reported to be similar 
in MSCs originating from adipose tissue, thymus and spleen [121].

Studies also presented the possible effect of active TLRs on the differentiation poten-

tial of MSCs. Adipogenic differentiation presented no changes following UCB-MSCs and 
AD-MSCs‘TLR3 and TLR4 activation [108, 117, 122]. Otherwise, osteogenic differentiation 
potential of BM-MSCs, AD-MSCs and UCB-MSCs was strengthened after activation of TLRs 
2, 3 and 4 [108, 117, 122] and repressed with TLR9 ligands [6, 117, 123]. Chondrogenic differ-

entiation displayed only an improvement with TLR2 stimulation [108], while TLRs 3, 4 and 7 
activation had no obvious effect [6].
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MSC proliferation rate and migration was reported to be influenced by TLRs, as inhibition of 
proliferation was detected with TLR9 activation [122]. Studies implemented on MSC migra-

tion to injury sites after TLR activation displayed no amplification of the MSCs’ movement 
[124, 125], except for TLR3 activated human BM-MSCs [126]

Regarding the TLR triggering in MSCs and its potential therapeutic benefits in vivo diverse 

results have been issued so far. Many studies described therapeutic benefits of LPS triggered 
MSCs for the treatment of induced lung injuries in animal models [127–129]. Other surveys 
about MSCs engraftment for cardiac protection and its inflection by TLRs exhibited varying 
results. Positive effects of TLR4 triggered MSCs in the treatment of acute myocardial infarc-

tions were reported in rats [130]. A contrasting outcome was shown by a different study [131]. 
This concludes that different modulations promoted by TLR stimulation on MSCs originat-
ing from various niches of the body need further investigations to explain the prominence of 
these factors and their possible administrations in MSC related therapies.

4.4.3. MSC immunomodulation through TLR activation

One of the special abilities of MSCs is presented in sensing the microenvironment surround-

ing the cells and accordingly adjusting the biologic functions of various immune cells and 
responses [132]. Therefore, MSCs can display immune interactions performing their immu-

nomodulating effects. Triggering of BM-MSC TLRs initiate pathways of downstream signal-
ing particularly for TLR3. Accordingly, this activation promotes the production of cytokines 
mainly active in cell migration mechanisms [126]. Indeed, migration of MSCs was endorsed 
by exposure with TLR3 ligand as a primary mediator of MSC stress migration responses 
compared to TLR2 and TLR9. TLR3 (Poly I:C) and TLR4 (LPS) activation have consequently 
transformed BM-MSCs into special chemotactic cells proficient of improving the inflam-

matory immune cell recruitment by promoting the production of IL-6, IL-1β, IL-8, IP10, 
monocyte chemotactic protein (MCP)-1 and CCL5 (RANTES) by NF-κβ signaling activation 
[113]. Analogous outcomes have been attained in AD-MSC, as TLR ligands for TLR2 and for 
TLR4 promoted mRNA synthesis of MCP-1 and -2, IL-1β, granulocyte chemotactic protein-2 
(GCP-2) and macrophage inflammatory protein-3α (MIP-3α) [115]. Human turbinated MSC 
(hTMSC) were reported expressing high percentages of TLR3 and TLR4. Nevertheless, hTM-

SCs were only responsive to TLR4 as displayed by the significant changes in their cytokine 
profiles [133]. Macrophage-activating ligand-2 (MALP-2), an agonist of TLR6, as well as its 
heterodimer partner TLR2, initiated the activation of NF-κβ pathway leading AMC to obtain 
a pro-inflammatory profile by highly secreting cytokines as IL-4, IL-8 and IL-6 [134].

Dissimilar to TLR3, ligation of TLR4 significantly encouraged expression of cytokines as 
IL-6, IL-12, IL-8, RANTES (CCL5), IP-10 (CXCL10), TNF-α and GM-CSF. Furthermore, 
it was reported that TLR3 activation by Poly(I:C) a Janus kinase (JAK) 2/signal transducer 
and activator of transcription (STAT) 1 pathway is triggered with an increased simultaneous 
expression of suppressor of cytokine signaling (SOCS) proteins [135]. These outcomes further 
showed that SOCS1 and SOCS3 can perform a distinct function in modulating TLR3, JAK/
STAT, and CXCR4/CXCR7 signaling pathways in BM-MSCs. These results propose that as 
negative regulation mediators, SOCS proteins can influence the way MSCs react to signals in 

vivo, thus manipulating TLR signaling pathways to elevate the distribution of infused MSCs 
at injury sites [135].
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Immune cell binding and migration to MSCs surrounding milieus has been presented to 
be a main stage for inaugurating immunomodulation [136]. Under TLR3 activation, ton-
sillar mesenchymal (T-MSCs) obtain a chemoattractant character permitting the migration 
of immune cells into the environment surrounding the MSCs. This is achieved by an aug-
mented secretion of CXCL5, CXCL1, CXCL6, CXCL10 and CXCL8 active chemokines [137]. 
Regarding the leukocyte binding ability of MSCs after TLR activation, TLR3 triggering of 
BM-MSCs elevated the leukocyte number binding to MSCs, through hyaluronic acid struc-
tures while TLR4 activation raised VCAM-1 and ICAM-1 promoted binding of leukocytes 
to MSCs [138].

B cell activating factor (BAFF), known for its prominent stimulating action on B cells was also 
investigated in human BM-MSCs and displayed a higher expression after TLR4 activation by 
LPS, while other TLR agonists had no significant outcome. This proposed that TLR4 in human 
MSCs could play an important role in the regulation of B lymphocyte-associated immune 
responses [139].

Once the MSCs are in the area of injury or inflammation, surrounded by immune cells and 
different regulatory mechanisms, multiple factors can play a role in the process of immuno-
modulation. To date, results of TLR activation and immune modulatory responses by MSCs 
are discrepantly reported in different studies.

The secretion and differential expression of immune regulatory mediators was described to 
be controlled mainly by two elements; specifically the tissue origin of the MSCs and the TLR 
triggered [140]. TLR stimulation in MSCs has been presented to start the intracellular path-
ways of MAPK, AKT and NF-κβ [6, 118, 126] and to influence other biologic functions of 
MSCs promoting the secretion of pro-inflammatory, or/and anti-inflammatory mediators [9, 
141, 142]. In one investigation, a new pattern for MSC immunomodulation was explained, 
as MSCs could be polarized by different TLR agonists into pro-or anti-inflammatory phe-
notypes. TLR4-activated BM-MSCs (MSC1 phenotype), mostly produced pro-inflammatory 
mediators and were able to trigger T-lymphocyte stimulation, whereas TLR3-activated 
BM-MSCs (MSC2 phenotype), mainly expressed immunosuppressive factors as IDO (indole-
amine-2,3-dioxygenase) and (prostaglandin E2) leading to T-cell inhibition [119]. In another 
study on G-MSCs outcomes were in accordance to the same paradigm, as a distinct pro-
inflammatory phenotype of G-MSCs (G-MSC1) was triggered by all TLR agonists except 
TLR3, which promoted the immunosuppressive phenotype of G-MSCs (G-MSC2) [1]. This 
was also in confirmed by different studies, presenting an immunosuppressive character of 
MSCs created by TLR3 triggering in MSCs originating from human umbilical cord [143, 144], 
human bone marrow [113, 118], human dental pulp and dental follicle [145], as TLR3 ago-
nist Poly (I:C) significantly raised the expression of anti-inflammatory cytokine IDO in these 
investigations [1].

While different investigations described no significant outcome of TLR triggering on BM-MSC, 
AD-MSC and T-MSC-mediated immunosuppressive responses [117, 133], other studies 
reported decreased responses. TLR3 and TLR4 activated MSCs originating from human nasal 
mucosa (nmMSCs) preserved their capability of leukocyte suppression, partially mediated by 
prostaglandin secretion. Nevertheless, another study described an impairment of leukocyte 
suppression after TLR3 and TLR4 activation in BM-MSCs [6]. These mechanisms were associ-
ated mainly with jagged-1 down-regulation initiated by TLR3 or TLR4 activation.

Toll-Like Receptors: The Key of Immunotherapy in MSCs
http://dx.doi.org/10.5772/intechopen.76644

133



Contrasting to these outcomes, TLR3 and TLR4 triggering promoted the immunosuppres-
sive ability of BM-MSCs presented by the increase of regulatory molecules of kynurenines by 
the enzyme IDO1 [118]. In a comparative investigation, activation of TLR3 by Poly(I:C) and 
TLR4 by LPS differentially influenced the suppressive ability of BM-MSCs, as well as WJ- and 
AD-MSCs [10]. While BM-MSC displayed decreased inhibition of lymphocyte activation, the 
immunosuppressive function of WJ- and AD-MSC was scarcely changed.

Furthermore, alterations in the amounts of HGF and PGE2 secreted after TLR triggering in 
MSCs have been also postulated to emphasize these immunomodulatory changes. One of the 
studies reported that, TLR treated CB-MSCs significantly increased their abilities of immuno-
suppression only after TLR3 triggering by Poly(I:C). This was explained by an increased expres-
sion of cyclooxygenase-2 (COX-2) [143]. Later outcomes showed that miR-143 regulates the 
influence of Poly(I:C) on the immunosuppressive function of MSCs by targeting COX-2 gene.

Investigations have previously underlined that MSC-facilitated T-cell suppression arises 
through the discharge of galectins. After TLR2 triggering, galectin-3, a main modulator of 
T-cell biology, was elevated at both protein and mRNA levels in BM-MSCs, but showed 
no change in immunomodulation [146]. Moreover, galectin-9 expression was differentially 
induced by TLR activated BM-MSCs [147]. While TLR2, TLR3 and TLR4 triggering promoted 
the expression of galectin-9, activated TLR5 and TLR7/8 did not present significant changes 
on galectin-9 expression. Consequently, in the occurrence of particular infectious incitements 
through TLR activation, BM-MSCs can preserve or enhance their immunosuppressive ability 
by increased galectin-9 expression.

Another immunomodulatory effect of MSCs can be directed toward the cellular component of 
the innate immune response. TLR3- and TLR4-activated MSCs were presented to differently 
prolong the function and survival rate of neutrophils (PMN) [121]. TLR3 triggered BM-MSCs 
had higher anti-apoptotic effects on PMN than TLR4 activated ones. Both TLR ligands could in 
addition augment the respiratory burst ability and CD11b expression by PMN. These biologi-
cal functions exerted on PMN by TLR3 triggered BM-MSCs were mediated by the action of 
secreted mediators as IL-6, IFN-β, and GM-CSF, while TLR4-triggered BM-MSCs depended on 
GM-CSF in their PMN regulating mechanism. In addition, MSCs and NK cells were reported 
to interact in complex mechanisms with bidirectional regulation. This was described as TLR3 
and TLR4-activated MSC enhanced their suppressive functions against NK cell proliferation 
and cytotoxicity, which may provide a potential stroma-targeted therapy of tumors [148].

5. Conclusion

MSCs are exceptional applicants for use in cellular treatments which can possibly transform 
the current field of immunotherapy. Although MSCs display pronounced potentials in the 
therapy of many immune conditions, the wide inconsistency in the quality of cells isolated 
from various donors and tissue sources, varying protocols, fluctuating measures and chang-
ing patterns of transfusion may decrease their therapeutic advantage. Therefore, a watchful 
assessments of suitable cell sources and tissues, more consistent scientific results, as well as 
better understanding of immunomodulation mechanisms of MSCs are required. Factors as, 
standardized cell culture protocols for cell expansion, differentiation and cryopreservation 
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need to be applied to allow better controlled therapeutic results. Another factor as compre-

hending the influence of TLR triggering on the immunobiology of MSCs plays a major role 
to allow correct and efficient therapeutic application of the cells. Despite the great amount 
of information obtained about that subject, there are many conflicts of the outcomes among 
the investigations. These may be related to the variety of experimental situations used to 
investigate the influence of TLR triggering on MSCs. Especially, the effect of specific culture 
conditions or the MSC source, as well as the TLR triggered seem to be the most influential 
factors among the studies. Therefore, this topic has to be studied in a more critical manner 
in standardized and well-designed investigations. Stimulation of MSCs before or within the 
potential treatment procedures with distinct TLR ligands may assist as an effective step con-

trolling the biological function of the MSCs as needed in different therapeutic stages of the 
disease.
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