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Abstract

The distribution of particulate form of organic carbon (POC), Al, Fe, Ti, Li, Zn, Pb, U, 
Sc, Sn, Bi, Zr, Ba, As, Sr, W, V, Co, Cu, Ni, Mo, Cr, Mn, Ba, Sn, Sb, Hg, and Ag in the Cai 
river and Nha Trang Bay generally followed the distribution of total suspended matter 
(SPM) and was characterized by the most significant loss in the frontal zone of the estuary 
with highest horizontal gradients within the salinity interval of 8–20‰. The most part 
of these elements are supplied to the estuary with the Cai river discharge. Sedimentary 
Al, Fe, Ti, Li, Sc, Co, Cs, Zr, Cr, Zn, Co, Ni, Cu, Pb, Sn, and V are most likely controlled 
by the accumulation of their most fine-grained host minerals in sea floor depression of 
the bay. Sedimentary Bi, W, As, U, and Mo are mainly deposited with the coarse river 
material near the river mouth. The distribution of Ca, Sr, Mn, and Ba is largely controlled 
by the total inorganic carbon (TIC) content in the sediments. Metal form study revealed 
the highest percent contents of the labile forms for Mn, Co, and Pb in the sediments. The 
high levels of weak acid-soluble Pb and Co (30% and 43% of the total content in sediment, 
on average, respectively) contributes to a contamination problem in the Nha Trang Bay 
which arises from the Cai River discharge.

Keywords: Vietnam, tropical estuary, trace elements, selective extraction, bioavailable 
metal forms

1. Introduction

Southeast Asia has experienced a rapid and colossal economic growth with Vietnam being 

one of the fastest growing countries. Most development activities (e.g., industry, agriculture, 
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human settlement, tourism, and transport) take place in coastal zones [1–4]. This hazard is 

increased by the high vulnerability of these areas to environmental changes. The Cai River 

and the Nha Trang Bay of the South China Sea are inhabited by unique biota. This region is 

now exposed to the multiple anthropogenic stressors such as human settlement, agriculture 
and aquaculture, tourism and transport [5].

Over the past two decades, comprehensive studies of the organic geochemistry patterns 
and contamination levels and trends in the Nha Trang Bay have been undertaken [6–14]. 

The most recent research of the abundance, distribution and speciation of the major and 

trace elements in the sediments allowed to track the fate of potential contaminants in the 

Cai River—Nha Trang Bay estuarine system along the salinity gradient [5, 15]. It was 

shown that most trace element contents were at natural levels and are derived from the 

composition of rocks and soils in the watershed. A severe enrichment of Ag was most 

likely derived from metal-rich detrital heavy minerals. Geochemical fractionation of the 
riverine material generally determined the metal enrichment in surface sediments along 

the salinity gradient. The parts of actually and potentially bioavailable forms were most 

elevated for Mn and Pb (up to 36 and 32% of total content, respectively). Overall, the most 
bioavailable parts of trace elements were associated with easily soluble amorphous Fe and 

Mn oxyhydroxides.

In estuarine region, suspended particulate matter (SPM) acts as a major carrier as trace 
elements get adsorbed on to major elements like Fe and Mn oxyhydroxides and organic 

matter and get precipitated, where coarse material may settle into the estuarine system 
as sediments and finer materials get transported into the ocean [16–18]. It is important to 

study major and trace elements, as excess input of these metals may settle into the estuary 
due to salinity gradient [19–22]. The present study summarises the data on the abundance, 

distribution, partition, speciation and bioavailability of major and trace elements in the 

suspended particulate matter (SPM) and surface sediments of the Cai River estuary under 
multiple stresses.

2. Materials and methods

2.1. Environmental setting

The Cai River, its estuary and the adjacent part of the Nha Trang Bay belong to the Central 

Southern Coastal Region of Vietnam (Khanh Hoa Province). The fresh river water (S < 0.1‰) 

and saline South China Sea water (S ≈ 36‰) form a major water-mixing zone. The fill dam 
built 8 km upstream from the river mouth limits the water exchange and marks the river-
ine boundary of the water-mixing zone (Figure 1). The Cai River estuary and Nha Trang 

Bay can be divided into three sub-zones: (1) river (S < 0.1‰), (2) transitional waters (estu-
ary) (0.1‰ > S > 32‰) and (3) sea (bay) (S > 32‰). In the transitional waters, the salinity (S) 
increases from the river to the sea and from the surface to the bottom. The water column is 
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highly stratified with the pronounced horizontal and vertical salinity gradients [5]. The cli-
mate seasonality and human activities (such as urbanisation, land use, damming, tourism, 

coastal construction, transportation, aquaculture and fisheries) expose the Nha Trang Bay to 
multiple pressures [14, 23–26].

2.2. Field work

The water and sediment samples were collected in the Cai River estuary and Nha Trang Bay 

in July 2013 along the salinity gradient at five locations for surface water layer (sts. 1, 3, 4, 7, 8, 
Figure 1) and at seven locations for surface sediments (sts. 2–8, Figure 1). The sampling sta-
tions were located in the riverine (st. 1), transitional (sts. 2–4) and marine (sts. 5–8) sub-zones 
of the dry season.

The surface water samples were obtained using a plastic Niskin bottle. The temperature, 
alkalinity and salinity of the water samples were measured on-board immediately after 
collection using portable conductivity apparatuses HI 98129 Combo and HI 98302 DIST 
2 (Hanna Instruments, Germany). The suspended particulate matter was collected by fil-
tering of water samples in an all-glass filtering system, on pre-weighted filters: 0.45 μm 
polycarbonate filters (Millipore-Isopore) for total suspended matter (TSM); combusted and 
pre-weighted glass fibre filters (Whatman GF/F) for particulate organic carbon (POC) and 
acid-clean cellulose filters (Millipore HA) for geochemical analyses. In the laboratory, all 
filters were rinsed with 250 ml Milli-Q water to remove salts and dried to constant weight 
at 60°C.

The surface sediment sampling, transportation and preparation procedures were performed 

using standard clean techniques that were described elsewhere [5].

2.3. Analytical methods

The surface sediment samples were subjected to grain size and mineral composition analyses. 

The grain size analysis was performed by wet sieving [27, 28].

The dissolved organic carbon in water samples was determined by high-temperature (at 
680°С) thermocatalitic oxidation with dispersion-free IP detection. The total carbon (TC) 
contents in suspended particulate matter (SPM) and sediment samples were determined 
by dry burning at 900°С in oxygen flow and the total inorganic carbon (TIC) contents were 
determined by dry burning at 200°С with H3PO4. The DOC, TC and TIC analyses were per-
formed with the analyser TOC 5000-V-CPH (Shimudzu Co., Japan). The total organic car-
bon (TOC) contents were determined as a difference between TC and TIC contents in the 
samples [10].

For the total Al, Fe, Ti, Ca, Na, Mn, Li, V, Cr, Co, Ni, Cu, Zn, As, Sr., Zr, Mo, Cd, Ag, Sn, Sb, Cs, 

Ba, Pb, Bi and U content analysis, the samples were subjected to the total acidic dissolution in 

HNO3 + HF + HClO4 in an open system with further determination of element contents using 
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the ICP method on the Х-7 ICP-MS spectrometer (Thermo Scientific, USA) [29]. The detailed 

sample decomposition and analytical procedures are described elsewhere [16]. The Hg con-
tent was determined in the dry samples using a pyrolyse method on the RA-915+ spectrometer 
with background correction and a two-chamber atomiser PYRO-915+ (Lumex, Russia) [9, 14].

Figure 1. Location of study sites.
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To assess the chemical form of selected metals (Fe, Mn, Cr, Zn, Cu, Pb, Ni and Co) in the 

sediments, the samples were subjected to single chemical reagent (single-step) extraction 
procedures. The weak-acid-soluble (labile) metals were extracted using 25% acetic acid, 
the oxalate-soluble metals were extracted using ammonium oxalate-oxalic acid buffered 
solution at pH 3.2 (Tamm extraction), the pyrophosphate-soluble metals were extracted by 
0.1 M sodium pyrophosphate. To isolate the weak acid-soluble metals, 15 ml of 25% acetic 
acid was added to 1.1 g of dry sample in polypropylene vials and shaken in a mechanical 

shaker for 6 h with acetic acid. Then, each extract with the sediment was filtrated into a 
25 ml glass volumetric flask. The sediment on the filter was washed with 10 ml of dis-
tilled water and the wash water was added to the flask [27]. To isolate the amorphous 

iron oxides and their associated microelements, 50 ml of ammonium oxalate-oxalic acid 
buffered (Tamm) solution was added to 1.1 g of dry sample in the 250 ml flat bottom flask, 
shaken for 1 h and filtrated to a 250 ml glass volumetric flask. The sediment on the filter 
was washed with 10 ml of distilled water that was mixed with a small amount of oxalic 

acid and the wash water was added to the flask. Then, the filter with sediment was added 
to the sediment in the flat-bottom flask and subjected to one more repeated extraction and 
the extract was added to the 250 ml volumetric flask [30]. To isolate the organically bound 

metals, 15 ml of 0.1 M sodium pyrophosphate was added to 1.1 g of dry sample in polypro-
pylene vials and shaken in a mechanical shaker for 15 min, left for 24 h and then filtrated to 
a 250 ml glass volumetric flask. The sediment on the filter was washed with 10 ml of 0.1 M 
sodium pyrophosphate and the wash water was added to the flask [31]. The metal contents 

in the extracts were further determined using an atomic absorption spectrometer (AAS) 

Hitachi 180–8 (Hitachi Co., Japan) in the Analytical Centre of Moscow State Lomonosov 

University.

The relative accuracy of the analytical determinations was within the standard deviations that 

were established by the certified reference materials (CRM) SDO-1 (Russia) (for SiO
2
, TOC 

and TIC), SRM 521-84Р (Russia) (for Na
2
O, Al

2
O3, Stotal

, K
2
O, CaO, MnO, Fe

2
O3, Li, V, Cr, Zn, 

As, Sr., Zr, Mo, Ag, Sn, Ba, Pb), AGV-2 (USA) (for MgO, P
2
O

5
, TiO

2
, Co, Ni, Cu, Sr., Sb, Cs, U) 

and Mess-3 (Canada) (for Hg).

3. Results and discussion

3.1. Abundance and distribution of major and trace elements in surface SPM

The hydrology of the riverine sub-zone of the studied part of the Cai River—Nha Trang Bay 
estuarine system is strongly influenced by the fill dam. The surface fresh water layer flows 
seaward over the dam, while the upstream penetration of the near-bottom saline water lenses 
is blocked [5]. In July 2013, the salinity of the surface fresh-water layer varied from 0% to 
36‰. The frontal zone of the contact of fresh and saline waters occurred downstream from 
the fill dam (sts. 2–3, Figure 1), where the horizontal salinity gradient was 3.5‰ per 1 km dis-
tance. The temperature (T) of the water column varied in narrow ranges and decreased from 
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the river to the sea from 30 to 29°C in the surface water layer. The pH of the water column 
increased from neutral in the riverine waters (pH 7) to low-alkaline in the transitional and sea 
waters (pH 8–9). The dissolved organic carbon (DOC) concentration in the surface water layer 
varied within the ranges 1.1–2.5 mg l−1 and was distributed uniformly (2.3-2.5 mg l−1) in the 

frontal zone and transitional waters and exhibited a minimum of 1.1 mg l−1 in the marine part 

of the transect at salinity >30‰ (Figure 2).

The suspended particulate matter (SPM) showed a concentration maximum of 50 mg l−1 near 

the river mouth (sts. 1) at salinity 0‰ and then a decrease seaward to the values of around 1 

mg l−1 at salinities 32–36‰, following from the sedimentation of the coarsest fluvial material 
in the frontal zone of the estuary at the sharp decrease in the river flow velocity enhanced by 
the dam influence (Figure 2). The distribution pattern of particulate organic carbon (POC) 
was close to the SPM distribution. The maximal POC concentration (1–1.25 mg l−1) was found 
in the fluvial part of the estuary (sts. 1–3) at salinities 0–8‰ because of an intensive sedimen-
tation of the organically enriched suspended river material in the frontal zone of the estuary. 

In the transitional waters, the POC concentration lowers seaward to 0.94 mg l−1at salinities 

around 20‰ and further to 0.18–0.21 mg l−1 at salinities 32–36‰ (Figure 2). The organic car-
bon content in the SPM (POC, % of dry SPM weight) varied within the range 2–17%. The 
higher organic carbon content >10% was found in SPM of the marine waters at the salinity 
>30‰ (Table 1).

The distribution of particulate form of Al, Fe, Ti, Li, Zn, Pb, U, Sc, Sn, Bi, Zr, Ba, As, Sr., W, 

V and Ag followed the distribution of total suspended matter and was characterised by a 
maximum in the river water and then a sharp decrease seaward of element relative con-
centration (in μg l−1) with highest horizontal gradients within the salinity interval of 8–20% 
(Figure 3). The absolute concentration of these elements (in μg g−1of the dry SPM weight) 

followed the same trend of decreasing seaward but was elevated in the both riverine and 

transitional waters (0–20‰) (Table 1, Figure 3). The most significant losses of suspended 
elements occurred in the frontal to transitional zone of the estuary (0–20‰) by an intensive 

sedimentation of dissolved and suspended river material. The most part of these elements 

must be supplied to the estuary with the Cai River discharge. In estuaries, the flocculation 
and coagulation of riverine microcolloids are initiated when the salinity increases. These 

processes are accompanied by a rapid scavenging of dissolved trace elements from the water 

column. Further deposition of newly-formed aggregates contributes to the enrichment of 
sediments in trace elements [32].

The distribution of particulate form of Co, Cu, Ni, Mo and Cr and, in some lesser extent, 

Mn, Ba, Sn, Sb and Hg is characterised by the most significant loss in the frontal zone of 
the estuary where the coarsest river material enriched in detrital minerals is deposited at 

the sharp decrease of the river flow velocity enhanced by the dam (Table 1, Figure 3). Both 

relative (in μg l−1) and absolute (in μg g−1 of the dry SPM weight) concentrations of these 

elements sharply decrease with the highest horizontal gradients at the initial salinity rise 

(0–8‰). The depletion in these elements in the transitional waters (at salinities 8–32‰) was 
followed by negligible increase of their relative concentrations and significant increase of 
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absolute  concentrations of Co, Cu, Ni, Mo, and Cr at salinities 32–36‰ (Table 1, Figure 3). 

In the stratified Cai River estuary, the significant part of the particulate trace elements may 
be carried out seaward with the surface water layer. In the marine part of the estuary, with 

a homogenisation of the water column, most of the fine-grained material of surface water 
layer enriched in clay minerals, carbonates and trace metals is deposited [5]. Since SPM in 

Figure 2. SPM, DOC and POC concentrations in surface water layer (in mg l−1).
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transitional and marine waters were enriched in organic carbon, the particulate organic mat-
ter of terrigenous and/or planktonogenous origin most probably contributed to trace element 
accumulation in SPM in the bay.

Station (S ‰) 1 (0‰) 3 (8‰) 4 (18‰) 7 (32‰) 8 (36‰)

Li 57.09 60.32 57.37 9.50 8.67

Al 15.11 15.41 14.61 1.30 0.78

Ca 0.31 0.16 0.16 0.83 0.82

Sc 15.85 15.42 16.17 5.65 3.52

Ti 0.18 0.15 0.12 0.03 0.02

V 94.07 109.59 127.60 63.59 17.39

Cr 187.21 57.34 72.09 66.18 91.86

Mn 737.05 410.08 342.46 461.65 479.05

Fe 4.67 4.77 5.31 0.45 0.25

Co 175.41 13.66 12.24 60.91 116.96

Ni 384.24 52.48 61.56 119.56 171.20

Cu 201.66 31.60 34.25 119.16 201.11

Zn 116.07 119.56 103.54 28.00 35.7

As 42.42 34.88 39.85 6.61 89.64

Sr 45.32 46.63 61.39 201.82 201.40

Zr 27.46 22.74 22.62 4.25 2.52

Mo 51.58 9.13 9.45 10.97 13.57

Ag 0.22 0.18 0.22 0.25 0.13

Sn 9.19 8.56 6.57 2.53 1.77

Sb 0.97 0.93 0.94 0.22 0.20

Cs 16.30 15.12 11.80 0.97 0.77

Ba 286.38 205.25 248.46 28.48 157.93

W 12.01 5.63 5.43 1.64 1.06

Hg 0.89 0.49 1.11 2.28 0.91

Pb 65.17 63.05 75.28 44.76 26.88

Bi 9.66 9.84 14.59 1.14 0.42

U 9.08 10.33 8.77 0.49 0.43

POC 3.68 3.85 9.39 7.87 7.29

Table 1. Major and trace elements contents in SPM (in μg g−1, except for Al, Fe, Ti, Mn, Ca and POC in % of dry weight).
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3.2. Abundance and distribution of major and trace elements in surface sediments

The percent of the content of sand- (63 μm–2 mm), silt- (2–63 μm) and clay- (<2 μm) sized 
material in the studied sediments is shown in Table 2. The sediments near the river mouth 

were mostly sandy, while the coarsest sediment is from station 4. Downstream, in the transi-
tional sub-zone, the sediment contains less sand and more silt and clay. The most fine-grained 
sediment, with the highest clay content, is from marine stations 7–8.

The total contents of Al, Fe, Ca, Mn, Ti, TOC and TIC are reported in Table 3. The mean con-
tents of the major elements are within the range of the Clark contents in shale, pelagic clays 

and average world riverbed sediments [33–37]. The distribution of Fe and Ti in the river-sea 
transect is similar to that of Al. The observed distribution of major elements in the sediments 

illustrates the grain size and mineral fractionation processes. Al, Fe, Ti and Mn (to a lesser 

extent) increase seaward in the sediments with the clay-sized materials.

The distribution of the inorganic carbon (TIC) content in the sediments along the river-sea 
transect is characterised by only two significant values in the marine part (2,1 % at st. 7 and  

Figure 3. Major and trace elements contents in SPM (in μg l−1).
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0.88% at st. 8). Sedimentary organic carbon (TOC) varied within the range of 0.6–1.8% and 
showed no affinity to the other major or trace elements that were studied. This may be due 
to the intensive microbial decomposition of particulate organic matter, which occurs in the 
water column during estuarine sedimentation processes [38, 39]. The post-depositional dia-
genetic reactions, which are enhanced by resuspension processes at sediment disturbance 

events (such as tides, storms and upwelling), may also contribute to a destruction of sedimen-
tary organic matter and the formation of organic-poor sediments [40].

The mean content of the major part of the studied trace elements (Li, V, Cr, Co, Ni, Cu, Zn, 

As, Sr, Zr, Mo, Cd, Sn, Sb, Cs, Ba, Hg and Pb) in the sediments from the Cai River estuary 

and Nha Trang Bay is lower or corresponds to the reference values for shale, pelagic clays 

and the average world riverbed sediments (Table 3). The Ag content was negligible or 

below the detection limit at all locations along the salinity gradient. Thus, natural enrich-
ment of Ag reported in the previous study [19] had a temporary/impact character [33–37]. 

However, relative sediment enrichment with Bi, W and, at some sites, with Sr. needs spe-
cial study.

To normalise the obtained geochemical data for the grain-size effects and identify the enrich-
ment zones along the salinity gradient, the metal/Al ratios were calculated [27, 41, 42]. The 

distribution of metal/Al ratios along the Cai River—Nha Trang Bay transect is provided in 
Figure 4. The results revealed associations of elements that are characterised by a similar 

geochemical behaviour in the sediments along the salinity gradient. Sedimentary Fe, Ti, Li, 

Sc, Co, Cs, Zr, Cr, Zn, Co, Ni, Cu, Pb, Sn, V As, U and Mo varied in relatively narrow ranges. 

Major part of these elements tended to increase seaward with an elevation at station 7 at 
heightened carbonate content. The observed distribution of the normalised trace element 

contents reflects the association with and/or inclusion of Fe, Ti, Li and trace elements in the 
lattices of clay minerals that constitute the bulk of the fine-grained sedimentary material 
accumulated in the sea floor depression in the bay [42]. Sedimentary Bi and W decreased 

significantly from river to the sea. These elements may be associated with the coarsest river 
material enriched in detrital minerals which is mostly deposited in the riverine part of the 

estuary. The distribution of Sr. and Ca and, in a lesser extent, of Mn and Ba is largely con-
trolled by the total inorganic carbon (TIC) content in the sediments. These elements form 

low-soluble carbonates in aquatic environments [36]. The distribution of trace elements in 

Stations Sand (63 μm–2 mm) Silt (2–63 μm) Clay (<2 μm) TOC TIC

2 49.58 23.96 26.46 1.77 0

3 47.81 28.28 23.91 1.49 0

4 71.03 19.23 9.74 0.89 0

5 28.47 47.48 24.05 1.55 0

6 49.31 37.6 13.09 1.76 0

7 3.26 42.69 54.05 0.61 2.11

8 2.37 28.96 68.67 1.02 0.88

Table 2. Sand, silt, clay, TOC and TIC contents in sediments (in % of dry weight).
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sediments is strongly influenced by the water column stratification because of the natural 
fractionation and deposition of materials of different grain sizes at sites, which are deter-
mined by hydrodynamic conditions [5, 13, 43, 44].

Element Mean SD Range Shalea Pelagic claya River sedb

Al 10.8 2.05 7.67–12.23 8.8 8.4 4.3

Fe 3.98 0.64 2.46–4.51 4.72 6.5 2.5

Ti 0.36 0.05 0.25–0.40 0.46 0.46 0.31

Mn 0.04 0.01 0.03–0.06 0.085 0.67 0.05

Ca 1.26 1.93 0.36–6.16 1.6 1.0 1.7

Li 47.9 8.2 34.7–62.7 66 57 20

V 89.3 12.0 61.4–100 130 120 50

Cr 45.8 9.9 27.9–66.7 90 90 50

Co 8.5 1.8 4.9–12.2 19 74 15

Ni 23.2 6.12 14.2–38.1 50 230 25

Cu 18.5 4.12 12.1–26.9 45 250 20

Zn 104.6 16.17 69.8–121 95 170 60

As 22.2 6.3 12.2–30.9 13 20 6

Sr 145 166 61.3–605 170 180 150

Zr 85.2 10.4 61.7–104 160 150 250

Mo 3.0 1.5 0.6–5.1 2.6 27 1.5

Ag 0.1 0.01 0.07–0.1 0.07 0.11 0.1

Sn 5.9 1.3 3.7–7.9 3.0 4.0 4.0

Sb 1.2 0.2 0.9–1.4 1.5 1.0 2.0

Cs 11.1 1.6 7.9–13.1 5.0 6.0 4.0

Ba 274 18 256–323 580 2300 290

Hg 0.03 0.01 0.02–0.05 0.18 0.10 0.05

Pb 54.4 11.0 35.1–61.6 20 80 15

Bi 9.5 9.0 0.9–27.6 0.43 0.53 0.2

U 6.6 1.5 3.9–8.0 2.7 2.6 3

W 10.4 7.2 2.4–24.6 0.3 0.42 0.4

TOC 1.36 0.39 0.61–1.77 — — 1.4

TIC 1.49 0.69 <0.01–2.10 — — 0.4

aCited from [24].
bCited from [46].

Table 3. Major and trace elements contents in sediments (in μg g−1, except for Al, Fe, Ti, Mn, Ca, TOC and TIC in % of 
dry weight).
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3.3. Speciation of major and trace elements in surface sediments

Major and trace elements are bound to a variety of sediment fractions that range from easily 

extractable (and bioavailable) to resistant residual mineral phases [45–49]. The total contents 

of the oxalate-soluble, pyrophosphate-soluble and weak-acid-soluble forms of Fe, Mn, Cr, 
Zn, Cu, Pb, Ni and Co are provided in Table 4. In this work, ammonium oxalate (pH 3.2–3.3) 
served to mobilise the easily soluble amorphous Fe-oxyhydroxides and acid-soluble ful-
vates [30, 31, 50]. Sodium pyrophosphate (pH 10) was used to remove organically bound 

metals from the sediments. This extract also mobilised part of easily soluble amorphous 

Fe-oxyhydroxides [13]. Acetic acid removed the labile metals in ion exchange positions, the 

easily soluble amorphous compounds of iron and manganese, the carbonates and the metals 

that are weakly held in organic matter [27].

The total content of the oxalate-soluble (amorphous) Fe increased from the river to the sea, 
whereas its percent content varied insignificantly (18–24% of the total content) and is the  

Figure 4. Element/Al ratio in sediments.
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highest in sediments in the frontal zone (sts. 2–3). The percent content of the weak-acid-soluble  
Fe, which is mostly comprised of easily soluble amorphous oxides, was constant in the tran-
sitional zone (10–11% of the total content), reached the maximum of 18% in the coarsest sedi-
ment from station 4 and lowered to 7–8% in the bay sediments. The percent content of the 
pyrophosphate-soluble Fe was low and decreased from 6–1% of the total Fe along the salinity 
gradient. The total and percent contents of oxalate-soluble Mn (18–58%), weak-acid-soluble 
Mn (13–54%) and pyrophosphate-soluble Mn (9–28%) were the highest in the coarse sediments 
of the frontal zone (sts. 2–3). Seaward, the contents of the studied forms of Mn decreased in 
the sediments in the transitional sub-zone (sts. 4–6) and increased again in the bay (sts. 7–8).

The oxalate-soluble form comprised 9–14% (12% on average) of the total content for Cr, 3–11% 
(8%) for Pb, 5–11% (7%) for Zn, 3–23%(15%) for Cu, 5–12% (9%) for Ni and 13–22% (17%) for 
Co. The weak-acid-soluble form comprised 8–12% (9% on average) of the total content for Cr, 
23–34% (30%) for Pb, 4–19% (12%) for Zn, 1–8% (2%) for Cu, 8–24% (17%) for Ni and 20–66% 
(44%) for Co. The contents of pyrophosphate-soluble form were below the detection limit for Ni 
and Co. This form comprised 0.3–3% (2% on average) of the total content for Cr, 5–17% (11%) 
for Pb, 1–16% (10%) for Zn and 1–26% (12%) for Cu. According to the comparative extractabil-
ity from sediments, Ni, Zn, Cr and Cu are low-labile and mainly occur in the residual phase. 
These metals were mainly extracted in the detrital fraction, which emphasises the importance 

of natural weathering and erosion in drainage basins. Fe and Zn are moderately labile and 

occur in the less resistant phases such as crystallised Fe/Mn oxides and organic compounds 
that may be a threat in the long term. Mn, Co and Pb are labile, held in ion exchange positions, 

bound to easily soluble amorphous Fe/Mn compounds and weakly held in organic matter. The 
high levels of acid-soluble Pb and Co (30 and 43% of the total content on average, respectively) 
compared to previously studied estuarine and coastal sediments contributes to a contamina-
tion problem in the Nha Trang Bay, which arises from the Cai River discharges, while the 

elevated level of easily reducible and organically bound Pb fractions (8 and 11% of the total 
content on average, respectively) also contributes to the anthropogenic input of Pb [5, 13].

The contents of oxalate-soluble (amorphous) forms were higher than the contents of pyro-
phosphate-soluble (organically bound) forms at all sites for Fe, Mn, Ni, Co and Cr (Table 4). 

Therefore, the most bioavailable parts of Ni, Co and Cr are bound to amorphous Fe and Mn 

oxyhydroxides and acid-soluble organic compounds. The contents of pyrophosphate-soluble 
forms were higher than the contents of oxalate-soluble forms at most of the sites for Pb, Zn 
and at some sites for Cu. Among the elements studied, most of the bioavailable Pb, Zn and 

Cu was most likely bound to organic substances. According to the mean determined amounts 

of the oxalate-soluble, pyrophosphate-soluble and weak-acid-soluble forms, the studied ele-
ments can be arranged in the following increasing order of average potential bioavailability: 
Cr < Ni < Cu < Zn < Fe < <Pb < Co < <Mn. The most bioavailable trace elements in sediments 

that were studied were scavenged by amorphous iron oxyhydroxides in the course of estua-
rine sedimentation. This result supports the fact that Fe and Mn oxyhydroxides largely con-
trol the bioavailability in sediments [7, 19, 32].

Figure 5 illustrates the distribution of the ecologically most significant weak-acid-soluble 
(labile) fraction along the river-sea transect. Mn, Co and Pb have the highest percent contents 
of the labile form but exhibit different spatial distributions showing some sporadic enrichments 
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Stations Cu Zn Ni Co Pb Cr Fe Mn

Weak acid-soluble

2 0.4 18 5.6 4 16.4 3.4 4540 344

3 0.4 14 4.8 4.6 14 4.8 5620 144

4 0.2 13.2 3.4 2.2 13.4 3.2 2840 36

5 0.2 14 3 6 16 4.8 7640 58

6 ≤0.2 4 2.4 1.8 12 5.2 2660 164

7 0.2 15.8 3 3.4 20 3.4 3440 52

8 ≤0.2 7.6 5 2.6 15.6 5.6 2920 264

Mean 0.525 12.9 3.82 3.6 15.84 4.22 4244 133.6

Mean

(% of total content)

2.8 12.3 16.5 42.4 29.1 9.2 10.6 32.0

Pyrophosphate-soluble

2 5.6 18.6 ≤0.2 ≤0.2 4.8 1 2580 180

3 2 10.4 ≤0.2 ≤0.2 7 0.8 2940 82

4 2.6 9 ≤0.2 ≤0.2 7 ≤0.2 1300 30

5 0.8 14.8 ≤0.2 ≤0.2 5.4 0.4 1480 32

6 0.4 1.2 ≤0.2 ≤0.2 5 0.8 420 50

7 1 13.4 ≤0.2 ≤0.2 9.6 1.6 1360 42

8 0.2 2 ≤0.2 ≤0.2 7.6 ≤0.2 600 90

Mean 2.24 10.84 ≤0.2 ≤0.2 5.74 1 1652 65.9

Mean

(% of total content)

12.1 10.4 — — 10.6 2.2 4.1 15.8

Oxalate-soluble

2 3 5.6 1.4 1.6 5.4 5.3 11,300 375

3 3.7 7 2.2 1 6.8 5.2 10,550 172

4 2.5 8 1.6 0.6 3.4 4 5480 75

5 2.1 6.8 1.3 2.2 5.4 6 8250 87

6 0.4 6.5 2.2 1.2 1.1 7 7500 158

7 4.4 8.7 2.6 1.5 4.1 5 7550 90

8 0.5 8.1 2 1.9 1.2 6.2 8430 255

Mean 2.93 7.42 2 1.44 4.56 5.57 8572 152.1

Mean

(% of total content)

15.8 7.1 8.6 16.9 8.4 12.2 21.5 36.4

Table 4. Major and trace element form contents in sediments (in μg g−1).
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along the salinity gradient. Thus, the distribution of the most abundant labile Co is complicated 

by a pronounced maximum of 67% in the sediment at station 5. The sediments are mostly 

enriched with labile Fe, Zn, Cr and Ni in the frontal and transitional sub-zones (sts. 2–5). Cu 
exhibit the lowest contents of the labile form. Therefore, in the studied sediments, Cu is most 

likely bound to the residual mineral phase that is comprised of detrital heavy minerals.

4. Conclusions

The suspended particulate matter (SPM) showed a concentration maximum (50 mg l−1) 

near the river mouth and then a decrease seaward to the values of around 1 mg l−1 at 

salinities 32–36‰, following from the sedimentation of the coarsest fluvial material in the 
frontal zone of the estuary at the sharp decrease in the river flow velocity enhanced by the 
dam influence. The distribution pattern of particulate organic carbon (POC) was close to 
the SPM distribution and varied within the range 0.18–1.25 mg l−1. The organic carbon con-
tent in the SPM (POC, % of dry SPM weight) varied within the range 2–17%. The higher 
organic carbon content >10% was found in SPM of the marine waters at the salinity >30‰.

The distribution of particulate form of Al, Fe, Ti, Li, Zn, Pb, U, Sc, Sn, Bi, Zr, Ba, As, Sr., W, V and 

Ag followed the distribution of total suspended matter and was characterised by a maximum in 
the river water and then a sharp decrease seaward of element relative concentration (in μg l−1)  

with highest horizontal gradients within the salinity interval of 8–20%. The most part of these 
elements must be supplied to the estuary with the Cai River discharge. The distribution of 

particulate form of Co, Cu, Ni, Mo and Cr and, in a lesser extent, Mn, Ba, Sn, Sb and Hg is char-
acterised by the most significant loss in the frontal zone of the estuary where the coarsest river 
material enriched in detrital minerals and pronounced increase of their absolute concentrations 

Figure 5. Weak acid-soluble (labile) metal form in sediments.
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at salinities 32–36‰. In the stratified Cai River estuary, the significant part of the particulate 
trace elements may be carried out seaward with the surface water layer. In the marine part of 

the estuary, with a homogenisation of the water column, most of the fine-grained material of 
surface water layer enriched in organic matter and trace metals is deposited.

Sedimentary Fe, Ti, Li, Sc, Co, Cs, Zr, Cr, Zn, Co, Ni, Cu, Pb, Sn, V As, U and Mo varied in rela-
tively narrow ranges along the salinity gradient and tend to increase seaward. These elements 

are most likely controlled by the accumulation of their most fine-grained aluminosilicate host 
minerals and materials in the sea floor depression of the marine sub-zone. Sedimentary Bi and 
W, are generally uniformly low but tend to decrease seaward. These elements may be associ-
ated with the coarsest river material enriched in detrital minerals which is mostly deposited 

in the riverine part of the estuary. The distribution of Sr. and Ca and, in a lesser extent, of Mn 

and Ba is largely controlled by the total inorganic carbon (TIC) content in the sediments.

The distribution of trace elements in SPM and sediments of Cai River—Nha Trang Bay estua-
rine system is strongly influenced by the water column stratification because of the natural 
fractionation and deposition of materials of different grain sizes at sites, which are deter-
mined by hydrodynamic conditions.

Assuming that the mean determined amounts of the oxalate-soluble, pyrophosphate-soluble 
and weak-acid-soluble forms are a measure of the potential metal bioavailability in sediments 
of the Cai River—Nha Trang Bay estuarine system, the studied elements can be arranged in the 

following increasing order of average potential bioavailability: Cr < Ni < Cu < Zn < Fe < <Pb < 
Co < <Mn. This sequence is true for sediments in different sub-zones of the water-mixing zone: 
estuary (transitional waters) and sea (bay). Metal form study revealed the highest percent con-
tents of the labile (weak acid-soluble) form for Mn, Co and Pb in the sediments. The high levels 
of labile Pb and Co (30 and 43% of the total content in sediment, on average, respectively) con-
tribute to a heavy metal contamination problem in the Nha Trang Bay, which arises from the 

Cai River discharge. The elevated level of amorphous (oxalate-soluble) and organically bound 
(pyrophosphate-soluble) Pb fractions (8 and 11% of the total content in sediment, on average, 
respectively) also contribute to the anthropogenic input of Pb. The most bioavailable parts of the 

studied trace metals are associated with easily soluble amorphous Fe and Mn oxyhydroxides.
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