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Abstract

The canonical generalized inversion dynamical equations of motion for ideally constrained
discrete mechanical systems are introduced in the framework of Kane’s method. The canon-
ical equations of motion employ the acceleration form of constraints and the Moore-Penrose
generalized inversion-based Greville formula for general solutions of linear systems of alge-
braic equations. Moreover, the canonical equations of motion are explicit and nonminimal
(full order) in the acceleration variables, and their derivation ismadewithout appealing to the
principle of virtual work or to Lagrange multipliers. The geometry of constrained motion is
revealed by the canonical equations of motion in a clear and intuitive manner by partitioning
the canonical accelerations’ column matrix into two portions: a portion that drives the
mechanical system to abide by the constraints and a portion that generates the momentum
balance dynamics of the mechanical system. Some geometrical perspectives of the canonical
equations of motion are illustrated via vectorial geometric visualization, which leads to
verifying the Gauss’ principle of least constraints and its Udwadia-Kalaba interpretation.

Keywords: canonical equations of motion, discrete mechanical systems, Kane’s method,
Gauss’ principle of least constraints, cononical generalized speeds, Greville formula

1. Introduction

Deriving mathematical models for dynamical systems is in the core of the discipline of analytical

dynamics, and it is the step that precedes dynamical system’s analysis, design, and control

synthesis. For discrete mechanical systems, i.e., those composed of particles and rigid bodies,

the mathematical models are in the forms of differential equations or differential/algebraic
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equations that are derived by using fundamental laws of motion or energy principles. Because

many mechanical systems nowadays are multi-bodied with numerous degrees of freedom and

large numbers of holonomic and nonholonomic constraints, simplicity of the derived equations of

motion is important for facilitating studying the mechanical system’s characteristics and for

extracting useful information out of its mathematical model. Hence, deriving the simplest possi-

ble form of the equations of motion that govern the dynamics of the mechanical system is crucial.

Moreover, because the mechanical system’s equations of motion are simulated on digital com-

puters, computational efficiency of the derived differential equations of motion when numeri-

cally integrated is another factor by which the quality of the mathematical model is judged on.

It has been a general trend for over two centuries to employ d’Alembert’s principle of virtual

work [1] to derive equations of motion that involve no constraint forces. The principle was

implemented by Lagrange [2] for deriving the first set of such equations, which constituted the

first paradigm shift from the Newton-Euler’s approach. The only other alternative to

employing d’Alembert’s principle has been to augment the equations with undetermined

multipliers, an approach that was initiated by Lagrange himself. Other formulations that

followed the trend include the Maggi [3] and Boltzmann-Hamel [4] formulations. A remark-

able contribution of the Lagrangian approach to analytical dynamics is utilizing the concept of

generalized coordinates instead of the Cartesian coordinate concept. The choice of generalized

coordinates greatly affects simplicity of the derived equations of motion.

Another paradigm shift in the subject took place when Gibbs [5] and Appell [6] independently

derived their equations of motion. For the first time, formulating the dynamical equations

involved neither invoking d’Alembert’s principle nor augmenting undetermined multipliers.

Because d’Alembert’s principle was to many analytical dynamics practitioners, “an ill-defined,

nebulous, and hence objectionable principle,” [7] the Gibbs-Appell model was widely accepted

within the analytical dynamics community. Moreover, the absence of undetermined multi-

pliers from the Gibbs-Appell equations contributed to maintaining simplicity and practicality

of the equations for large constrained mechanical systems. Another feature of the Gibbs-

Appell approach was initiating the concept of quasi-velocities, which equal in their number to

the number of the degrees of freedom of the mechanical system. Similar to the advantage of

generalized coordinates, carefully chosen quasi-velocities can lead to dramatic simplifications

of the dynamical equations of motion.

One feature that is associated with the Gibbs-Appell’s approach is that it is based on the

differential Gauss’ principle of least constraints [8] as was shown by Appell, [9] in contrast to the

Lagrange’s approach that is based on the variational Hamilton’s principle of least action [10] as

opposed. Another feature is adopting the acceleration form of constraints to model a mechanical

system’s constraints. Although easy by itself, employing the acceleration form eased the

historical hurdle of modeling nonholonomic constraints that used to obstruct variational-based

formulations, and it is a consequence of the differential theme that is based on Gauss’ princi-

ple. In particular, the acceleration form bypassed d’Alembert’s principle and the undetermined

multiplier augmentation practices that produce false equations of nonholonomically constrained

motion, and it unified the treatments of holonomic and nonholonomic constraints.

A key developments in the arena of analytical dynamics is the Kane’s method for modeling

constrained discrete mechanical systems [11–13]. Kane’s method adopts a vector approach that
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inspired useful geometric features of the derived equations of motion [14]. The generalized active

forces and generalized inertia forces are obtained by scalar (dot) multiplications of the active and

inertia forces, respectively, with the vector entities partial angular velocities and partial velocities.

This process delicately eliminates the contribution of constraint forces without invoking the

principle of virtual work. The resulting equations are simple and effective in describing the

motion of nonconservative and nonholonomic systems within the same framework, requiring

neither energy methods nor Lagrange multipliers.

The standard Kane’s equations of motion for nonholonomic systems are minimal in general-

ized speeds, i.e., their number is equal to the number of degrees of freedom of the dynamical

system, and only the independent portion of generalized speeds and their time derivatives

appear in the equations. Nevertheless, information about dependent generalized speeds can be

practically important, e.g., for the purpose of obtaining stability information about a depen-

dent dynamics or when it desired to target a dependent dynamics with a control system design

by using state space control methodologies.

On the other hand, generalized inversion and the Greville formula for general solutions of

linear systems of algebraic equations were introduced to the subject of analytical dynamics by

Udwadia and Kalaba [15, 16] as tools for deriving equations of constrained motion for discrete

mechanical systems. The success that the formula met in modeling ideally constrained motion

is due to its geometrical structure that captures orthogonality of ideal constraint forces on

active and inertia forces, which is the essence of the principle of virtual work.

Inspired by the Udwadia-Kalaba equations of motion and the Greville formula, this chapter

introduces a new form of Kane’s equations of motion. The introduced equations of motion

employ the acceleration form of constraints, and therefore holonomic and nonholonomic

constraints are augmented within the momentum balance formulation in a unified manner

and irrespective of being linear or nonlinear in generalized coordinates and generalized

speeds. The equations of motion are nonminimal, i.e., no reduction of generalized speed’s

space dimensionality takes place from the number of generalized coordinates to the number

of degrees of freedom. Furthermore, the new equations of motion are explicit, i.e., are sepa-

rated in the generalized acceleration variables, and only one generalized acceleration variable

appears in each equation.

The main feature of the derived equations of motion is the explicit algebraic and geometric

partitioning of the generalized acceleration vector at every instant of time into two portions:

one portion drives the mechanical system to abide by the constraint dynamics, and the other

portion generates the momentum balance of the mechanical system as to follow Newton-

Euler’s laws of motion.

2. Kane’s equations of motion for holonomic systems

Consider a set of ν particles and μ rigid bodies that form a holonomic system Sh possessing n

degrees of freedom in an inertial reference frame J. Assume that n generalized coordinates

q1,…, qn are used to describe the configuration of the system. Then a corresponding set of n
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holonomic generalized speeds uh1 ,…, uhn is used to model the kinematics of the system. The two

sets are related by the kinematical differential equations [12, 13]:

_q ¼ C q; tð Þuh þD q; tð Þ, (1)

where q∈Rn is a column matrix containing the generalized coordinates; uh ∈R
n is a column

matrix containing the generalized speeds, _q ¼ dq=dt, C∈R
n�n, D∈R

n; and C�1 exists for all

q∈Rn and all t∈R [12, 13]. Kane’s dynamical equations of motion for Sh are given by [12, 13]

Fr q; uh; tð Þ þ F⋆r q; uh; _uh; tð Þ ¼ 0 , r ¼ 1,…, n, (2)

where Fr and F⋆r are the rth holonomic generalized active force and the rth holonomic general-

ized inertia force on the system, respectively, and _uh ¼ duh=dt∈R
n is a column matrix

containing the generalized accelerations. Furthermore, the velocities and angular velocities of

the particles and bodies comprising a mechanical system are linear in the generalized speeds

uhr . Hence, the accelerations, angular accelerations, and consequently the generalized inertia

forces are linear in the generalized accelerations _uhr . Therefore, a column matrix F⋆ ∈R
n

containing F⋆r , r ¼ 1,…, n can be written in the following form [17]:

F⋆ q; uh; _uh; tð Þ ¼ �Q q; tð Þ _uh � L q; uh; tð Þ, (3)

where the generalized inertia matrix Q∈R
n�n is assumed symmetric and positive definite and

L∈Rn. Hence, a matrix form of (2) is written as [17]

Q q; tð Þ _uh ¼ �L q; uh; tð Þ þ F q; uh; tð Þ: (4)

3. Kane’s equations of motion for nonholonomic systems

Let us now consider a modification of the kinematics of Sh that is made by imposing the

following simple nonholonomic constraints on the generalized speeds [12, 13]:

upþr ¼
Xp

s¼1

Ars q; tð Þus þ Br q; tð Þ, r ¼ 1,…, m, (5)

where u1,…, un are the generalized speeds of the nonholonomic system S that is resulting from

constraining Sh according to (5), m ¼ n� p, and Ars and Br are scalar functions of the general-

ized coordinates q1,…, qn, and t. The nonholonomic generalized speeds are considered to satisfy

the same kinematical relations with generalized coordinates as their holonomic counterparts,

i.e.,

_q ¼ C q; tð ÞuþD q; tð Þ: (6)

The system dynamics of S changes from that given by (2) accordingly. Let the generalized

speed column matrix be partitioned as
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u ¼ uTI uTD
� �T

, (7)

where uI ¼ u1 ⋯ up
� �T

and uD ¼ upþ1 ⋯ un
� �T

. Kane’s dynamical equations of motion

for S are given by [12, 13]

eFr q; uI ; tð Þ þ eF⋆

r q; uI ; _uI ; tð Þ ¼ 0 , r ¼ 1,…, p, (8)

where eFr and eF⋆

r are the rth nonholonomic generalized active force and the rth nonholonomic

generalized inertia force on S, respectively. The relationships between holonomic generalized

active forces on Sh and nonholonomic generalized active forces on S are given by [12, 13]

eFr q; uI ; tð Þ ¼ Fr q; u; tð Þ þ
Xm

s¼1

Fpþs q; u; tð ÞAsr, r ¼ 1,…, p: (9)

In a similar manner, the relationships between holonomic generalized inertia forces on Sh and

nonholonomic generalized inertia forces on S are given by [12, 13]

eF⋆

r q; uI ; _uI ; tð Þ ¼ F⋆r q; u; _u; tð Þ þ
Xm

s¼1

F⋆pþs q; u; _u; tð ÞAsr q; tð Þ, r ¼ 1,…, p: (10)

Substituting (9) and (10) in (8) yields the unreduced form of Kane’s equations of motion for S

[12, 13, 17]:

Fr q; u; tð Þ þ F⋆r q; u; _u; tð Þ þ
Xm

s¼1

Fpþs q; u; tð Þ þ F⋆pþs q; u; _u; tð Þ
� �

Asr q; tð Þ ¼ 0, r ¼ 1,…, p: (11)

The simple nonholonomic constraint equations given by (5) can be rewritten in the following

matrix representation [17]:

uD ¼ A q; tð ÞuI þ B q; tð Þ, (12)

where A∈R
m�p and B∈R

m. Furthermore, (12) can be rewritten as [17]

A1 q; tð Þu ¼ B q; tð Þ, (13)

where A1 ∈R
m�n is given by

A1 q; tð Þ ¼ �A q; tð Þ Im�m½ �: (14)

Also, (11) can be rewritten in the matrix form [17]:

A2 q; tð ÞF⋆ q; u; _u; tð Þ ¼ �A2 q; tð ÞF q; u; tð Þ, (15)

where A2 ∈R
p�n is given by
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A2 q; tð Þ ¼ Ip�p AT q; tð Þ
h i

: (16)

Hence, (15) becomes [17]

A2 q; tð ÞQ q; tð Þ _u ¼ �A2 q; tð ÞL q; u; tð Þ þ A2 q; tð ÞF q; u; tð Þ: (17)

Notice that (17) is obtained by multiplying both sides of (4) by A2 q; tð Þ. Therefore, the unique

holonomic generalized acceleration vector _uh that solves the fully determined system given by

(4) solves the underdetermined system given by (17) also, among an infinite number of

generalized acceleration vectors that satisfy (17), each of which preserves a constrained

momentum balance dynamics of the mechanical system.

4. Canonical generalized speeds

Choosing the set of generalized speeds is a crucial step in formulating Kane’s dynamical

Eqs. (2) and (8) because the extent of how complex these equations appear is affected by this

choice. For every choice of nonholonomic generalized speeds u1,…, un, we define the canonical

set of nonholonomic generalized speeds w1,…, wn such that

w ¼ Q1=2 q; tð Þu, (18)

where w is the column matrix containing w1,…, wn and Q1=2 is the square root matrix of Q.

With this choice of generalized speeds, (13) becomes

A 1 q; tð Þw ¼ B q; tð Þ, (19)

where A 1 q; tð Þ ¼ A1 q; tð ÞQ�1=2 q; tð Þ. The time derivative of (18) is

_w ¼ _Q1=2 q; u; tð ÞuþQ1=2 q; tð Þ _u (20)

where _Q1=2 is the element-wise time derivative of Q1=2 along the trajectory solutions of the

kinematical differential Eqs. (6). Therefore, (17) becomes

A2 q; tð ÞQ1=2 q; tð Þ _w ¼ �A2 q; tð ÞL q; u; tð Þ þ A2 q; tð ÞF q; u; tð Þ þ A2 q; tð ÞQ1=2 q; tð Þ _Q1=2 q; u; tð Þu (21)

and can be simplified further to the following form:

A 2 q; tð Þ _w ¼ A 2 q; tð ÞQ�1=2 q; tð Þ F q; u; tð Þ � L q; u; tð Þð Þ þA 2 q; tð Þ _Q1=2 q; u; tð Þu (22)

whereA 2 q; tð Þ ¼ A2 q; tð ÞQ1=2 q; tð Þ. We view the nonholonomic mechanical system dynamics as

being composed of two parts: a constraint dynamics that is modeled by (19) and a momentum

balance dynamics that is modeled by (22). Scaling velocity variables and constraint matrices by

square roots of the inertia matrices for the purpose of characterizing constrained motion is

implicit in Gauss’ principle of least constraints [8] as will be shown later in this paper.
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Moreover, deriving explicit equations of motion for constrained mechanical systems by utiliz-

ing this type of scaling is first due to Udwadia and Kalaba. [15, 16] The arguments of the

functions are omitted in the remaining sections for brevity, unless necessary to clarify concepts.

5. Generalized accelerations from the acceleration form of constraints

Time differentiating the constraint dynamics given by (19) yields [17]

A 1 _w ¼ V1, (23)

where V1 ∈R
m is given by

V1 ¼ _B q; u; tð Þ � _A 1 q; u; tð Þw, (24)

where _B and _A 1 are the element-wise time derivatives of B and A 1 along the trajectory

solutions of the kinematical differential Eqs. (6). The general solution of the above-written

acceleration form of constraint equations for _w is given by the Greville formula as [18–20]

_w ¼ A
þ
1 V1 þP1y1, (25)

where Aþ
1 is the Moore-Penrose generalized inverse (MPGI) [21, 22] ofA1 and

P1 ¼ In�n �A
þ
1 A 1 (26)

is the projection matrix on the nullspace of A 1 and y1 ∈R
n is an arbitrary vector as for

satisfying the acceleration form given by (25) but is yet to be determined to obtain the unique

natural generalized acceleration. Because Q�1=2 is of full rank, it follows thatA 1 retains the full

row rank of A1 and hence that A þ
1 ∈R

n�m is given by the closed form expression:

A
þ
1 ¼ A

T
1 A 1A

T
1

� ��1
: (27)

In (25), the following holds

A
þ
1 V1 ∈R A

T
1

� �

, P1y1 ∈N A 1ð Þ (28)

where R �ð Þ and N �ð Þ refer to the range space and the nullspace, respectively. The term A
þ
1 V1

in (25) is the minimum norm solution of (23) for _w among infinitely many solutions that are

parameterized by y1.

6. Generalized accelerations from the momentum balance dynamics

Let V2 ∈R
n be given by
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V2 ¼ Q�1=2 F� Lð Þ þ _Q1=2u: (29)

Then the momentum balance Eq. (22) takes the following compact form:

A 2 _w ¼ A 2V2 (30)

where A2 retains the full row rank of A2 because Q1=2 is of full row rank. Hence, another

expression for the general solution of _w is obtained by utilizing the Greville formula to solve

(30) and is given by

_w ¼ A
þ
2 A 2V2 þP2y2 (31)

where Aþ
2 ∈R

n�p is given by the closed form expression:

A
þ
2 ¼ A

T
2 A 2A

T
2

� ��1
(32)

and

P2 ¼ In�n �A
þ
2 A 2 (33)

and y2 ∈R
n is an arbitrary vector as for satisfying the momentum balance dynamics given by

(30), but its unique value that solves for the natural generalized acceleration vector _w is yet to

be determined, and

A
þ
2 A 2V2 ∈R A

þ
2 A 2

� �

¼ R A
T
2

� �

, P2y2 ∈N A 2ð Þ: (34)

The term A
þ
2 A 2V2 in (31) is the minimum norm solution of (30) for _w among infinitely many

solutions that are parameterized by y2.

7. Canonical generalized inversion Kane’s equations of motion

Since A1 and A2 are full row rank matrices and their numbers of rows m and p sum up to the

full space dimension n and since

A 1A
T
2 ¼ A1Q

�1=2
� �

A2Q
1=2

� �T

¼ A1Q
�1=2

� �

A2Q
1=2

� �T

¼ A1Q
�1=2Q1=2AT

2 ¼ A1A
T
2 ¼ �Aþ A ¼ 0m�m

(35)

it follows that the row spaces of A 1 and A 2 are orthogonal complements, i.e.,

R A
T
1

� �

¼ R A
T
2

� �� �⊥

: (36)

Nevertheless, since [23]
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R A
T
1

� �

¼ N A 1ð Þ½ �⊥ (37)

then it follows from (36) that

R A
T
2

� �

¼ N A 1ð Þ: (38)

Since the only part in the expression of _w given by (25) that is in N A 1ð Þ is the second term

P1y1, and since the ony part in the equivalent expression of _w given by (31) that is inR A
T
2

� �

is

the first term A
þ
2 A 2V2, it follows from (38) that

P1y1 ¼ A
þ
2 A 2V2: (39)

Substituting (39) in (25) yields the canonical generalized inversion form of Kane’s equations for

nonholonomic systems:

_w ¼ A
þ
1 V1 þA

þ
2 A 2V2: (40)

The same result is obtained by using the fact:

N A 2ð Þ ¼ R A
T
2

� �� �⊥

(41)

which implies by using (36) that

R A
T
1

� �

¼ N A 2ð Þ (42)

Since the only part in the expression of _w given by (25) that is inR A
T
1

� �

is the first termA
þ
1 V1,

and since the only part in the equivalent expression of _w given by (31) that is in N A 2ð Þ is the

second term P2y2, it follows from (42) that

P2y2 ¼ A
þ
1 V1: (43)

(Substituting (43) in (31) yields Eq. (40). Eq. (20) can be used to express (40) in terms of the

original generalized acceleration vector _u, resulting in

_u ¼ Q�1=2
A

þ
1 V1 þA

þ
2 A 2V2 � _Q1=2u

� �

: (44)

8. Geometric interpretation of the canonical generalized inversion form

Adopting the canonical set w1,⋯, wn of generalized speeds in deriving the dynamical equa-

tions for a mechanical system reveals the geometry of its constrained motion. Figure 1 depicts

a geometrical visualization of the n dimensional Euclidian space at an arbitrary time instant t.

The vertical and the horizontal axes resemble the orthogonally complements m dimensional

and p dimensional subspaces R A
T
1

� �

and R A
T
2

� �

, respectively.
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In viewing the canonical generalized acceleration _w given by (40) as the geometrical vector

shown in Figure 1, it is shown to be composed of two components that are orthogonal to each

other: The vertical component A þ
1 V1 resides in R A

T
1

� �

, and it enforces the constraint dynam-

ics given by (23), and the horizontal component A þ
2 A 2V2 resides in R A

T
2

� �

, and it generates

the momentum balance dynamics given by (30).

Moreover, the vertical component of _w is the shortest in length “minimum norm” solution

among infinitely many solutions of (23) that are parameterized by y1 according to (25). These

solutions can also be represented by arbitrary horizontal deviation vectors: Δ2i _w ¼ A
þ
2 A 2δi

V2 ∈R A
T
2

� �

, i ¼ 1, 2,… as

_w þ Δ2i _w ¼ A
þ
1 V1 þA

þ
2 A 2 V2 þ δiV2ð Þ (45)

and are shown to solve (23) by direct substitution and noticing that A 1A
þ
1 ¼ Im�m and

A 1A
þ
2 ¼ 0m�p. Two of these solutions are plotted (in dotted red) in Figure 1 for arbitrary

vectors δ1V2 and δ2V2 in R
n, in addition to the natural generalized acceleration vector _w that

is obtained by setting δiV2 ¼ 0n.

Similarly, the horizontal component A 2A
þ
2 V2 of _w is the shortest solution among infinitely

many solutions of (30) that are parameterized by y2 according to (31). These solutions can also

be represented by arbitrary vertical deviation vectors: Δ1i _w ¼ A
þ
1 δiV1 ∈R A

T
1

� �

, i ¼ 1, 2,… as

Figure 1. Geometric visualization of the constrained generalized acceleration vector _w.
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_w þ Δ1i _w ¼ A
þ
2 A 2V2 þA

þ
1 V1 þ δiV1ð Þ (46)

and are shown to solve (30) by direct substitution and noticing that A 2A
þ
2 ¼ Ip�p and

A 2A
þ
1 ¼ 0p�m. Two of these solutions are plotted (in dotted blue) in Figure 1 for arbitrary

vectors δ1V1 and δ2V1 in R
m, in addition to the natural generalized acceleration vector _w that is

obtained by setting δiV1 ¼ 0m. Notice that the canonical generalized acceleration vector _w is

the only solution that solves (45, 46) simultaneously and is obtained by setting δiV2 ¼ 0n and

δiV1 ¼ 0m.

Now consider a general deviation vector Δ _w that is composed of arbitrary vertical and hori-

zontal deviation components from _w as shown in Figure 2. The vertical component A þ
1 δV1

abides by (46) but violates (45), and the horizontal component A þ
2 A 2δV2 abides by (45) but

violates (46). Hence:

Δ _w ¼ A
þ
1 δV1 þA

þ
2 A 2δV2: (47)

The deviated canonical generalized acceleration vector _w þ Δ _w is obtained by summing (40)

and (47) as

Figure 2. Deviation from the constrained generalized acceleration vector _w.
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_w þ Δ _w ¼ A
þ
1 V1 þ δV1ð Þ þA

þ
2 A 2 V2 þ δV2ð Þ (48)

and is shown in Figure 2 in dotted blue. On the other hand, the canonical holonomic generalized

acceleration vector in terms of the canonical generalized speeds is obtained from (4) and (20) as

_wh ¼ V2 (49)

where wh ¼ Q1=2u and u solves (4). Decomposing the expression of _wh along R A 1ð Þ and

R A 2ð Þ yields

_wh ¼ V2 ¼ P1V2 þP2V2 (50)

¼ In�n �A
þ
1 A 1

� �

V2 þ In�n �A
þ
2 A 2

� �

V2 (51)

¼ A
þ
2 A 2V2 þA

þ
1 A 1V2: (52)

Let us now specify the deviated generalized acceleration vector _w þ Δ _w to be _wh as shown in

Figure 3. Equating the two expressions (48) and (52) and solving for δV1 and δV2 yield

δV1 ¼ A 1V2 � V1, (53)

and

δV2 ¼ 0n: (54)

Substituting δV1 and δV2 in (47) yields

Δ _w ¼ A
þ
1 A 1V2 � V1ð Þ (55)

which corresponds to the vertical solid red vector in Fig. (3). Notice that Δ _w is the shortest

among all deviation vectors that end up at _wh (two of which are shown in dotted red) by

deviating from generalized acceleration vectors that abide by the constraint dynamics given by

(23) (two of which are shown in dotted green), i.e.,

∥Δ _w∥ ¼ ∥ _wh � _w∥ ¼ min
i

∥Δ _wi∥ ¼ min
i

∥ _wh � _w i∥, i ¼ 1, 2,… (56)

where _wi satisfies

A 1 _w i ¼ V1 (57)

and ∥x∥ denotes the Euclidean norm of x given by ∥x∥ ¼
ffiffiffiffiffiffiffiffi

xTx
p

. Moreover, Δw can be expressed

in terms of the original set of generalized speeds as

Δw ¼ Q1=2
Δu (58)

where Δu ¼ uh � u is the difference between holonomic and nonholonomic generalized

speeds. Therefore:
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∥Δ _w∥ ¼ ∥Q1=2
Δ _u þ _Q1=2

Δu∥ ¼ min
i

∥Q1=2
Δ _ui þ

_Q1=2
Δu∥, i ¼ 1, 2,… (59)

where Δ _u i ¼ _uh � _ui and _ui satisfies

A 1 _w i ¼ A 1 Q1=2
_ui þ

_Q1=2u
� �

¼ V1: (60)

Nevertheless, (59) implies that

∥Q1=2
Δ _u∥ ¼ min

i
∥Q1=2

Δ _ui∥, i ¼ 1, 2,…:, (61)

which in terms of the square Euclidean norm implies that

∥Q1=2
Δ _u∥2 ¼ Δ _uTQ1=2Q1=2

Δ _u ¼ min
i

Δ _u
T
i Q

1=2Q1=2
Δ _ui

� �

(62)

¼ Δ _uTQΔ _u ¼ min
i

Δ _u
T
i QΔ _ui

� �

, i ¼ 1, 2,…: (63)

Figure 3. Deviation from the constrained generalized acceleration vector _w.
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Eq. (63) is exactly the statement of Gauss’ principle of least constraints [8]. The present geo-

metric interpretation of Gauss’ principle was first introduced by Udwadia and Kalaba [24].

9. Conclusion

The chapter introduces the canonical generalized inversion dynamical equations of motion for

nonholonomic mechanical systems in the framework of Kane’s method. The introduced equa-

tions of motion use the Greville formula and utilize its geometric structure to produce a full

order set of dynamical equations for the nonholonomic system. Moreover, the acceleration

form of constraint equations is adopted in a similar manner as in the classical Gibbs-Appell,

Udwadia-Kalaba, and Bajodah-Hodges-Chen formulations.

The philosophy on which the present formulation of the dynamical equations of motion is

based views the constrained system dynamics of the mechanical system as being composed of

a constraint dynamics and a momentum balance dynamics that is unaltered by augmenting

the constraints. Inverting both dynamics by means of two Greville formulae and invoking the

geometric relations between the resulting two expressions yield the unique natural canonical

generalized acceleration vector.

Because the momentum balance dynamics and the acceleration form of constraint dynamics

are linear in generalized accelerations, only linear geometric and algebraic mathematical tools

are needed to analyze constrained motion of discrete mechanical systems. Also, the present

linear analysis is valid in despite of dependencies among the constraint equations and changes

in rank that the constraint matrix Amay experience because the matrices A1 and A2 are always

of full row ranks and their m and p rows span two orthogonally complement row spaces.

Another advantage of maintaining full row ranks of A1 and A2 is that their generalized

inverses have explicit and closed form expressions, which alleviate the need for employing

numerical methods for computing generalized inverses.
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