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Abstract

In this study, the settling of small particles in a non-Newtonian fluid medium is consid-
ered. The simulation of this problem according to the fluid mechanics principles may be
realized by the flow of a non-Newtonian fluid around a sphere falling along the centerline
of a cylindrical tube. The knowledge of the rate of settling of particles in practice is
particularly significant in determining the shelf life of materials such as foodstuffs,
cleaning materials and many others. Thus, this problem has great importance in many
natural and physical processes and in a large number of industrial applications such as
chemical, genetic and biomedical engineering operations. The majority of the theoretical,
experimental and numerical studies available in the literature deal with Newtonian fluids.
Conversely, for non-Newtonian fluids the problem is considerably more complex. It is
well-recognized that extensional behaviour in non-Newtonian fluids plays a major role in
complex flows. Most non-Newtonian fluids such as polymeric solutions and melts exhibit
shear-thinning behaviour. In this study it is aimed to determine the equations governing
this process and some important conclusions about the properties of polymeric liquids
related to their viscoelastic constitution are drawn. Effectively, it is found that for poly-
meric liquids, the elastic behaviour characterized by the normal stress coefficients, implies
relatively increased normal stresses with respect to the generalized Newtonian fluids,
whereas the shear stresses tend to decrease, thus changing somewhat the category of the
flow from shear-flow into extensional flow in a small rate. Hence, the viscoelastic property
of the polymeric liquids must be stressed by their constitutive equation choice, which led
us to the CEF model.

Keywords: non-Newtonian fluids, CEF equation, shear strain-rate, particle settling, FEM,
optimization, optimization techniques, elastic behaviour
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1. Introduction

As an example to the application of Criminale-Ericksen-Filbey (CEF) fluid, we can consider the

settling of small particles in a non-Newtonian fluid medium. The geometry of the problem:

schematic diagram of a sphere falling through a fluid in a cylinder is shown in (Figure 1). Due

to axisymmetry the problem can be considered as 2-D.

This problem has great importance in a large number of industrial applications. Because these

materials are rather polymeric and consequently viscoelastic, it is obligatory to include the

elastic behaviour in the analysis. The notations are the usual ones.

The quantities of interest are the stresses: we must consider the effects of the normal stress in

addition to those of the shear stresses and to use a constitutive equation which includes normal

stress coefficients, υ1 and υ2 as well as viscosity coefficient η, while taking into account their

shear-thinning variation [1–3].

1.1. The non-Newtonian fluid chosen

Many constitutive equations developed from the continuum mechanics or microstructural

viewpoints, are used to describe the behaviour of non-Newtonian fluids. Among them the

second-order Rivlin-Ericksen model is generally preferred because it describes the real behav-

iour of the fluids with sufficient accuracy and also because its application is not very

Figure 1. Schematic diagram of a sphere falling through a fluid in a cylinder.
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cumbersome. On the other hand, the material coefficients used being constant, it is not in good

agreement with experimental results in case the shear strain-rate is not very small. The CEF

constitutive equation removes this draw-back by taking these coefficients variable and depen-

dent of the shear strain-rate. That is why this model is used in the study of the settling of small

particles in a non-Newtonian fluid medium.

1.1.1. The CEF equation

The constitutive equation of the CEF fluid is:

τ ¼ –p I þ η A1 þ υ1 þ υ2ð Þ A1
2
–

1

2
υ1 A2 (1)

The merit of CEF constitutive equation is that it stresses the dependence of the viscosity

coefficient on shear strain-rate, that is, it takes into account the shear thinning (or shear-

thickening) effects, and those of normal stresses which are also dependent on the shear strain-

rate. In steady-state shear flow an extremely wide class of viscoelastic constitutive equations

simplifies to CEF equation. The first term of the CEF equation for τ is just η _γð Þ _γ; the other two

terms, containing υ1 and υ2, describe the elastic effects associated with the normal stresses [4].

The Rivlin-Ericksen tensors involved in the CEF equation are [5]:

A1 ¼ 2d ¼ ∇V þ ∇V
T

A1
2 ¼ 4d2 (2)

A2 ¼ ∇aþ ∇a
T þ 2 ∇V ∇V

T

The first invariant of d is null

Id ¼ 0 (3)

The shear strain-rate in term of the second invariant IId is [6]

_γ ¼ 2
ffiffiffiffiffiffi

IId
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
trA2

1

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
trA2

r

(4)

The velocity gradients of A1, A
2
1, A2 appearing in Eq. (1) are given in extenso.

1.1.1.1. Material functions in steady-state shear flows

At high shear rates, the viscosity of most polymeric liquids decreases with increasing shear

rate (Figure 2). For many engineering applications this is the most important property of

polymeric fluids.

An especially useful form has been described by Carreau [4] for the viscosity coefficient

(n = 0.364).
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η ¼ η0 1þ 32:32 � tr � A2
1

� ��0:318
(5)

The normal stress coefficients may be handled as below:

If η = ηo and υ1 = υ10 for _γ = 0, according to λ _γ Weissenberg number, η/ηo and
N1

_γ2υ10
¼ υ1

υ10
curves

may be displayed as in the Figure 3 [7]. Elastic effects are observable in a steady simple-shear

flow through normal stress effects. This is demonstrated in Figure 4 [8].

Treating the curve in the Figure 4 by the least square method, the formula below can be found

for the first normal stress coefficient υ1:

υ1

η
≈ 10 �0:169 log10 _γð Þ

2
�0:76log10 _γ�0:821

� �

(6)

Figure 2. Shear-thinning in a typical non-Newtonian fluid.

Figure 3. Non-linear results.
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The most important points to note about υ2 are that its magnitude is much smaller than υ1,

usually about 10–20% of υ1, and that it is negative [4].

Hence, we shall take

υ2 ¼ –0:15υ1 (7)

Consequently

υ1 þ υ2 ¼ 0:85υ1 (8)

The choice of Carreau formula is justified by the behaviour similarity of inelastic and viscoelastic

fluids concerning the viscosity, and that of the formula about the normal stress coefficients by the

fact that the particle settling problem has characteristics close to dilute suspensions.

2. An example to CEF fluid application

As an example to the application of the CEF fluid, we can consider the settling of small

particles in a non-Newtonian fluid medium. The simulation of this problem according to the

fluid mechanics principles may be realized by the flow of a non-Newtonian fluid around a

sphere falling along the centerline of a cylindrical tube [9–14].

The knowledge of the rate of settling of particles in practice is particularly significant in

determining the shelf life of materials such as foodstuffs, cleaning materials and many others.

Also, in oil and gas drilling it is important to understand the distribution of loose material,

removed by the drill bit and carried to the surface by the drilling mud. Thus, this problem has

great importance in many natural and physical processes and in a large number of industrial

applications such as chemical, genetic and biomedical engineering operations. The cylindrical

tube is considered as stationary. Thedrag coefficientmust be calculated. The equationsdetermining

Figure 4. The relaxation time (defined as N1

τ _γ
¼

υ1
η
) is plotted against the shear-rate.
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the motion of a sphere in an incompressible fluid under isothermal conditions will be given for a

non-Newtonian viscous fluid exhibiting shear-thinning and using cylindrical coordinates [15]. As

this study is the simulation of the slow motion of small particles, we can suppose the flow irrota-

tional. Furthermore, due to thedata of the consideredproblem, themotionmaybe assumed steady,

axisymmetric and the fluid incompressible. The global cylindrical coordinate system (r, θ, z) is

shown in Figure 1, cited firstly in the introduction section showing schematic diagram of the

problem studied. The local area coordinates are L1, L2, and L3.

Due to the lack of analytical solutions, one will have to resort to numerical methods. The finite

element method (FEM) will be used for this purpose.

2.1. Governing equations

Continuity equation

∇:V ¼
∂vr

∂r
þ

∂vz

∂z
þ
vr

r
¼ 0 (9)

Motion equations

r
DV

Dt
¼ ∇:τ (10)

They have two projections in the axisymmetric problem considered. Hence, there are overall

three equations. Unknowns are vr, vz, p. Supposing a creeping flow, the left-hand side may be

taken null, and the motion equations reduce to

∇:τ ¼ 0 (11)

According to the assumptions of steady, axisymmetric, incompressible and irrotational flow

properties above mentioned, we can write

∂

∂t
¼ 0

∂

∂θ
¼ 0 ∇. V ¼ 0 νθ ¼ 0 (12)

2.2. Nondimensionalization

Nondimensional variables and scales are introduced as

r∗ ¼
r

a
z∗ ¼

z

a
vr

∗ ¼
vr

Vs
vθ

∗ ¼
vθ

Vs
vz

∗ ¼
vz

Vs

p∗ ¼ p
a

Vsηo
t∗ ¼¼ t

ηo
a2r

η∗ ¼
η

ηo
υ1

∗ ¼
υ1
υ10

υ2
∗ ¼

υ2
υ20

D∗ ¼
D

η0aVs

A1ð Þ∗ ¼ A1ð Þ
a

Vs
A2

1

� �∗

¼ A2
1

� � a

Vs

� �2

A2ð Þ∗ ¼ A2ð Þ
a

Vs

� �2

ψ∗ ¼
ψ

a2Vs
(13)

For brevity * notation will be elected by implication.
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2.3. Explicit expressions of the dimensionless governing equations

Continuity equation

∂vr
∂r

þ
∂vz
∂z

þ
vr
r
¼ 0 (14)

Projection of the motion equation on the r axis

�
∂p

∂r
þ

∂η

∂r
A1ð Þrr þ

∂η

∂z
A1ð Þzr þ η

∂ A1ð Þrr
∂r

þ
∂ A1ð Þzr

∂z
þ

A1ð Þrr � A1ð Þθθ
r

	 


þ

þ0:85K
∂υ1
∂r

A2
1

� �

rr
þ

∂υ1
∂z

A2
1

� �

zr
þ υ1

∂ A2
1

� �

rr

∂r
þ

∂ A2
1

� �

zr

∂z
þ

A2
1

� �

rr
� A2

1

� �

θθ

r

" #( )

�

(15)

�
1

2
K

∂υ1
∂r

A2ð Þrr þ
∂υ1
∂z

A2ð Þzr þ υ1
∂ A2ð Þrr

∂r
þ

∂ A2ð Þzr
∂z

þ
A2ð Þrr � A2ð Þθθ

r

	 
� �

¼ 0

Projection of the motion equation on the z axis

�
∂p

∂z
þ

∂η

∂r
A1ð Þrz þ

∂η

∂z
A1ð Þzz þ η

∂ A1ð Þrz
∂r

þ
∂ A1ð Þzz

∂z
þ

A1ð Þrz
r

	 


þ

þ0:85K
∂υ1
∂r

A2
1

� �

rz
þ

∂υ1
∂z

A2
1

� �

zz
þ υ1

∂ A2
1

� �

rz

∂r
þ

∂ A2
1

� �

zz

∂z
þ

A2
1

� �

rz

r

" #( )

�

(16)

�
1

2
K

∂υ1
∂r

A2ð Þrz þ
∂υ1
∂z

A2ð Þzz þ υ1
∂ A2ð Þrz

∂r
þ

∂ A2ð Þzz
∂z

þ
A2ð Þrz
r

	 
� �

¼ 0

where K is the normalization coefficient.

Taking as numerical example

a/R = 0.2, a = 0.05 m, and Vs = 0.016 m/s, and because for _γ ! 0, we have υ1
η ! υ10

η0
¼ 1

which ensues

K ¼
υ10
ηo

Vs

a
¼ 0:32 (17)

The coefficient K is the special case for _γ = 0 of the Weissenberg number. It is worthwhile to

notice that for K = 0 we go back to the generalized Newtonian fluid.

2.3.1. Stream function

ψ ¼ constant�

ðr

0

rvzdr ≈π�

ðr

0

rvzdr (18)

2.3.2. Boundary conditions (dimensionless)

At the inlet of the flow: vr = 0 vz = 1.

Along the cylindrical tube (r = R): vr = 0 vz = 1.
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Along the centerline of the cylindrical tube (r = 0): vr = 0 ∂vz
∂r

¼ 0

On the surface of the sphere: vr = vz = 0.

At the outlet of the flow: vr = 0 ∂vz
∂r

¼ 0.

p ¼ 0 atmospheric pressure
� �

(19)

2.4. Dimensionless stress components

Introducing K ¼ υ10
η0

Vs

a in the CEF constitutive equation Eq. (1), using Eq.(13) nondimensional

formulas and Eq. (7), τ∗ ¼ τ a
Vsηo

stress tensor components can be written electing the *

notation by implication as follows:

τrr ¼ �pþ η A1ð Þrr þ K 0:85υ1 A2
1

� �

rr
�
1

2
υ1 A2ð Þrr

	 


τrz ¼ η A1ð Þrz þ K 0:85υ1 A2
1

� �

rz
�
1

2
υ1 A2ð Þrz

	 


τθθ ¼ �pþ η A1ð Þθθ þ K 0:85υ1 A2
1

� �

θθ
�
1

2
υ1 A2ð Þθθ

	 


τzz ¼ �pþ η A1ð Þzz þ K 0:85υ1 A2
1

� �

zz
�
1

2
υ1 A2ð Þzz

	 


(20)

3. Application of the finite element method to fluids

Due to the assumptions Eq. (12), only vr, vz velocity components and pressure p are chosen as

primitive variables.

All stress variables are expressed in terms of the velocities and the pressures and the stresses

are then back-calculated after finding the velocities vr, vz and the pressure p.

For stability the pressure field must be interpolated with a polynomial one order lower than

the velocity terms. Here we have chosen linear pressure and quadratic velocity fields over the

element.

A quadratic triangle for velocities with six nodes, three on the vertices and the three others on

mid-sides, and a linear triangle for pressures, both processed with area coordinates (Figure 5).

In our problem gravitational and inertial forces are neglected and the motion is obtained as in

the first Stokes problem by drawing the cylinder opposite to the sphere displacement with a

constant, upward Vs velocity. To solve the nonlinear equations iterative optimization tech-

niques are used.

3.1. Linear and quadratic triangles

The Nef g shape functions for velocities corresponding to the three vertice nodes and three mid-

side nodes (1, 2,…, 6) are respectively using the well-known area coordinates L1, L2, L3.
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L1 2 L1–1ð Þ; L2 2 L2–1ð Þ; L3 2 L3–1ð Þ; 4L1L2; 4L2L3; 4L3L1 (21)

and those concerning the pressure for nodes 1, 2, 3 are L1, L2, L3, (Figure 6).

The element shown satisfies the LBB condition and thus gives reliable and convergent solu-

tions for velocity and pressure fields [16].

Figure 5. (a) A linear triangular element; and (b) a quadratic triangular element.

Figure 6. Area coordinates.
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The derivatives of the interpolation functionswith respect to the global coordinates are of the form

∂Ne
i

∂r

∂Ne
i

∂z

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼ J�1

∂Ne
i

∂L1

∂Ne
i

∂L2

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

(22)

with the Jacobian matrix of transformation

J ¼

∂r

∂L1

∂z

∂L1

∂r

∂L2

∂z

∂L2























































The element area

drdz ¼
1

2
detJdL1dL2 (23)

The integration must be carried out over the elemental volume of the axisymmetric geometry

rdrdθdz. Since the solution is independent of the θ coordinate, the integration with respect to θ

yields a multiplicative constant 2π. (Table 1) [17].

3.2. Interpolation formulas

According to the constraint

L1 þ L2 þ L3 ¼ 1

Number of integration points Degree of polynomial Order of the residual Location of integration points

L1 L2 L3 W Geometric locations

1

(Pressures)

1

O (h2)

1/3 1/3 1/3 1

3

(Velocities)

2

O (h3)

1/2

0

1/2

0

1/2

1/2

1/2

1/2

0

1/3

Table 1. Quadrature weights and points for triangular elements.
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we eliminate the dependent variable L3 for the sake of simplicity. Thus, we have

vr ¼ �L1 þ 2L21
� �

vr1 þ �L2 þ 2L22
� �

vr2 þ ð1� 3L1�

� 3L2 þ 2L21 þ 4L1L2 þ 2L22Þvr3 þ 4L1L2vr4þ

þ 4 L2 � L1L2 � L22
� �

vr5 þ 4 L1 � L1L2 � L21
� �

vr6

vz ¼ �L1 þ 2L21
� �

vz1 þ �L2 þ 2L22
� �

vz2 þ ð1� 3L1�

� 3L2 þ 2L21 þ 4L1L2 þ 2L22Þvz3 þ 4L1L2vz4þ

þ 4 L2 � L1L2 � L22
� �

vz5 þ 4 L1 � L1L2 � L21
� �

vz6

p ¼ L1 p1 � p3
� �

þ L2 p2 � p3
� �

þ p3 (24)

3.3. Basis of application

The flow domain is meshed using linear and quadratic triangular elements [9]. Three unstruc-

tured meshes are generated by an adaptive mesh generator, as given in Table 2 and shown in

Figure 7. Independent unknown variables are, due to axisymmetry vr, vz and p. The continuity

equation being interpreted as an additional relation among the velocity components, i.e., a

constraint satisfied in an approximate least squares sense [18], it may be omitted in the

effective area consideration around the mid-side nodes, in order to keep the balance between

the equation and unknown variable numbers. Resolving the global equation system obtained

while taking into account the boundary conditions and integrating numerically by means of

Gauss quadrature over the effective area around each node, the values of the variables are

found [19, 20].

As a typical numerical example after [9], the values below are processed:

a ¼ 0:05 m a=R ¼ 0:2 Vs ¼ 0:016 m=s

3.3.1. Comparison and contour patterns

In order to provide a basis for a comparison, and to pose the behavioral difference between

inelastic and viscoelastic fluids, an example taken from the literature [9], for the simpler case

υ1 = 0, gives contours of streamfunction, velocity, stress, pressure and viscosity at parameter

settings of n = 0.5 and We = Weissenberg number = 2.5 (Figure 8). As it can be seen in the

Figure 8, the flow accelerates as the fluid approaches the sphere.

The extrema contour levels for the inelastic fluid are again shown in a table (Table 3).

Mesh Sphere surface nodes Elements Nodes

AM1 21 644 1401

AM2 31 948 2035

AM3 41 1242 2645

Table 2. Summary of finite element meshes.
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3.3.2. The attempt of getting υ1 ¼ υ2 ¼ 0 condition as a special case

The reasons why the results obtained by Townsend [9] cannot be achieved for the generalized

fluid by replacing υ1 ¼ υ2 ¼ 0 in our equations given above for the generalized condition are

explained by Kaloni [21] in the literature.

Nonetheless, we think that is beneficial to make a comparison with Townsend [9] solutions.

3.3.3. Mesh-independent results

The model used in this study, which is called as Mesh#1, was obtained as a result of a three-stage

optimization. In the “Initmesh” stage, an “adaptive mesh” was formed. In the second stage

number of triangles was increased with the “refinemesh” function to obtain an improvement in

this first mesh. Finally, at the third stage, an optimization was achieved with the “jigglemesh”

function. Therefore, Mesh#1 is an optimal mesh, and it can be considered sufficient in terms of

“mesh independence” alone. Mesh#2 is an adaptive mesh, and the number of triangles in this

mesh, was increased considerably with respect to Mesh#1 (Figure 9 and Table 4).

Because the subject of this study is based on the fact that the elastic effect in polymeric fluids

cannot be neglected, Mesh#1 and Mesh#2 results in Table 5 were presented as comparison of

the normal stresses. In this table, the average difference between each mesh is approximately

2%. Because the results of two very different meshes mostly overlap, the results obtained are

proven to be independent from mesh configuration, i.e., “mesh independence” is achieved.

The generated mesh is improved according to the initmesh, refine mesh and jigglemesh

MATLAB programs and the mesh independence is tested and ensured.

Figure 7. Mesh patterns around sphere, a/R = 0.2.
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3.4. Explanatory flow characteristics remarks and results of our the theoretical problem

solved numerically, cited before the sections findings and discussion and conclusions to

better find out the problem studied

3.4.1. Explanatory remarks

The starting example of “Settling of Small Particles in Fluid Medium” problem in the literature

which has important applications in many fields such as the shelf life of foodstuffs etc., is given

for “generalized Newtonian fluid” medium [9]. As is known, the motion equation is Navier-

Stokes in this case, and viscosity coefficient η is function of the shear-rate _γ. Although this paper

contains useful information, especially for velocity and stress contours, the elastic effects should

not be neglected because in practice the fluids encountered in this field are non-Newtonian. This

study is to cover this difference. Thus, CEF model was taken as fluid, and for emphasizing the

elastic effect, the normal stress coefficients υ1 and υ2 was included. The simulation model is in

Figure 8. Contours of streamfunction (ψ), radial velocity (vr), axial velocity (vz), pressure (p), stress components (τrr, τzz,

τθθ, τrz), and viscosity (η); a/R = 0.2, We = 2.5, and n = 0.5.
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the form of the flow of a non-Newtonian fluid around a sphere falling along the centerline of a

cylindrical tube. The problem was tried to be solved numerically by writing continuity and

motion equations and using FEM. The partial differential equation system obtained was

transformed into a set of simultaneous, nonlinear, algebraic equations. Here, we chose linear

triangular elements for pressures and quadratic triangular elements for velocities.

Because of the boundary conditions, the equations are “overdetermined.” The problem is axi-

symmetric, the global coordinates r, z were transformed into local coordinates L1, L2, L3; and

Gauss quadrature was used for integrating numerically over the effective area around each node.

In the solution of the algebraic equation system, naturally optimized formulation with the aid of

(MATLAB-Optim set f-solve) function was used instead of the methods like “weak form.”

It is useful to give following explanatory remarks:

Although the differential equation is third order, the shape functions are chosen as linear for

pressures and quadratic (2nd degree) polynomials for velocities. The degree difference

between pressures and velocities is compulsory for stability. These are thought to be sufficient

in the literature examples. Using third order polynomial would extend the problem extremely,

and make the solution unreachable. Considering the elastic effect (υ1, υ2 coefficients) made the

problem already harder compared to the generalized Newtonian fluid example [9].

Zienkiewicz especially stresses that FEM application of very refined and sophisticated models

does not always yield better solutions [19].

Because the motion is relative, the sphere was taken constant in the problem; however, a

motion from bottom to top with a constant Vs velocity was introduced to the cylinder, as done

in the 1st Stokes problem. In this case, the inlet is through the bottom surface, while the outlet

is through the top surface of the cylinder.

As an example to viscoelastic fluid, Carreau type Separan 30 was chosen [7]. The coefficient

λ = 8.04 s was taken from the table given by Tanner [7]. This fluid was used frequently in

experiments, and detailed information about its properties is given in the literature [4].

Flow domain Minimum Maximum

ψ 0.0000 3.1250

νr �0.1933 0.2171

νθ — —

νz 0.0000 1.1249

P �4.9296 7.8010

τrr �2.6545 3.1418

τθθ �1.4139 1.8356

τrz �1.3276 2.9703

τzz �3.6693 2.8291

η 0.244 1.4672

Table 3. Extrema contour levels.
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The boundary conditions are generally the conditions at the inlet and outlet, and—for veloci-

ties—the no slip conditions at the sphere surface and cylinder wall. It was assumed that vr = 0

vz = 0 at sphere surface and vr = 0 vz = 1 (i.e., Vs) at cylinder wall. These values are observed

clearly on the contours (Figures 10 and 11).

Definition Matrices for points

P

Matrices for edges

E

Matrices for triangles

T

Vector of nodal values

V

Mesh#1 2 / 205 7 / 62 4/346 1/1715

Mesh#2 2 / 311 7 /84 4/536 1/2625

Table 4. Mesh comparison.

Figure 9. Mesh#1 and Mesh#2.
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Contour values were found by dividing the space between the max and min contours by ten,

and were written on the figures without covering them up. That is why contour labels are

generally fractional. If an integer contour (e.g., zero) is to be drawn, it can be shown with linear

interpolation on the figure.

As seen in pressure (p) contours (Figure 12), similarly to the example Rameshwaran, Townsend

[9], max and min values are on the “stagnation” points on the sphere (at the vicinity of the

vertical axis). Here vr = vz = 0; since the total energy is constant (Bernoulli at inviscid flow), if

the kinetic energy is zero, potential energy is an extremum, i.e., the pressure is at its extremum

value. This is what is seen perspectively in the 3-D surf (surface) drawing (Figure 13).

The extreme values concerning the contours are gathered in Table 6. The flow is not uniform:

the existence of the sphere at the center, the wall effect of cylinder (drag) and the boundary

conditions prevent the flow from being uniform. Thus, max and min values are obtained.

In the adaptive “mesh” drawn, there are 755 nodes. At these nodes vr, vz, p values are taken as

unknowns and they were determined as a result of calculations. Because the contours followed

the nodes, zigzag course was obtained instead of a smooth curve. If the number of nodes had

Stresses τrr τθθ τzz

Extreme values Min Max Min Max Min Max

Mesh#1 �6.0019 3.3792 �6.0115 3.4000 �6.1339 3.7165

Mesh#2 �5.9810 3.2325 �5.8722 3.4022 �6.3396 3.8825

Table 5. Comparison of normal stresses.

Figure 10. Radial velocity (vr) [�0.1772 �0.1333 �0.0893 �0.0454 �0.0014 0.0425 0.0865 0.1304 0.1743 0.2183].
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been increased extremely, we could have got curves instead of the zigzag course. This is not

a drawback in terms of the results. 10 contours were drawn by dividing space between the

max and min values into 10 fragments. Contours are the geometric milieu of the nodes which

have the same value of the related independent variable. Horizontal projections of the curves

Figure 11. Axial velocity (v
z
) [0.0000 0.1802 0.2737 0.3671 0.4606 0.5541 0.6476 0.7411 0.8345 0.9280 1.0215].

Figure 12. Pressure (p) [�3.4962 �2.4411 �1.3860 �0.3310 0.7241 1.7792 2.8343 3.8893 4.9444 5.9995].
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(level curves) that are obtained by intersecting the surface shown in 3D in the surf drawing with

the horizontal planes yield the contours. Contours were drawn with the pdecont, pdemesh,

pdesurf commands at MATLAB. These 10 values, below the contours are given separately.

3.4.2. Technical details for the solution of the equation system

We transformed the partial equation system with the aid of FEM to nonlinear overdeter-

mined algebraic equation system. As we have numerous simultaneous and highly nonlinear

Figure 13. 3-D surf drawing of pressure.

Flow domain Minimum Maximum

ψ 0.0000 3.1416

νr �0.1772 0.2183

νz 0.0000 1.0215

p �3.4962 5.9995

τrr �6.0019 3.3792

τzz �6.1339 3.7165

τθθ �6.0115 3.4000

τrz �0.3701 0.8390

η 0.0845 1.0000

υ1 0.0029 0.9981

Table 6. Extrema contour levels.
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equations, which moreover are overdetermined due to the existence of the boundary condi-

tions, we were compelled to resort to the optimization techniques to resolve the equation

system [22].

Average error 0.1004

Standard Deviation 0.1820

η_avg 0.1104

C 1.6502

Table 7. Error computation, standard deviation, the average of η values at sphere surface (η_avg) and drag coefficient (C).

Error spaces 0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5

Equation number 1637 66 11 1 0

Percentage (%) 95.4519 3.8484 0.6414 0.0583 0

Table 8. Histogram results concerning equation errors; 1715 equations were used in total.

Min., Max. and Norms: Min(F) Max(F) ||F||2 ||F||
∞

�1.3449 1.6251 8.6075 1.6251

Table 9. Euclidean and infinite norms and minimum and maximum values of the minimized equation vector F.

Figure 14. Mesh scheme for a/R = 0.2.
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The end of the iterative optimization process is determined according to the fulfillment of

the Error computation, Standard deviation, Histogram and minimum and maximum

values of the minimized equation vector F, Euclidean norm and Infinite norm (Tables 7–

9). We determined that the results are in the acceptable order. We used the (Optim set f-

solve) function in MATLAB for iterative optimization. The basis of the method is based on

“least squares method.”

Figure 15. Stream function (Ψ) [0.00 0.01 0.05 0.20 0.44 0.77 1.25 1.88 2.67 3.14].

Figure 16. 3-D mesh drawing of radial velocity.
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Figure 17. 3-D surf drawing of radial velocity.

Figure 18. 3-D mesh drawing of axial velocity.

Figure 19. 3-D surf drawing of axial velocity.
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Figure 20. 3-D mesh drawing of pressure.

Figure 21. Normal stress (τrr) [�6.0019 �4.9595 �3.9172 �2.8748 �1.8325 �0.7902 0.2522 1.2945 2.3369 3.3792].

Figure 22. Axial stress (τzz) [�6.1339 �5.0394 �3.9449 �2.8504 �1.7560 �0.6615 0.4330 1.5275 2.6220 3.7165].
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Figure 23. Azimuthal stress (τθθ) [�6.0115 �4.9658 �3.9200 �2.8743 �1.8286 �0.7829 0.2628 1.3086 2.3543 3.4000].

Figure 24. Shear stress (τrz) [�0.3701 �0.2358 �0.1014 0.0329 0.1673 0.3016 0.4360 0.5703 0.7047 0.8390].

Figure 25. Viscosity coefficient (η) [0.0845 0.1862 0.2879 0.3896 0.4914 0.5931 0.6948 0.7965 0.8982 1.0000].
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3.4.3. Numerical solution

Obtained mesh configuration contains (linear and quadratic) 755 nodes in total (Figure 14).

Totally, 1715 equations are used. Extrema contour levels are given in Table 6. Error computa-

tion, Standard deviation, Drag coefficient in Table 7 and Histogram results about equation

errors are given in Table 8. Minimum and maximum values of the minimized equation vector

F, Euclidean and Infinite norms are shown in Table 9.

Stream function ψ, radial velocity vr, axial velocity vz, pressure p, normal stress τrr, axial

stress τzz, axisymmetric stress τθθ, shear stress τrz, viscosity coefficient η, normal stress coeffi-

cient v1 contours and error histogram are given in Figures 10–13 and in Figures 15–27.

Figure 26. Normal stress coefficient (υ1) [0.0029 0.1135 0.2241 0.3346 0.4452 0.5558 0.6663 0.7769 0.8875 0.9981].

Figure 27. Equation numbers producing error are shown on the vertical axis.
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4. Findings and discussion

In order to make a comparison and to compare the findings given in the literature in connec-

tion with settling of small particles for inelastic fluids with the behaviour of viscoelastic non-

Newtonian fluids having variable material coefficient that show shear-thinning due to being

mostly polymeric and viscoelastic nature of aforementioned materials; based on an example

given by Rameshwaran et al. [9] for generalized Newtonian fluid, results of a typical example

(CEF fluid) discussed in this study are compared visually with stream function, velocities,

pressures and stresses with contour curves, and numerically with extrema tables. For both

fluids the contour curves are shown in Figure 8 and in Figures 10–13 and in Figures 15–27,

and the contour levels are shown numerically in Table 3 and 6. The contours are drawn for the

ψ stream function, vr, vz velocities, p pressure, τrr, τθθ, τzz, and τrz stresses, η viscosity coeffi-

cient, υ1 normal stress coefficient (Figures 10–13, 15–27). These contours and their extrema are

compared with the generalized Newtonian fluid given in the literature [9].

As explained above, although the transition from system we used to a simpler example in the

literature taking υ1 as equal to 0 is not completely possible, this comparison was very useful in

general terms and allowed for new findings.

This comparison results can be explained as follows:

ψ stream function contours are completely similar for each two fluids. The extreme values

match up with each other. vr radial velocity contours are also in complete harmony to each

other. Although max values being 0.2171 and 0.2183 are approximately equal, there is small

difference between minimums, �0.1933 and �0.1772. At vz contours, harmony is perfect,

extreme values are respectively 0.00/0.00 and 1.1249/1.0215. Because vz = 1 must be at cylinder

wall as a boundary condition, the value we found is more realistic. The courses of p contours

are similar. The contour given in the literature is not very detailed, however our contour is

completely detailed and also it gives a better idea as it is colorful. What attracts attention is that

max and min values of each contour are at the same place at source and sink points of the

sphere surface. Extreme values are �4.9296/�3.4962 and 7.8010/5.9995. The pressure drops for

the fluids between sphere’s front and back faces caused by sphere motion, which settles along

the cylinder axis are 7.8 � 4.93 = 2.87 and 5.9995 � 3.4962 ≈ 2.50, respectively. The small

difference between the pressure drops can be explained by the elastic effect.

The viscosity coefficient (η) contours are harmonic. The contour given by us is colorful and

detailed, and it continues throughout the cylinder. Shear-thinning in this contour obviously

manifests itself. In the vicinity of the sphere where the shear-rate _γ is very large, η coefficient

becomes smaller and approaches to zero. Extreme values are respectively 0.244/0.0845 and

1.4672/1.0000. For both fluids Carreau equation and shear-thinning curve is used, and

according to this extreme values given for the generalized Newtonian fluid seem to be exag-

gerated. The contour of the first normal stress coefficient υ1 properly illustrates the formula it

was derived from and shows a course parallel to contour η. In conformity to the relaxation

time curve υ1
η given by Barnes et al. [8], this ratio approaches to 1 for small values of _γ and goes
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to zero for large values. Extrema values are 0.0029/0.9981. Likewise ratio of the υ1 and η

extreme values is 0.9981/1.0000 ≈ 1.0 for small _γ and 0.0029/0.0845 ≈ 0.034 for large _γ.

The main differences are at the stresses. These support our expectations. The magnitudes of

normal stresses τrr, τθθ, τzz in absolute values are increased considerably. Thus, elastic effect

appeared by inclusion of υ1 in our equations. In spite of this, the shear stress τrz in absolute

value decreased.

So, the shear effect decreased relatively, while the extensional effect increased. The category of

the flow slightly changed from shear flow toward extensional flow (Table 10).

5. Conclusions

Since the materials under consideration are rather polymeric and consequently viscoelastic, it

is compulsory to include the elastic behaviour in the analysis by taking the effects of the

normal stress into account in addition to those of the shear stresses and to use a constitutive

equation appropriate to this. In this study, this point of view is tried to be ensured, and in order

not to neglect the viscoelastic effect, a constitutive equation such as CEF, which includes

normal stress coefficients, υ1, υ2, is used.

The results of the analysis, as expressed above in the findings and discussion section, confirms

this idea. Comparison of the normal and shear stresses given in Table 10 exposed an increase

which reaches 3 times in absolute value in the normal stresses and in parallel a decrease which

reaches 4 times in the shear stresses. This table reveals that elastic effect in polymeric fluids

cannot be neglected. In this manner a fact has been emphasized, and an important point in

fluid literature has been clarified.
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Stresses τrr τθθ τzz τrz

Extreme values Min Max Min Max Min Max Min Max

Inelastic �2.6545 3.1418 �1.4139 1.8356 �3.6693 2.8291 �1.3276 2.9703

Viscoelastic �6.0019 3.3792 �6.0115 3.400 �6.1339 3.7165 �0.3701 0.8390

Table 10. Comparison of the normal and shear stresses.
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