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1. Introduction 

In this contribution the basic elements of sequential detection theory are presented and 

some applications to sensor networks are then addressed. Sequential detection was basically 

introduced by A. Wald in 1947 and deals with hypothesis testing problems assuming that 

the number of observations made available to the detector is virtually unbounded, hence not 

fixed in advance as it is the case of the more classical and well-known detection paradigms. 

From a conceptual view point, a sequential decision procedure is stopped when the specific 

realization of the data available to the detector is sufficiently informative to make a decision 

that satisfies prescribed error probability bounds. To compare with the Neyman-Pearson 

paradigm, note that for this latter the false alarm probability is prescribed, and the goal is to 

achieve the best detection probability, given a fixed number of samples available. In Wald’s 

hypothesis test, instead, we are given both the false alarm and detection probabilities, and 

the attempt is to make a decision, compatible with those performance levels, using the 

minimum number of samples. Sequential tests outperform the classical decision procedures. 

This notwithstanding, they are less known to non specialists, and perhaps less used in 

practical implementations. In part, this is due to the fact that sequential tests are less easy to 

be analyzed when the data are non independent and/or non identically distributed, 

although recent advances in that direction are available. 

However, and this is relevant for the present work, there exist many applicative scenarios 
where the sequential paradigm naturally arises as a suitable framework. This is the case, for 
instance, of certain sensor network architectures where a mobile agent sequentially queries 
the nodes of the network, in order to retrieve data or local inferences stored at those sensors. 
Here the mobile nature of the agent implies that the data are made available to it in a 
sequential fashion. In addition, the typical dimensions of certain sensor networks make the 
assumption of an unbounded stream of data available for sampling, a reasonable 
mathematical model of the physical scenario. 
This work is made of two parts. The first presents the theoretical background and tools of 
sequential detection, while the second addresses some practical applications. In presenting 
the basic elements of sequential analysis we are neither exhaustive nor mathematically 
advanced, beyond the typical tools of an electrical engineer. Rather, we hope to collect the 
main results for easy reference, and basic understanding of the applicative case studies. In 
discussing the applications to the sensor network, again, we have no pretence at all of O
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exhaustiveness. Rather, we focus on some recent applications of sequential sampling to 
sensor networks, as investigated by our research group. 

2. Basic elements of sequential detection 

2.1 Martingales 
The modern theory of martingales is due to Doob [2] that still remains the basic reference. 
Below, we only present the basic concepts and results. A random process {Xn}  is a 

martingale if, for n = 1, 2, . . ., we have 

 (1) 

The term martingale was introduced in France to denote a gambling scheme in which the 
gambler doubles his bet at each step of the play, until he finally wins. More in general, a 
martingale is intended as a betting scheme designed to improve one’s fortune. In effect, if 
we interpret Xn as the fortune of the gambler at step n, the above definition of martingale 
random process states that the gambler’s fortune on the next play is, on the average, the 
same of his current fortune, irrespectively of the previous history; therefore, the martingale 
models a fair game [3–5]. 
The perhaps simplest examples of martingales are the sum Xn = Σ Wi of independent 

random variables Wi’s satisfying the first of (1) and having zero mean, and the product 
Xn = Π Wi of independent random variables Wi’s with unit mean (again, if the first of (1) is 

satisfied). 
A slightly general definition of martingale is as follows. The random process {Xn}  is a 

martingale with respect to the random process {Yn}  if, for n = 1, 2, . . ., 

 (2) 

With the above definitions, the so-called Doob martingale can be introduced by considering 
an arbitrary random process {Yn} , and a random variable X with E[│X│] < ∞. In fact, the 
process 

 (3) 

is easily shown to be a martingale with respect to {Yn} . Doob’s martingale has important 

applications in various fields, including estimation theory since the sequence of optimal (in 
the mean square sense) estimators of a random variable X, given observations Y1, . . . Yn, is 
the conditional mean E[X│Y1, . . . , Yn] which, therefore, is noting but a Doob martingale. 
In the sequential sampling framework that we are interested in, the concept of stopping time 
is key. A random variable N taking values in {1, 2, . . . ,∞} is a random time for the process 
{Xn} , if the event {N = n} is determined by X1,X2, . . . ,Xn. This means that we can decide if 

N = n or N ≠ n, by only observing the process Xi up to time n, while the samples Xn+1,Xn+2, ... 
are irrelevant for that. A random time N is called stopping time for the process {Xn} if  

Pr{N < ∞} = 1. Therefore, N is a stopping time for {Xn} if the event {N = n} conditioned on 
knowing the past of the process {Xn} , does not depend upon what {Xn} does in the 

future. Indeed, a more general formal definition of stopping time can be given just in terms 
conditional independence, which is relevant in cases where the sequence of random 
variables {Xn}  is only one actor of a more general probabilistic experiment [6]. 
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Consider now a stopping time for the process {Xn} , and define the associated stopped 

process [5]: for n = 1, 2, . . ., 

 
(4) 

It can be shown that, if {Xn} is a martingale, then the associated stopped process { X n}  
is a martingale too. 
By definition of martingale, taking the expectation to both the sides of the second equation 

in (1), we have E[Xn+1] = E[Xn], ∀n ≥1, and consequently, 

 

for all n. Since { X n}  is a martingale too, we also have E[ X n] = E[ X 1] = E[X1] (note that 

always X 1 = X1). Since the stopping time is finite with probability one, the original process 
{Xn}  will be eventually stopped, that is to say, there must exists a (sufficiently large) 

value of n such that X n = XN. From that value of n on, the stopped process remains 

constant, implying that limn X n = XN. Taking the expectation 

 

If we could exchange the limit with the statistical expectation operator, we would get the 
following important result 

 
(5) 

Indeed, under appropriate technical conditions the above exchange is legitimate and this 
result is known as the martingale optional stopping theorem, which states the following (see 
e.g., [4, 5]): Equation (5) holds true, provided that at least one of the following conditions is 
met 

• the random variables { X n} are uniformly bounded; 

• the stopping time N is bounded, i.e., Pr{N ≤k} = 1, for some k ≥ 1; 

• E[N] < ∞ and E[│Xn+1 - Xn│ │X1, . . . ,Xn] < k < ∞, for some k ≥ 1. 

2.2 Sequential probability ratio test 
With the concepts introduced above, we can now elaborate on the likelihood ratio to derive 
the basic design formulas for the sequential test proposed by Wald. Let us consider the 
binary test between two simple hypotheses: 

 
(6) 

where f0,1(y) are two known probability density functions of Yi, under hypothesis 0, 1, and 
where the data Yi, i = 1, 2, . . . are iid (independent, identically distributed), for simplicity. As 
distinct feature, the number of such observations is not determined in advance but it can be 
virtually unbounded. Wald’s test, also known as SPRT (Sequential Probability Ratio Test) 
prescribes to proceed as follows. Let Λn be the likelihood ratio pertaining to the above 
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statistical test, using the first n samples Y1, . . . , Yn, available, that is: Λn = Π f1(yi)/f0(yi). 

We have [1] 

 

(7) 

As it is clear from this formulation, the actual number of samples processed in order to 

make a decision is not fixed and is instead a random quantity, whose actual value will 

depend on the specific realization of the observation process {Yn} . The detection and 

false alarm probabilities of the test are defined as usual: 

 (8) 

 (9) 

and there is an amazing simple relationship relating the pair (Pd, Pf ) to the thresholds of the 
test (Ǆ0, Ǆ1), as we shall promptly see. 
Let us assume that hypothesis 0 is actually in force. Given the observations Y1, . . . , Yn, let 
us consider the random process build upon the likelihood ratio 

 
(10)

Under mild regularity conditions (i.e., assuming E[│Λn│ │ 0] < ∞, ∀n), the process {Λn}  

is a martingale with respect to the observation process {Yn} . Indeed, we have 

 

(11)

Let us define the random time (with Ǆ0 < 0 and Ǆ1 > 0) 

 (12)

and assume that Pr{N < ∞} = 1, i.e., that N is actually a stopping time for the process {Yn} . 

The associated stopped process can be defined as in (4), and we can invoke (under suitable 

regularity conditions, see above) the martingale optional stopping theorem, yielding 

 
(13)

Neglecting the excess over the boundaries (this is also known as Wald’s approximation), yields 
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 (14)

 (15)

that underly many of the approximate design formulas for sequential detectors. We 
therefore get 

 (16)

Reasoning in the same way under hypothesis 1, but using as martingale the the inverse of 
the likelihood ratio 1/Λn, we get 

 (17)

Putting together eqs. (16) and (17), immediately yields1 

 
(18)

 
(19)

We reiterate that the approximation involved follows from having neglected the excess over 
the boundaries2. 
Equations (18) and (19) relate the error probability of the SPRT to the thresholds and are 
therefore used to set the thresholds of the test, given prescribed performance level. 
Intriguingly, note that we can set the thresholds without knowing the statistics of the 
observations; clearly, the likelihood ratio does depend on these statistics. 
Once that the desired error probabilities have been fixed, and that the thresholds are 
accordingly set, the main performance figure of the Wald’s test is the average sample 
number (ASN) E[N]. This is the expected number of samples needed to make a decision, and 
is also referred to as the (averaged) decision delay. To characterize E[N] let us start from 
what is known in the literature as Wald’s identity. Let Wi, i = 1, 2, . . . be a sequence of iid 
random variables, and let Xn = Σ Wi their cumulative sum. Also, let 

 (20)

Introducing the semi-invariant moment generating function of the random variableWi, that 

is , and assuming that ƥ(r) is finite in an open interval Ω around the 

origin r = 0, we have that, for r ∈ Ω, 

                                                 
1 Logarithms are to natural base. 
2 The approximation involved in the above relationships is often accurate for practical 
purposes, but one can also resort to certain bounds. Specifically, let Pda and Pfa the actual 
detection and false alarm probabilities that one gets by setting the thresholds according to 
eqs. (18) and (19) in which the nominal values Pd and Pf of those probability are used. Then, 
see e.g. [7]: 
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 (21)

Differentiating both sides of Wald’s identity (21) and evaluating the result at r = 0, the so-
called Wald’s equality is obtained: 

 (22)

(Clearly, the above equality can be also proved more directly, without resorting to Wald’s 

identity, see, e.g., [5].) On the other hand, the second derivative evaluated at r = 0 gives 

 (23)

which is useful in sequential analysis whenever E[W] = 0, in which case Wald’s equality is of 
limited use. 
Suppose now that the true hypothesis is 0, and let us replace the generic Xn with Ln, the 
log-likelihood ratio of hypothesis test (6): 

 
(24)

With this assumption, it should be clear that the stopping time N in eq. (20) is exactly that 

defined in (12), and we are in fact faced with the earlier discussed sequential test. Clearly, Ln 

is the cumulative sum of the sequence of iid random variables log [f1(yi)/f0(yi)], whence 

application of Wald’s equality yields 

 

(25)

The numerator can be expanded by conditioning, and then approximated by Wald’s 
approximations: 

 

 
 
 
 
 

(26)

where the last approximation follows from eqs. (18) and (19). 

Defining the binary divergence (measured in nats) Db(α││ǃ) between two probability mass 

functions (pmf) [α, 1 - α] and [ǃ, 1 - ǃ] as [8] 

 

the numerator of (25) can be expressed (within the stated approximation) as follows 
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The divergence between two arbitrary probability density functions (pfds) f0(y) and f1(y) is 
defined as [8] 

 

implying that the denominator of (25) is -D(f0││f1). We finally get
 

 

Elaborating exactly in the same way, assuming 1 true, we can compute E[N│ 0]. 
Therefore, the final result is 

 
(27)

 
(28)

Roughly speaking, the above approximations become tighter and tighter for small error 
probabilities Pf , 1 - Pd << 1, namely, when the no decision region between the thresholds is 
large: Ǆ0 << 1 and Ǆ1 >> 1. Otherwise stated, the approximations are fair when the average 
number of samples collected is large enough. 
It is worth noting how Wald popularized these formulas in 1947 in a form that did not 
involve the divergences, and in fact the divergence was defined by Kullback [9] in the 
context of information theory, a theory born just one year later, in 1948, with the work by 
Shannon. 

2.3 Sequential detection with general test statistics 
The fundamental results presented in the previous section trace the route for implementing 
the SPRT, as well as for computing simple approximations for performance evaluation. Of 
course, since the pioneering work by Wald, these results have been extended in many 
different directions, including, among many other, the case of dependent and non-
identically distributed observations [10], sequential tests with arbitrary detection statistics 
[6], asymptotic results for vanishing signal-to-noise ratio [11], refined approximations for 
the excesses over boundaries [12], and so on. An exhaustive review of these concepts is 
clearly beyond the scope of the present work. In this section, we limit ourselves to consider a 
setting which slightly extends the classical SPRT framework. The mathematical results, 
which are perhaps less intuitive than the classicalWald’s formulas, turn out to be useful 
from an engineering perspective, as we next show in the sections devoted to sensor network 
applications. 
Let Tn = Σ  t(Yi), with Yi iid random variables, and with t(· ) being a certain transformation, 
in general different from the log-likelihood ratio. We consider the case that a sequential test 
is implemented, based upon the above Tn. More specifically, let N be the smallest n for 
which either Tn ≥ Ǆ1 or Tn ≤ Ǆ0. For concreteness, we assume that the t(Yi) has positive 
expectation under 1 and negative expectation under 0, and that the two thresholds 
accordingly obey Ǆ0 < 0 < Ǆ1. This problem can be cast in the more general framework of 
random walks with two thresholds [6, 13, 14]. 
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In order to assess the test performances, we need setting the thresholds in order to meet the 

prescribed false alarm and detection probabilities. To fix ideas, let us consider the case that 

E[t(Yi)] < 0, that is, for our purposes, we are under 0. Assuming that the semi-invariant 

moment generating function ƥ(r) of the random variable t(Yi) is finite in an open interval Ω 

around the origin, and that has a root r* > 0, we can use Wald’s identity with r = r*, that is, 

, which is equivalent to 

 (29)

Note that, if Tn is the log-likelihood ratio, r*= 1, and eq. (29) essentially translates into eq. 

(13), which, incidentally, was obtained by resorting to the theory of martingales. 

Now, different bounds and approximations can be derived from (29). One option is to 

neglect the overshoots, as previously done for the log-likelihood ratio, obtaining 

 (30)

which is the counterpart of eq. (16). 
The above technique gives also a direct way to derive upper bounds on the threshold 

crossing probabilities. Indeed, conditional on  and being all terms 

on the right-hand-side of eq. (29) non-negative, we easily have 

 (31)

A positive threshold crossing can be considered, under the assumption that E[t(Yi)] < 0, as 

an event becoming rare as Ǆ1 grows, and this is consistent with the obtained exponential 

bound. All the reasoning can be applied to the random walk with E[t(Yi)] > 0 (that is, under 

1), obtaining the two formulas: 

 
(32)

and 

 
 

where the non-zero root of ƥ(r) is now negative, ans is denoted by r**. We note explicitly 
that these exponential bounds do not work for the case that the random walk is zero-mean. 
Before concluding this section, we would like to report another useful tool, which extends 

the previous results to the characterization of the joint distribution of the stopping time N 

and the barriers. Assuming again that E[t(Yi)] < 0 and ƥ(r*) = 0 for some r* > 0, the following 

two bounds can be derived [6]: 

 

and 
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In some sense, the above bounds furnish an interpretation of the value n* = Ǆ1/ƥ’(r*) as the 
typical value of the stopping time N conditional on the upper threshold crossing. 
This concludes our survey of the basic tools and results of sequential detection. In the 
following, we apply and extend these results by addressing several case studies. 

3. Selected applications 

We now present some applications of the sequential sampling theory, whose basic elements 
have been summarized in the previous sections; the applications are selected from the 
authors’ recent works on the subject, which are somehow related to sensor networks. In the 
first example (Sect. 3.1) the decentralized architecture of the sensor network is key, and we 
take a genuine cross-layer perspective of the whole system that merges the detection layer 
with the (many-to-one) communication layer. The last two examples (Sects. 3.3 and 3.2) 
focus on the signal processing at the sensor level designed for improving the detection 
performances of the fusion center, and are therefore exploitable even in certain non 
decentralized systems. Whenever appropriate, for easy reference, we try to maintain the 
notation as close as possible to that of the original works to which we refer for more general 
discussion, in-depth description, and for many technicalities which are deliberately 
neglected in this presentation. 

3.1 SENMA detection with censoring nodes [15] 
Suppose that a WSN designed for solving a binary hypothesis test is made of many tiny 

remote units uniformly deployed over the surveyed area, and of a Mobile Agent (MA) 

having the role of fusion center. The remote units sense the environment and collect data 

relevant to the detection task, while the MA travels across the network domain and 

sequentially polls the sensors. Indeed, in the SENMA (SEnsor Network with Mobile Agents) 

architecture proposed in [16], see also [17–19], at each successive MA’s snapshot the nodes 

falling within its field of view are queried for delivering their data. Oppositely to the 

intrinsic nature of the remote units, the MA can be a very reliable device with large power 

capabilities and adequate communication/computational properties. In addition, its mobile 

nature greatly simplifies the sensors/MA communication tasks, thus making the SENMA 

architecture particularly suited for many practical applications being scalable, robust and 

simple to implement. In addition, as one might expect, the more important advantage of the 

SENMA over alternative network structures (e.g., ad-hoc system) is in terms of energy 

saving for communications, a key parameter for sensor networks. 

The MA collects the data delivered from the sensors and, as soon as a new observation is 
made available to it, this is included in the computed detection statistic. We assume that 
such a statistic is the cumulative sum of the log-likelihood ratios, resulting in the Wald’s 
SPRT [1], discussed previously in this work. 
The specific viewpoint taken in [15] is that the remote units do not necessarily deliver their 

data to the MA when they fall in its field of view. In order to further economize the energy 

burden, a censoring protocol is implemented [20–23]. Data are delivered only if they are 
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sufficiently informative: the sensor transmission is inhibited if the the locally computed log-

likelihood of the measured data does not exceed (in modulus) a certain threshold level. In 

this way a communication session is activated, and the correspondent energy is spent by the 

sensor, only if the local observation is expected to contribute in a meaningful way to the 

final decision. Otherwise, such data will be never received by the MA and do not play any 

role in building the final statistics. A trade off clearly emerges between detection 

performances and energy consumption. 

3.1.1 Network performances 
Let us suppose that data collected by the remote units of the network are M-vectors of iid 

(independent and identically distributed) observations, and that different nodes observe iid 

data, as well. If we label with an index n = 1, 2, . . . , the (virtually, infinitely many) remote 

units, the basic hypothesis test under study is as follows 

 
(33)

where 1 represents a vector of all 1s. The vectors wn = [wn1,wn2, . . . ,wnM] have iid 

components picked from a continuous random variable, whose probability density function 

(pdf) is φ(w), and is here assumed to be an even function with domain the whole real axis. 

The known parameter μ rules the amount of shift in mean that distinguishes the two 

alternative hypotheses. 

Denoting by xnm the mth observation taken at the nth sensor, the local log-likelihood is 

 

and, in absence of censoring, the SPRT would be (see eq.(7)) 

 

(34)

Due to the censoring, when polled by the MA, the nth sensor of the network actually delivers 

data only if L(xn) ∉[-ǅ, ǅ], where ǅ is the level of censoring. The delivering probability can be 
found to be 

 (35)

where Fi(y) is the CDF of the log-likelihood L(xn), under hypothesis i = 0, 1. 
Let Nt be the random number of sensors that actually deliver data to the MA, as opposed to 

Nv, the number nodes encountered by the MA in its travel across the surveyed area. 

Denoting by I(· ) the indicator function, we have  where Nv 

is a valid stopping time [6], so that Wald’s equality (22) yields 

 (36)
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It makes sense to adopt Nt as a proxy of the energy consumption, and Nv as a proxy of 
detection performance in terms of detection delay for achieving a desired level of error 
probabilities. Therefore, the above relationship emphasize the trade off between detection 
performances (more data yield better performances) and energy saving, tuned by the 
censoring level ǅ. 
We need now to introduce the following quantity: 

 
(37)

Denoting by Pd and Pf the desired detection and false alarm probabilities set at the design 
stage, see eqs. (8) and (9), in [15] the framework of sequential analysis earlier discussed is 
exploited, to show that (via proper modification of the the techniques leading to eqs. (27) 
and (28)): 

 

and 

 
 

It can be also shown that s(ǅ) is monotonically increasing in ǅ, while the product pt(ǅ)s(ǅ) 
monotonically decreases with ǅ. This implies that the larger is ǅ, the more energy the 
network saves but the larger is the detection delay. 

3.1.2 Optimization 
To compare our censored system with respect to the absence of censoring, let us define E [N] 
as the average number of sensors resulting from assuming ǅ = 0 (no censoring). The 
following quantities can be introduced 

 
(38)

and 

 
(39)

Now, let us consider the single-sample local log-likelihood L(xn) and let us denote by a and 
b2 its mean and variance: 

 (40)

 (41)

Also let 

 
(42)
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Fig. 1. Performance of the designed censored system, ηt and ηv, as function of the parameter 
Ʀ for different values of ρ. 

An approximate analysis providing amenable formulas for system performances can be 
made by using the Central Limit Theorem, see [15], yielding: 

 

(43)

 
(44)

where Q(· ) is the standard Gaussian complementary CDF. 
By drawing ηt and ηv as functions of Ʀ for different values of ρ, we get the curves for the 
system optimization, as depicted in Fig. 1, from which the desired system operative point in 
terms of detection delay and sensors energy consumption can be decided. Figure 2 provides 
the same information and insight of Fig. 1. 
An interesting behavior is also observed when the sensors, provided that their observations 
are informative enough, can only send to the MA the hard decisions (i.e., a binary value) 
taken at a local level. In this case, different from the previous case that the censored log-
likelihood are transmitted, it is possible to prove that an optimal censoring level exists, 
minimizing the detection delay. Examples of applications, as well as detailed discussions of 
the above aspects, are addressed in [15], to which the reader is referred for details. 

3.2 Pre-processing at sensor level for detection after transmission over noisy 
channels 
Suppose that the sensors of a network are connected by dedicate channels (parallel 
architecture) to a fusion center, i.e., some unit devoted to the task of data fusion, and assume 
 

www.intechopen.com



Elements of Sequential Detection with Applications to Sensor Networks 

 

429 

 

Fig. 2. Performance of the designed censored system, ηt and ηv, as function of the parameter 
ρ for different values of Ʀ. 

also that such channels are noisy. The issue is to understand if some processing of the data 
measured at the sensor would increase the detection capabilities of the fusion center. 
Specifically, we are faced with a detection problem in which remotely observed data are 
delivered to a fusion center through a certain channel. The fusion center is designed to 
decide between two mutually exclusive statistical hypotheses, basing its decision upon the 
received data whose statistical distribution is determined by the underlying hypothesis. 
Should the observations made at the remote sensor be somehow processed before delivering 
them over the channel? 
We assume that the fusion center implements a sequential test. Motivated by eqs. (27) and 
(28), it makes sense to choose as a measure of the detection performances the divergence 
between the distributions under the two hypotheses since this directly impacts the average 
sample number, i.e., the detection delay. Therefore, the above question can be rephrased in 
terms of divergence: can we increase the divergence at the output of a noisy channel, by 
elaborating on its input? It is obvious that, if the channel were ideal (noiseless) the answer is 
certainly negative in view of the data processing inequality. On the other hand, for noisy 
channels, the answer is in some case affirmative. Let us limit the following discussion to the 
case where the noisy channel has binary input and output alphabets, and let us model the 
sought sensor processing as a further channel having as input the original measured data 
and whose output are the transformed data, to be sent over the physical noisy channel. 
Formally, we consider the statistical test 

 
(45)

where p and q are two arbitrary pmfs (column vectors) with alphabet {1, 2}, that rule the 

random variable I modeling the (iid) sensor observations. The sensor delivers data to the 
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fusion center by a discrete memoryless channel, J → K, whose input may be different from I. 

Indeed a possible sensor processing may take place, which is also modeled as a channel  

I → J. The physical channel is 

 

(46)

where Ckj = Pr{K = k│J = j}, k, j = 1, 2, while the processing channel is 

 
(47)

where Hji = Pr{J = j│I = i}, j, i = 1, 2. A convenient, self-explaining, notation is as follows 

 (48)

where C is given, while the task is to find a matrix H that maximizes the detection 

performance at the remote site that observes K. 

Let x and y be the pmfs of J under the two hypotheses, and, similarly, let w and z be the 

pmfs of K. We have: 

 (49)

The described problem can be cast in the form of an optimization 

 
(50)

and the following claim can be proved by elementary convex analysis tools: only the 

following four matrices are candidates for solving the posed optimization problem 

 

Clearly, the last two matrices should be ignored since they both lead to zero divergence in 

terms of the variable K. Given that the first matrix is the identity, the only possibility for 

improving the detection performance based on K is to try with the upper-right matrix, that 

is to say, to try with a symbol flipping: if I = 1 is observed, then J = 2 is presented at the 

input of the physical channel C, and vice versa. 

To elaborate, let us assume that the original detection problem is “difficult”, in the sense that 

the hypotheses p and q are very close each other. For instance: 

 (51)

where │ │ is small enough. Expanding in series around  = 0, we can find 
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If we want that  we must have that 

 

The conclusion is that the sensor pre-processing improves the final detection performances 
if and only if 

 
(52)

We are currently working on extensions of the topic here briefly described, with a more 
general formulation, including non binary observations and channels. For the time being, it 
is important to emphasize that for binary and symmetric physical channels (i.e., C11 = C22) 
there is no way of improving the performances. We have evidences, however, that for non 
binary cases the problem exhibits much more structure and provides more useful insights 
from a practical perspective. What remains true in more general settings, however, is that 
the optimal pre-processing is deterministic, in the sense that given the input I the output J 
can be determined with probability one, a circumstance with a precise physical meaning. 

3.3 Noise enhanced sequential detectors [24] 
Let us consider a fully decentralized sensor network without fusion center, designed for an 

inference task. In this typical architecture, each node senses the environment and collects 

data about a phenomenon to be monitored, think for instance of a binary detection problem 

where the challenge is to decide which of two possible statistical distributions actually rules 

the observations. The lack of fusion center is remediated by suitable inter-node 

communication protocols that allow the system to exchange data up to make the final 

decision. These data, due to often unavoidable physical constraints, are here assumed to be 

some nonlinear transformation t(· ) of the original observations. 

Specifically, the ith node of the network computes t(Xi), where Xi is the sensed sample, and 
delivers such a value to one of its neighbors, say node j. This latter computes t(Xi) + t(Xj) 
and delivers that to node k, and so on. The decision process is sequential: as soon as the 
value computed at some node exceeds given thresholds the decision is taken, and the task is 
terminated. 
With this model in mind, motivated by recent advances in noise enhanced and stochastic 
resonance detection, in [24] the question is posed if adding a “noise” sample, say Wi, to the 
measurement made at node i before computing the nonlinearity t(· ), could provide any 
benefit in terms of the final detection performances. This at first glance counterintuitive 
question may have (surprisingly?) a positive answer: there exist cases in which adding noise 
is beneficial! 
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3.3.1 Problem formalization 
Let us consider first the original shift-in-mean binary hypothesis test: 

 

Here i = 1, 2, . . . ,∞, represents the sensor number, Xi is the observation made at node i 

(observations are iid), and the pdf fX(x) is an even function. According to formulation (7), the 

SPRT for this problem would be 

 

(53)

but, in many cases of interest, implementing such an optimal SPRT is unfeasible [25]. 

Therefore, we consider sub-optimal sequential detectors and, as explained before, we also 

contaminate the original observations with iid noise: this latter effect amounts to consider 

the noise contaminated observables Yi = Xi + Wi, in place of the original Xi. The noise density 

is also assumed even-symmetric: fW(w) = fW(-w), and that of the contaminated samples 

becomes the convolution of the two: fY (y) = fX(x) * fW(w). 

The said sub-optimality of the detector amounts to work with a decision statistic in the form: 

 
(54)

where t(y) is a bounded and non-decreasing odd function. To simplify the analysis, let the 
error probabilities 1 - Pd and Pf of the sequential test, see eqs. (8) and (9), be equal, and 
denote by Pe such value. We have 

 
 

where the thresholds Ǆ and -Ǆ are symmetric as consequence of the assumed problem 
symmetries. 
The above test is not a standard SPRT, since Tn is not the log-likelihood. Therefore, the 

system performances can be obtained as discussed in Sect. 2.3. First, Wald’s equality (25), 

under hypothesis 1, yields, in the regime of small Pe, 

 
(55)

Furthermore, the exponential bound (31) is used: 

 (56)

where r* solves 
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(57)

The denominator of (55) can be written 

 

and, introducing the function 

 
(58)

yields 

 

Similarly, we have 

 

which, introducing the function 

 
(59)

yields 

 
The two above functions allow us to write compact formulas for the system analysis. 
Indeed, in [24] it is found that 

 

 
 

(60)

The optimal performance-enhancing noise density fW(w) must minimize the expected 

sample number, without increasing the error probability. Using our approximations and 

bounds, this amounts to 

 
(61)

where  corresponds to the noise-free case. 

3.3.2 Example: sign detector 
Assume now that the nonlinearity is the sign function, which amounts to one-bit quantized 

observations 

 

The performance functions h1(w) and h2(w, r) can be found to be 
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 (62)

 (63)

where FX(· ) is the cumulative distribution function of the random variable X. By 
introducing the quantity 

 (64)

we finally get 

 

(65)
 

(66)

Enforcing EW[h2(W, r)] = 1 yields as solution 

 
(67)

Equation (61) requires a constrained maximization of EW[h1(W)] = 2p - 1, where the 
constraint is

 
, with  being the value of r*corresponding to the absence 

of injected noise. However this can be shown to be equivalent to its unconstrained 
counterpart, which amounts to simply find the maximum achievable value of p. 
Remarkably, it is also possible to prove that the optimizing noise density can be chosen in 
the class of the coin flipping distributions: 

 
We report now the evidences of some numerical simulations aimed at checking the goodness 
of the found formulas, as well as the potential benefits of adding noise to the observations for 
detection purposes. We choose for the observation density a mixture of Gaussians: 

 
Moreover, we assume that the detection threshold Ǆ is fixed in such a way to yield, in 

absence of noise, an error probability Pe0 ≈10-2. 
In Fig. 3, top plot, the ASN is displayed as function of different injected noise depth w0. The 
theoretical formulas reasonably match the simulation points, and an optimal value of w0 

minimizing the sample number is clearly present. To get the complete perspective, the 
actual error probability Pe is also displayed in the bottom plot of the same figure. It can be 
seen that, for any w0, while the ASN decreases, the error probability is kept below the value 
Pe0. Remarkably, in correspondence of the optimal w0, the actual Pe is in effect orders of 

magnitude smaller than the design value 10-2. 

4. Conclusions 

In many instances of Wireless Sensor Networks (WSNs) designed for detection purposes, 
the fusion center is a mobile device that sequentially queries the nodes of the network. Such 
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Fig. 3. Sequential detector with fixed threshold Ǆ, for the sign nonlinearity. The expected 
sample number (top panel) and the error probability (bottom panel) of the proposed 
sequential detector are displayed as function of the injected noise depth w0. The simulation 

parameters are A = 1, μ = 5, and Pe0 = 10-2. Simulation points are obtained by 104 Monte 
Carlo trials and, in bottom panel, we draw only the simulation points that do not fall under 
the accuracy of the numerical procedure. 

a sequential architecture, known as the SENMA structure, fits well the sequential detection 
paradigms, i.e., the SPRT and its variants. Aside from the SENMA scenarios, the typical 
tools of sequential detection are exploited much more in general, in various guises, in a 
variety of WSN applications. This paper provides a succinct introduction to sequential 
analysis and presents several examples of applications to detection problems. 
The main aim of this paper is to introduce the reader to the very powerful tool of sequential 
analysis, providing the basic insights and useful entry points to some topical literature. The 
specific issues presented in the first part of this work are selected in order to provide the 
necessary theoretical background for the applicative examples discussed in the second part 
of the paper. These latter examples, on the other hand, reflect the authors’ recent research on 
the subject. As a consequence, neither the theory nor the applications are exhaustive or 
complete in any sense. However, the paper is rather self-consistent and can help in gain a 
first understanding of the topic. 
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