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Abstract

Malaria remains a leading cause of mortality and morbidity in many low- and mid-
dle-income countries. Artemisinin combination therapies (ACTs) have contributed to 
the substantial decline in the worldwide malaria burden, renewing the optimism that 
malaria elimination is achievable in some regions of the world. However, this prospect is 
threatened by the emergence of artemisinin resistance in Plasmodium falciparum leading 
to clinical failure of ACTs in Southeast Asia. Historically, drug resistance in P. falciparum 
has emerged in SEA and spread to Africa. Today, resistance to ACTs could reverse all the 
achievements of control and elimination efforts globally. With no new drug available, 
P. falciparum malaria must be eliminated from the Greater Mekong before it becomes 
untreatable.

Keywords: falciparum malaria, artemisinin, ACT, resistance, malaria elimination, 
Southeast Asia

1. Introduction

The emergence of artemisinin-resistant falciparum malaria along the Thai-Cambodian bor-

der follows a familiar pattern. History shows that chloroquine resistance had arisen from 
this region in the 1950s (Table 1) and leads to the failure of the Global Malaria Eradication 

Programme [1, 2] Resistance to artemisinin with concomitant emergence of partner drug 

resistance is now causing high artemisinin combination therapy (ACT) treatment failure rates 

in Cambodia, Vietnam, Thailand, Laos and Myanmar (Table 1). The prospect of untreatable 

malaria has once again loomed and threatened the effective malaria control and elimination 
efforts.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Background

Resistance in Plasmodium falciparum has already developed to all antimalarial drug classes 

deployed for treatment. Paradoxically, the number of antimalarials available or in development 

has remained small. For most of the twentieth century, chloroquine was the main drug used to 
treat or prevent malaria. The discovery of chloroquine after World War II, and the widespread 
use of DDT for vector control, had triggered hope that malaria eradication was possible [3]. 

Unfortunately, chloroquine resistance did emerge and spread to the African continent within 
two decades annihilating the prospect of malaria eradication [4]. Although several countries did 

achieve malaria elimination (in Europe and the Americas), others saw a dramatic resurgence of 

the disease [3]. Over the following period, P. falciparum developed resistance to all antimalarial 

drugs, including sulfadoxine, pyrimethamine, mefloquine, atovaquone, artemisinin derivatives 
and piperaquine [5–8]. The most accurate and up-to-date data repository of the clinical trials on 

the efficacy of antimalarials, and the temporal and geographical spread of resistance is acces-

sible at the Worldwide Antimalarial Resistance Network (WWARN: www.wwarn.org).

In 2007, the Bill and Melinda Gates Foundation announced that it was investing millions of 
dollars to revitalise the efforts of malaria elimination [9]. Ten years later, this seems to be an 

achievable goal since the global malaria burden has diminished (Figure 1), an encouraging 

Antimalarial drug Year of first 
deployment

Place of first 
deployment

Year of 

resistance 

emerged

Place of emergence of 

resistance

Quinine 1630 [34] South America [34] 1910* Brazil [28, 29]

Chloroquine 1945 Global Malaria 

Eradication 

Campaign [127]

1957 Colombia, Cambodia-

Thailand border [41, 

128–130]

Amodiaquine 1948 Americas

[131, 132]

1961 Colombia [56, 57]

Atovaquone 1996 Thailand [73] 1996 Thailand [72, 73, 75]

Proguanil 1948 Various African 

countries [133]

1949 Aden Protectorate, Yemen 

[134]

Sulfa + antifols° 1967 Thailand [135] 1967 Thailand [135]

Mefloquine 1967 Vietnam [136] 1982 Thailand [7, 8, 43]

Piperaquine 1978 China [137] 1985 China [138]

Artemisinin 1979 China [139] 2008 Cambodia [6]

Mefloquine-artesunate 1994 Thailand [140] 2002α Cambodia [141]

Artemether-lumefantrine 1994 China [142] 2006α Cambodia [143, 144]

Dihydroartemisinin-

piperaquine
2001 Cambodia [145] 2013α Cambodia [86, 146, 147]

*There is no high-grade resistance to quinine.
αTherapeutic efficacy <90% (cut-off threshold of WHO to switch the ACT policy).
°Sulfa + antifols: Sulfadoxine + antifolates.

Table 1. Different antimalarial drugs and years/places of deployment and emergence of resistance [references in bracket].
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result attributed to the widespread deployment of long-lasting impregnated nets (LLINs), 
the ACTs and increased availability of malaria diagnostic tests [10]. However, the failure of 

the ACTs, the extension of vector resistance to the insecticides and the recent increase in the 

number of malaria cases are clear reminders that malaria is a formidable foe. Without new 
strategies, the same causes will lead to the same consequences [10] .

3. Mechanisms and emergence of antimalarial drug resistance

Causal stimuli of antimalarial resistance consist of spontaneous mutations in the parasite 

genome, antimalarial pharmacokinetics and the magnitude of parasite gene pool, which is 

proportionate to transmission intensity.

Primarily, as an innate survival strategy of microorganisms, mutation(s) occur de novo, inde-

pendent of drug pressure. However, the parasite’s genome replication rate, mutation rate per 

base-pair per parasite generation and the total number of parasites at any given time are the 

principal determinants in spontaneous mutation [11, 12]. These spontaneous mutations can be 

either minor scale modification, such as insertion, deletion or variation in a nucleotide (frame-
shift mutation or single-nucleotide polymorphism), or bulky transfiguration of large chromo-

somal regions (gene amplification/deletion/copy number variations). For some drugs, a single 
genetic event may be all that is required. A single point mutation in the parasite genome 
is sufficient to confer resistance (e.g. atovaquone), while for other drugs, multiple unlinked 
events (epistatic modulation) may be necessary (e.g. triple mutant in pyrimethamine [13, 14], 

Kelch-10, Kelch-13 and background mutations [15–17] in artemisinin resistance).

Spontaneous mutations, in the particular genes encoding the drug target, cause the reduction 

in drug accumulation or efflux (chloroquine, amodiaquine, quinine, mefloquine, halofantrine 

Figure 1. World atlas showing the countries with different stages of malaria endemicity [10] and status of drug resistance 

[121]. Right side: Prevalence (small pin: <10%, medium pin: 10–50%, large pin: >50% prevalence) of Pfmdr-1 CNV [25, 122], 

Plasmepsin 2–3 CNV [26, 87], K-13 mutation [101, 123, 124] and possible spread [125, 126].
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resistance) or reduced affinity of the drug target (pyrimethamine, cycloguanil, sulphonamide, 
atovaquone resistance), which finally enables the parasite to withstand the antimalarial 
treatment. Afterwards, the drug pressure facilitates the resistant parasites to propagate by 

eliminating the susceptible parasites, which are usually more fit and would outcompete the 
resistant ones in the absence of the drug. Eventually resistance becomes established and can 

persist or be reintroduced. In the absence of drug pressure, the resistant parasites have no lon-

ger any survival advantage and can be overtaken by wild-type (sensitive) parasites [18, 19]. 

But as soon as the abandoned drug is reintroduced, the resistant isolates regain their survival 
advantage and expand rendering the drug inefficient within a short time [20].

Large-scale and/or long-term distribution of several tons of medicated salt took place in many 
countries and was an important factor implicated in the emergence of both chloroquine and 
sulfadoxine/pyrimethamine (SP) resistance and accelerating their spread [21–23]. In WHO 
supported programs, the doses of antimalarial received by each individual were highly vari-

able, and constant exposure to sub-parasiticidal (or even parasiticidal) drug concentrations 

might have eliminated the highly and moderately sensitive parasites, providing a selective 

advantage for less sensitive counterparts. Thus, the speed of selection of mutant parasites 

depends principally on the pharmacokinetics of the drug (slowly eliminated drugs with a 

long tail of sub-parasiticidal concentrations generally select faster) and the magnitude of drug 

use within a population (the higher the drug pressure per parasite, the faster the selection).

With ACTs, the newly emerged drug-resistant parasite has to overcome the parasiticidal 
action of the partner drug as well as the host immunity. At this point, with compromised 

efficacy of partner drug, along with declining immunity of the population, resistance to ACT 
combination is inevitable [24]. This is the reason why artemisinin resistance has led to the 

clinical failure of mefloquine-artesunate and DHA-piperaquine combinations [25, 26].

The reason why antimalarial resistance always emerged in the same region of the world (SEA 

and specifically in Western Cambodia) is currently unknown. Some contributing factors have 
been proposed such as the low level of acquired immunity, the weak and seasonal transmis-

sion, the availability of antimalarial drugs, usage of monotherapies, sub-standard or coun-

terfeit drugs, porous borders. The answer will probably be given by studies of the parasite 

population genetics, and recent work has shown the existence of “founding populations” 

favourable to the emergence of resistant parasites [17].

The emergence of drug resistance to various antimalarial compounds is mentioned by chro-

nology in Table 1 (antimalarial drugs and years/places of deployment and emergence of 
resistance).

3.1. Quinine resistance

Quinine, initially as cinchona bark, was first used as a fever medicine and officially introduced 
into the London Pharmacopoeia in 1677 [27]. The earliest resistance to quinine was reported 
in 1910 [28, 29]. Like chloroquine, quinine has been shown to accumulate in the parasite’s 
digestive vacuole inhibiting the haem detoxification process. Quinine resistance also seems to 
be associated with reduced drug uptake by the parasite. There is a weak association between 

quinine resistance and Pfmdr-1 amplification or Pfmdr-1 SNP as well as Pf Na-H exchanger 
(Pfnhe-1) and Pfcrt [30, 31]; hence, it is probable that multiple genes are influencing suscepti-
bility and probably in a strain-dependent manner. There were only a few in vitro data in Asia 
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[32], South America [33] and Africa [34] showing diverse range of sensitivities. However, the 

review paper of over 400 clinical trials showed that the failure rates for quinine (the only 
compound besides artemisinins, derived from nature) reported over the past 30 years remain 

steady and high grade clinical resistance to quinine is very rare [35].

3.2. Chloroquine resistance

Chloroquine, considered as one of the most successful medications ever deployed, saving 
several millions of lives, was developed in 1934 [2, 36] and replaced quinine for shorter regi-
men with better adherence. Single nucleotide polymorphisms in Pfcrt gene encoding for a 

transporter, chloroquine (CHQ) resistance transporter in the food vacuole causing the efflux 
of CHQ [37, 38], and acidification of the food vacuole [39] are significantly associated to CHQ 
resistance in vitro and are sensitive markers for therapeutic failure. Phylogenetic analysis 

revealed that a single lineage of CHQ-resistant Pfcrt alleles, that is, CVIET/S (K76T and muta-

tions in three other amino acids, at positions 72, 74, 75 and 76) [40], which had emerged on 

the Thai-Cambodia border in 1957 [41], spread to India and Middle East countries between 
1977 and 1987, reached West Africa in 1987 and propagated throughout the African continent 
leading to the death of millions of children [2, 38, 42, 43].

3.3. Antifolate resistance

After the emergence of chloroquine resistance, sulfadoxine-pyrimethamine (SP) combination 
was deployed by the Thai Malaria Control Program as the first-line regimen for falciparum 
malaria in 1973. Afterwards, SP was extensively used throughout the country and was also 
available as an over-the-counter fever remedy in local dispensaries. Attributed to a number 
of reasons, including unrestricted usage, distribution of pyrimethamine medicated salt [23], 

superfluous drug pressure (prophylactic as well as presumptive use for fever) and poor 
compliance especially in migrant mobile population, the resistance to SP combination had 

emerged around 1980 in the Thai-Cambodian border [5, 44]. Then, in the early 1980s, even 

with an increased dose (i.e. three tablets of SP, instead of two tablets flat dosing), a cure rate 
of only 30–40% was achieved [44].

Point mutations at codons 51, 59, 108 and 164 in the dhfr gene [45, 46] confer resistance 

to pyrimethamine; double or triple mutant resistant strains generated from sequential 
point mutations, based upon the common S108 N allele, are associated with 100-fold rise 
of in vitro sensitivity to pyrimethamine compared to wild-type [47]. Similarly, sulfadoxine 

resistance is associated with DHPS mutations at codons 436, 437, 581, 613 and 540 [48, 49]. 

Pyrimethamine resistant double mutant alleles (S108 N plus one more mutation at position 
51 or 59) with low-level resistance of dhfr have multiple independent origins [50, 51]; by 

contrast, there were only a few or perhaps a single founding mutant lineage for the triple 

(N51I + C59R + S108 N) mutant dhfr allele, which originated from Southeast Asia (SEA) and 

spread to Africa [13, 14].

3.4. Amodiaquine resistance

Amodiaquine is structurally related to chloroquine but these amino-4-quinolines have dif-
ferent resistance patterns. Amodiaquine is effective against chloroquine-resistant isolates. 
However, parasites carrying the CVIET allele on the Pfcrt gene, as well as 86Y and 1246Y 
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polymorphisms on the Pfmdr-1 gene, are resistant to amodiaquine [52–55]. The earliest report 

of resistance was documented since 1961 [56, 57], and widespread resistance to amodiaquine 
monotherapy was seen in 1980s [58].

3.5. Mefloquine resistance

Mefloquine was first produced in 1969 by the US Army Antimalarial Drug Development 
Program, primarily for the chemoprophylaxis in the military. The early therapeutic efficacy 
trial of mefloquine in Thailand showed 100% efficacy in 1976 [59] and in combination with 

SP where 97% efficacy was proven in a large-scale trial during 1983–1985 [60, 61]. Then, in 

1991, mefloquine monotherapy was used as the first line regimen for P. falciparum malaria in 

Thailand [62]. Even with the stringent regulatory measures in Thailand, the therapeutic effi-

cacy of mefloquine fell hastily especially in the border areas [7, 63]: because of the difficulties 
in restricting all access to the drug which was available across neighbouring porous borders. 

Then, in 1992, the cure rate of mefloquine monotherapy had fallen to 49% with 16% of high-
grade failures in children [7, 63].

Resistance to mefloquine was proven to be mediated by Pfmdr-1 gene amplification. Pfmdr-

1 is the gene encoding a transporter pump, P-glycoprotein homologue 1 (Pgh1), localised at 

the surface of the digestive vacuole of parasite (Figure 2). It confers drug resistance through 
both gene copy number variation (CNV) and point mutation (at nucleotide level). Altering the 
gene copy number provides a modest way to change gene expression without affecting the 

Figure 2. Pfmdr-1 gene and mechanism of Pgh-1 pump. MFQ – mefloquine, LMF – lumefantrine, CHQ – chloroquine 
and RBC – red blood cell.
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 nucleotide sequence [64]. Increased Pfmdr-1 copy number is a significant independent risk fac-

tor for recrudescence in patients treated with mefloquine containing therapy [65–67] as well as 

in vitro mefloquine resistance [68]. Pfmdr-1 gene amplification can be selected in vitro by expos-

ing the parasites to stepwise increasing concentrations of mefloquine [69]. Reciprocally, reduc-

ing the copy number from isolates with multiple copies resulted in increased in vitro sensitivity 

of isolates to mefloquine, lumefantrine, halofantrine, quinine and artemisinin due to reduced 
transcription and encoding of Pgh-1 pump [70]. This is also true for the clinical efficacy since the 
rise and fall of amplified Pfmdr-1 prevalence is temporally associated with the deployment of 

mefloquine in Cambodia [65, 71]. Along the Thailand-Myanmar border, patients infected with 

parasites having both Pfmdr-1 multiple copy number and K-13 mutation were 14 times more 

likely to get recrudescence compared to the patients infected with wild-type infections [25].

3.6. Atovaquone resistance

Atovaquone was trialled as a monotherapy as well as in combination with proguanil between 
1990 and 1996 in Thailand, and the therapeutic efficacy of atovaquone-proguanil was proven 
to be superior to mefloquine monotherapy, chloroquine, amodiaquine monotherapy and SP 
[72, 73]. A single point mutation (codon 268 in the cyt-b gene) in the ubiquinol oxidation 
region of cytochrome b confers atovaquone resistance in vivo [74, 75]. Generally, resistance 

conferred by a single point mutation can be rapidly acquired both in vivo and in vitro, and 

once the mutation is acquired, resistance becomes complete. Thus, not very long after deploy-

ment, atovaquone-resistant parasites could be selected in vitro after 5 weeks of continuous cul-

ture [76, 77]. In addition, atovaquone-resistant parasites were also resistant to the synergistic 
effects of proguanil [78], suggesting that once atovaquone resistance arises, the atovaquone-
proguanil combination (Malarone) will be ineffective since cycloguanil (proguanil) resistance 
is already established in most malaria endemic areas.

3.7. Pyronaridine resistance

Pyronaridine is a quinoline derivative compound with similar molecular structure as chloro-

quine and amodiaquine. There was a strong correlation between in vitro sensitivity of pyro-

naridine and that of amodiaquine and halofantrine [79]. Ex vivo data indicated that there is an 

association between reduced susceptibility to pyronaridine and K76 T polymorphism in Pfcrt 

gene. However, there are scanty data on clinical trials and no confirmed report of molecu-

lar marker of pyronaridine resistance has been documented. Pyronaridine-artesunate com-

bination had been granted a positive scientific opinion by the European Medicines Agency, 
removing all restrictions on repeat dosing with a condition to use only in areas of high resis-

tance and low transmission, and has been included in WHO’s list of prequalified medicines 
[80]. However, day-42 cure rate of <90% in Western Cambodia has challenged the expediency 
of the pyronaridine-artesunate combination in ACT resistance setting [81].

3.8. Piperaquine resistance

Piperaquine (PPQ) has no cross resistance with chloroquine, and susceptibility is not associ-
ated with mutations on the Pfcrt gene [82, 83]. PPQ resistance is inversely correlated with 
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mefloquine resistance in vitro and hence with Pfmdr-1 copy number amplification [84–86]. 

Later findings have shown that the amplification of Plasmepsin-2 gene (probably Plasmepsin-3 

as well) on chromosome 14 is significantly associated with piperaquine resistance in vitro as 

well as in vivo [26, 87]. Worryingly, a recent study in Cambodia has demonstrated the pres-

ence of parasite isolates with amplification of both Pfmdr-1 and plasmepsin-2 genes [20]. This 

finding indicates that the parasite has successfully adapted to acquire concomitant mutations 
related to resistance to these two different antimalarial partner drugs [20].

3.9. Artemisinin resistance

Artemisinins are thought to be inhibitor of P. falciparum phosphatidylinositol-3-kinase 

(PfPI3K), which phosphorylates phosphatidylinositol to produce phosphatidylinositol 

3-phosphate involved in cell survival pathways. Hence, inhibition of PfPI3K activity causes 

a reduction in PI3P level, which subsequently leads to parasite death. After the introduction 
of artemisinins in the 1990s, the unanimous opinion by the experts was that resistance was 

unlikely to emerge because of inherent pharmacokinetic-dynamic property of the molecule. 

However, artemisinins were not everlasting drugs and the artemisinin resistance did emerge 

in 2008 [6].

There are two main proposed pathways for artemisinin resistance with the involvement of 

Kelch (K-13) mutations, that is, a cell survival signalling pathway with PfPI3K and an unfolded 

protein response pathway (UPR) [88].

In Kelch (propeller) mutant alleles, the mutations may alter the topology of the Kelch protein 
probably by modification of surface charges that disrupt interactions with other enzymes 
such as PfPI3K [89]. This leads to a reduced amount of ubiquitination, as well as degrada-

tion of PfPI3K associated with increased levels of both the enzyme PfPI3K and the substrate 

PI3P [90, 91]. The PI3P facilitating the host remodelling is present in the apicoplast and food 

vacuole and contributes to the cell survival pathways either through redox, transcriptional or 

DNA repair [90–94]. All of which have been implicated in artemisinin resistance [90, 95–98].

Possible mechanisms proposed by transcriptomic study [99] is through upregulation of genes 

involved in the UPR pathway (especially two putative chaperonin complexes, Plasmodium 

reactive oxidative stress complex/PROSC and TCP-1 ring complex/TRiC) which enhances the 

capacity of parasites to quickly repair or degrade proteins or other cellular components. (The 

UPR pathway is usually damaged by brief artemisinin exposures in patients, but these genes 

are upregulated in artemisinin resistant parasites) and/or downregulation of genes involved in 

DNA replication, which is associated with developmental arrest and dormancy [100].

The role of Kelch non-propeller mutation (before the amino acid position 441) is still unclear. 

Some SNPs like E252Q emerged earlier along the Thai-Myanmar border and associated with 
reduced efficacy of ACT [25] but are being taken over by the propeller SNPs particularly C580Y 
[101]. All these findings indicate that artemisinin resistance is likely to be multi-locus and that 
other genetic changes, such as P623T polymorphism in Kelch-10 gene [15] and background muta-

tions (arps10-apicoplast ribosomal protein S10, Pfmdr-2, ferredoxin, Pfcrt [17], etc.), are providing 

compensatory fitness for K-13 mutant parasites or perhaps conferring partner drug resistance.
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4. Resistance facilitates the transmission potential

For the newly selected resistant parasites to be propagated, the recrudescent infection is 

essential [102]. The threshold for successful transmission of malaria is around six viable 

gametocytes in one blood meal [103]. Post-treatment gametocytaemia is a composite of ongo-

ing gametocytogenesis despite treatment (especially with ineffective drug) and the release 
of sequestered gametocytes, which is enhanced by drug-induced stress [104]. If the malaria 
infection is treated with partially effective drugs, post-treatment gametocytaemia is more 
likely. This was clearly shown for drugs such as CHQ and SP [105] as evidenced in patients 

with slower parasite clearance after artesunate treatment [106]. Moreover, mutant isolates 

were also related to pre- and post-treatment gametocytaemia [107–110] and hence possess 

transmission advantage (Figure 3).

Figure 3. Postulated flow chart of emergence/spread of drug resistance (copyright permission from Prof Francois 
Nosten).
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5. Prospects of elimination

With the declining transmission of malaria, the geographic clustering of both clinical and 
asymptomatic infections has become more apparent. Asymptomatic carriers represent a “reser-

voir” of parasites that are difficult to detect because the density of parasites is often below the 
sensitivity threshold of conventional diagnostic tools (Rapid Diagnostic Tests and microscopy). 

The size of these reservoirs of sub-microscopic infections (also called “hot-spots”) can vary 
from a few households to large geographical areas. Clustering of these hotspots becomes more 

pronounced as transmission declines [111]. While considering malaria elimination, radical 
depletion of parasite reservoir (asymptomatic carriers with sub-microscopic parasitaemia) and 

gametocytes is a necessity. This can be achieved by two functional components: (1) early diag-

nosis with treatment (EDT) of the symptomatic patients (preferably within 48 hour of symptoms 

before the development of gametocytaemia) and (2) early detection and treatment targeting the 

reservoirs of sub-microscopic infections through Mass Drug Administration (MDA) [112, 113].

The intervention for the first element is to set up or reinforce and sustain malaria control pro-

gram hence reducing the number of clinical episodes as much as possible through increased 

access to EDT where the use of efficacious antimalarial regimen is critical [114]. As the drug 

resistance worsen, the rising number of clinical cases due to increasing gametocyte carriage in 

the community will be inevitable. MDA or mass screening and treatment (MSAT) is only acceler-

ating the malaria elimination alongside EDT, by eliminating the sub-microscopic reservoir [115]. 

The effectiveness of MDA or MSAT significantly relies on the therapeutic efficacy of the drug in 
use, the coverage and the total number of rounds of MDA. In turn, this means that a careful and 
well-conducted community engagement is primordial for enhanced coverage [115, 116].

6. Choice of drug for malaria elimination: is the pipeline empty?

The current malaria elimination program along the Thai-Myanmar border is using artemether-

lumefantrine (AL) for treating the clinical cases at the village malaria posts or by malaria 

workers [114], whereas dihydroartemisinin-piperaquine (DP) is deployed in MDA activities 
[117]. In this area, the third ACT, mefloquine-artesunate combination, is already failing [25], 

and the prospect of elimination program is highly dependent on the therapeutic efficacy of 
AL and DP. Recent emergence of piperaquine resistance following the artemisinin resistance 
has depleted the available ACTs to be deployed in malaria elimination programs. High failure 

rates of AL in Laos PDR and DP in Vietnam and Cambodia have cast doubts on the optimism 

of malaria elimination [10, 26, 87, 118].

There are very few new compounds in the development pipeline. The front runners are 

OZ439, a synthetic endoperoxide, structurally related to artemisinin, and KAF156 belonging 

to a new class of antimalarial (imidazolopiperazines) and the spiroindolone cipargamin (for-

merly KAE609). However, these short-acting drugs will have to be deployed in combination 

therapies and their full development will take many years.
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As a stopgap measure, two triple ACTs (mefloquine plus DP and amodiaquine plus AL) are 
under multicentre trial, using the inverse correlation between susceptibility to amodiaquine 
and lumefantrine as well as between piperaquine and mefloquine. The trial has completed 
the patient recruitment and the results are promising with high cure rates. However, recent 

increasing prevalence of parasite isolates with potential resistance to both mefloquine and 
piperaquine has questioned the longevity of the triple ACT [20].

7. Drug resistance in P. vivax

For the P. vivax, chloroquine remains the first line of treatment in majority of the endemic 
countries. However, after the first report from Papua New Guinea in 1989, chloroquine 
resistance has reached northern Papua and Indonesia. Later on, data with recurrences (by 
day-28 of chloroquine treatment) greater than 10% have also been reported from Myanmar, 
Thailand, Cambodia, India, Vietnam, Turkey, South America, Ethiopia and Madagascar 
[119]. Resistance in P. vivax is more difficult to document than for P. falciparum because of 

the relapses from liver stages. The most robust proof of resistance is given when a circulat-

ing parasite is detected in the peripheral blood in the presence of therapeutic chloroquine 
concentrations (i.e. >100 ng/ml). The absence of long-term parasite culture for P. vivax further 

complicates the efficacy testing in the laboratory, but short-term assays have been developed 
in recent years.

8. Regional artemisinin resistance initiative (RAI)

The six countries of the Greater Mekong Subregion (GMS), Thailand, Myanmar, Cambodia, 

Laos, Vietnam and China (Yunnan Province), are part of a larger community, the Association 

of Southeast Asian Nations (ASEAN). Despite political pledges to fight artemisinin resistance 
and eliminate malaria, coordination remains hampered by deep political, economic and geo-

graphical gaps. The WHO strategic plans to counter artemisinin resistance failed to prevent its 
spread to the entire sub-region. In 2013, the Global Fund launched the Regional Artemisinin-
resistance Initiative to provide financial support to the five countries affected by this new 
treat. This initiative came in addition to the contributions of the Global Fund to the Malaria 

National Program and contributed to the decrease in malaria-related mortality and morbid-

ity in the region. However, these efforts have been compromised by the fragmentation in the 
public health policies, the disparities in the infrastructures and human resources as well as 

corruption. In terms of treatment policies, all GMS countries had already adopted ACTs long 
before the emergence of resistance, but poor monitoring in some countries meant that mono-

therapies and sub-standard or counterfeit drugs continued to circulate until recently. The 

relative absence of entomological data in some parts of SEA explains that there is no coher-

ent strategy for containment of local disease vectors. Large budgets continue to be spent on 

long-lasting impregnated nets (LLINs) despite the absence of evidence of their effectiveness.
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9. Conclusions

Artemisinin resistance in P. falciparum has emerged 10 years ago in SEA and spread in the 

entire GMS. Parasite populations resistant to all ACTs are now circulating in Cambodia, trig-

gering a resurgence of the disease. Current gains in malaria control/elimination program are 
heavily relying upon the efficacy of ACTs. The emergence of artemisinin and partner drug 
resistance is a serious threat to the global prospect of malaria elimination. The recent decline 

in the number of clinical cases in the region is encouraging but by no means a victory. Current 

resurgence of malaria in Cambodia and the existence of large reservoirs of sub-microscopic 

infections must be seen as warnings that malaria could make a devastating comeback. Efforts 
must continue and accelerate to eliminate the parasite and this will only be possible with 

stronger political will and sustained financial support. The three main programmatic com-

ponents are EDT, elimination of the reservoirs and adapted vector control measures. The few 

antimalarials in the development pipeline are promising, though these compounds will not 

be ready on time to replace the ACTs [120]. The spread of the ACT-resistant malaria has so 

far outpaced the malaria containment measures and time is running out. There are not many 

options but to accelerate the current malaria elimination efforts.
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