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Abstract

Two clustering problems are considered. We consider a lot of different clusters of the same
data for a given number of clusters. Data clustering is understood as their stable partition
into a given number of sets. Clustering is considered stable if the corresponding
partitioning remains unchanged with its minimum change. How to create a new cluster
based on ensemble clusterings? The second problem is the following. A definition of the
committee synthesis as ensemble clustering is introduced. The sets of best and worst
matrices of estimates are considered. Optimum clustering is built on the basis of the
clusterings obtained as being closest to the set of the best estimation matrices or as the
most distant from the set of worst-case matrices of estimates. As a result, the problem of
finding the best committee clustering is formulated as a discrete optimization problem on
permutations.

Keywords: clustering, algorithm, ensemble, collective, stability, optimality, construction

1. Introduction

There are many different approaches to solving the problems of clustering multidimensional

data: based on the optimization of internal criteria (indices) [1, 2], hierarchical clustering [3],

centroid-based clustering [4], density-based clustering [5], distribution-based clustering [6],

and many others. There are well-known books and papers on clustering [7–10].

This section is devoted to one approach to the creation of stable clusterings and the processing

of their sets. A natural criterion is considered, which is applicable to any clustering method. In

work [11], various criteria (indices) are proposed, optimizing which clustering is built with a

definite look “what is clustering?” In this chapter, we use a criterion based on stability. If we

really got clustering, that is, a solution for the whole sample, the partitioning should not

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



change with a small change in the data. Criteria are introduced for the quality of the partition

obtained. If the criterion value is less than one, then the partition is unstable. Let us obtain for

the same data N clusterings. How to create a new ensemble clustering based on the N

partitions? Previously, a committee method for building ensemble clusterings was proposed

[12–15]. Let there be N results of cluster analysis of the same data for l clusters. The committee

method of building ensemble clustering makes it possible to build such l clusters, each of

which is the intersection of “many” initial clusters. In other words, we find such l clusters

whose objects are “equivalent” to each other according to several principles. As initial N

clusterings, one can take stable ones. Finally, we consider a video-logical approach to building

the initial N coarse clusterings.

2. Criteria for stability of clustering

Let the sample of objects Χ ¼ xi; i ¼ 1; 2;…;mf g, xi ∈Rn be given and Κ ¼ K1;K2;…;Klf g is the

clustering of the sample into l clusters obtained by some method, Ki⊆Χ, i ¼ 1, 2,…, l, ∪l1Ki ¼ Χ,

Ki ∩Kj ¼ ∅, i 6¼ j: Speaking of clustering, we mean applying a method to a sample without

focusing on the method itself. Is partition Κ of a sample by this method clustering or here some

kind of stopping criterion is satisfied? For example, an extremum of some functional is

obtained or the maximum number of operations in the iterative process is fulfilled. We will

use the following thesis as the main one. If the resulting partition Κ is indeed clustering, then it

must be the same clustering for any minimal change in the sample Χ. Let xi be arbitrary, xi ∈Kα

ensemble then the sample Χ∖ xif g partition Κ
∗ xið Þ ¼ K∗

1;K
∗

2;…;K∗

l

� �

, K∗

j ¼ Kj, j ¼ 1, 2,…,

l, j 6¼ α, K∗

α
¼ Kα∖ xif g, i ¼ 1, 2,…, m must be clustering. The fact of “coincidence” of clusterings

Κ ¼ K1;K2;…;Klf g and Κ
∗ xið Þ ¼ K∗

1;K
∗

2;…;K∗

l

� �

will be called identity, the clusterings them-

selves are identical and denoted it as Κ∗ xið Þ ≈Κ. In this case, it is natural to call a partition Κ as

stable clustering if the partitions Κ
∗ xið Þ and Κ coincide for all xi, i ¼ 1, 2,…, m. In the case of

non-identity of some individual Κ∗ xið Þ with Κ, we will call Κ as quasi-clustering.

Definition 1. The quality of quasi-clustering (of unstable clustering) is the quantity

Ф Κð Þ ¼ xi; i ¼ 1; 2;…;m : Κ
∗ xið Þ ≈Κf gj j=m.

If Ф Κð Þ ¼ 1, then in this case, we will talk about stable clustering Κ or simply clustering.

Suppose that for some i, i ¼ 1, 2,…, m the condition Κ
∗ xið Þ ≈Κ is not satisfied, and

Κ
∘ xið Þ ¼ K ∘

1 ;K
∘

2 ;…;K ∘

l

� �

is the clustering of the sample X∖ xif g obtained from the partition

Κ
∗ xið Þ using Κ

∗ xið Þ as the initial approximation. Then Κ
∘ xið Þ can significantly differ from

Κ
∗ xið Þ. We will use as a function of the proximity between clustering Κ

∘ xið Þ and partitioning

Κ the value d Κ
∘ xið Þ;Κð Þ ¼ maxα

Pl
i¼1 K ∘

i ∩Kαi

�

�

�

�= m� 1ð Þ. Note that to calculate proximity it is

required to find the maximum matching in a bipartite graph, for which there is a polynomial

algorithm [16]. If Κ ∘ xið Þ does not exist, we will assume that d Κ
∘ xið Þ;Κð Þ ¼ 0.

Definition 2. The quality Fmin(Κ) of the quasi-clustering Κ will be called the quantity

Fmin Κð Þ ¼ mini d Κ
∘ xið Þ;Κð Þ.
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Definition 3. The quality Favr(Κ) of the quasi-clustering Κ will be called the quantity

Favr Κð Þ ¼
Pm

i¼1 d Κ
∘ xið Þ;Κð Þ=m.

For some clustering algorithms, there are simple economical rules for computing Ф Κð Þ. Let us

bring them (see also in [3, 17, 18]).

2.1. Method of minimizing the dispersion criterion

It is known that in order to minimize the dispersion criterion, it suffices to satisfy inequalities

nj

nj � 1
� � kx� �mjk

2 �
nk

nk þ 1ð Þ
kx� �mkk

2
≤ 0 (1)

for any clusters Kj and Kk, arbitrary x� ∈Kj, where nj ¼ Kj

�

�

�

�

�

�, mj ¼
1
nj

P

xt ∈Kj
xt.

We establish the conditions for the identity Κ∗ xið Þ ≈Κ of the partitions Κ∗ xið Þ and Κ. In the case

x� ∈Kj [considering (Eq. (1))] to satisfy the condition Κ∗ xið Þ ≈Κ inequalities.

nj�1ð Þ
nj�2ð Þ

kx� �mjk
2 þ 2

nj�2ð Þ
x� �mj; xi �mj

� �

þ 1
nj�1ð Þ nj�2ð Þ

kxi �mjk
2 � nk

nkþ1 kx
� �mkk

2
≤ 0 must

be satisfied. In the case x� ∈Kk inequalities nk
nk�1ð Þ kx

� �mkk
2 �

nj�1ð Þ
nj

kx� �mjk
2 � 2

nj
x�ð

�mj; xi �mjÞ �
1

nj nj�1ð Þ
kxi �mjk

2
≤ 0 must be satisfied.

2.2. k-means method

Let the clustering Κ be obtained by k-means method, that is, kx� �mjk ≤ kx
� �mkk, ∀j 6¼ k,

∀x� ∈Kj. In the case of equality, the object is considered to belong to a cluster with a lower

number. Then, Κ∗ xið Þ ≈Κ is satisfied if kx� �mjk
2 þ 2

nj�1ð Þ
x� �mj; xi �mj

� �

þ 1

nj�1ð Þ
2 kxi�

mjk
2
≤ kx� �mkk

2 under x� ∈Kj, x
� 6¼ xi and kx� �mkk

2
≤ kx� �mjk

2 þ 2
nj�1ð Þ

x� �mj; xi
�

�mjÞ þ
1

nj�1ð Þ
2 kxi �mjk

2 under x� ∈Kk.

2.3. Method of hierarchical agglomeration grouping

We confine ourselves to the case of an agglomeration hierarchical grouping. To find the value of the

criterion Ф Κð Þ, you can calculate the partitioning Κ, partitions Κ ∘ xið Þ, i ¼ 1, 2,…, m, and compare

Κ with each Κ ∘ xið Þ, i ¼ 1, 2,…, m. Here it is possible to save in the calculation of Ф Κð Þ without

carrying through the clustering for some of “i”. Indeed, let there Κt xið Þ ¼ Kt
1;K

t
2;…;Kt

m�t

� �

be

clustering of the sample X∖ xif g into m� t clusters, t ≤m� l. Κ is a partition obtained by the

clustering algorithm X. The main property of the hierarchical grouping is that for any

k ¼ 1, 2,…, m� t there is j ¼ 1, 2,…, m� t� 1 for which Kt
k⊆K

tþ1
j . In this case, if at some step

t, t ≤m� l for some k the condition Kt
k⊆Kj does not hold for all j ¼ 1, 2,…, l, then the condition

Κ
∗ xið Þ ≈Κ will not be fulfilled.
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2.4. Examples

We give some examples illustrating the stability criteria introduced.

1. Below are the results obtained for model samples. The method of clustering based on the

minimization of the dispersion criterion [3] has been used. As the initial data, we used

samples of a mixture of two two-dimensional normal distributions with independent fea-

tures, different а, and σ. Examples are shown in Figures 1–3 (images of the samples in

question) and in Tables 1 and 2. Figure 1 represents a sample of 200 objects for which all

the criteriaФ Κð Þ, Fmin(Κ), Favr(Κ) are equal to 1, and the resulting clustering into two clusters

is stable clustering. Here we used distributions with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, and

σ1 ¼ σ2 ¼ 3; 3ð Þ.

Further, with the same parameters а1, а2, experiments were carried out for σ1 ¼ σ2 ¼ 5; 5ð Þ.

Then, we used distributions with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 10; 10ð Þ,

m ¼ 200. In this case, we have the case of strongly intersecting distributions. Formally,

the clustering method gives a quasi-clustering, approximately corresponding to the

partitioning of the original sample (Figure 3) into two sets by a diagonal from the upper

left corner of the picture to the lower right. The values of the criteria in Table 2 were

obtained.

2. Data clustering of [19] and criteria values Ф Κð Þ, Fmin(Κ), Favr(Κ). The following data from

classification problem of electromagnetic signals were considered: n ¼ 34, m1 ¼ 225,

m2 ¼ 126, l ¼ 2. We give the values of the stability criteria obtained. Figure 4 shows the

visualization [3] of the sample. The accuracy of the supervised classification methods was

about 87% of the correct answers. However, the clustering of data turned out to be only

quasi-clustering (Table 3).

Figure 1. Clustering in a task with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 3; 3ð Þ, m ¼ 200.
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Figure 2. Clustering in a task with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 5; 5ð Þ, m ¼ 200.

Figure 3. Data with parameters а1 ¼ 0; 0ð Þ, а2 ¼ 9; 9ð Þ, σ1 ¼ σ2 ¼ 10; 10ð Þ, m ¼ 200.

Ф Κð Þ 0.995

Fmin(Κ) 0.995

Favr(Κ) 0.999

Table 1. Values of quasi-clustering criteria.
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3. Committee synthesis of ensemble clustering

The problem is as follows. There are N clusterings for the same number of clusters. How to

choose from them the only one or build a new clustering from the available ones? In the

supervised classification problem (with the help of a collective solution of a set of algorithms)

there is a criterion according to which one can choose an algorithm from existing ones or build

a new algorithm. This is a supervised classification error. This direction in the theory of

classification appeared in the early 1970s of the last century [20, 21], then was created an

algebraic approach [22], various correctors were appeared. The key in the algebraic approach

is the creation in the form of special algebraic polynomials of a correct (error-free) algorithm

based on a set of supervised classification algorithms. Some algebraic operations on matrices

of “degrees of belonging” of recognized objects are used. Various types of correctors were also

created [22–25], when the problem of constructing (and applying) the best algorithm is also

solved in two stages. First, the supervised classification algorithms are determined, and then

the corrector. This can be, for example, the problem of approximating a given partial Boolean

function by some monotonic function. In recent decades, there are conferences on multiple

classifier systems, these issues are reflected in the books [21, 10]. How to choose or create the

Ф Κð Þ 0.770

Fmin(Κ) 0.995

Favr(Κ) 0.998

Table 2. Values of quasi-clustering criteria. Сase of very intersecting distributions

Figure 4. Data visualization.

Ф Κð Þ 0.966

Fmin(Κ) 0.997

Favr(Κ) 0.999

Table 3. The values of the criteria in the problem “ionosphere” Ф Κð Þ, Fmin(Κ), Favr(Κ).
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best clustering using a finite set of given solutions? Here, all problems are connected primarily

with the absence of a single generally accepted criterion. Each clustering algorithm finds such

“source” clusters of objects that are “equivalent” to each other. In this chapter, it is proposed to

build such a clustering of the initial data, the cluster solutions of which have a large intersec-

tion with the initial clusters.

Let the sample of objects Χ ¼ x1; x2;…; xmf g, xi ∈Rn for supervised classification and l classes

are given. In the theory of supervised classification, the following definition of the supervised

classification algorithm exists [21]. Let αij ∈ 0; 1f g be equal to 1 when the object xi, i ¼ 1, 2,…, m

is classified by the algorithm Ar as xi ∈Kj and 0 otherwise: Ar
Χð Þ ¼ kαijkm�l

. Here the intersec-

tion of classes is allowed. Unlike the supervised classification problem, when clustering a

sample, we have freedom in the designation of clusters.

Definition 4. The matrices I ¼ kαijkm�l
,αij ∈ 0; 1f g and I

0

¼ kα
0

ijkm�l
,α

0

ij ∈ 0; 1f g are said to be

equivalent if they are equals to within a permutation of the columns.

It is clear that this definition defines a class of equivalent matrices for some matrix.

Definition 5. A clustering algorithm is an algorithm that maps a sample Χ to a set of equiva-

lent information matrices Ac
Χð Þ ¼ Κ kαijkm�l

�

:

�

The number of clusters and the length of the control sample are considered to be given. This

definition emphasizes the fact that in an arbitrary partition of a sample into l clusters, we have

complete freedom in the numbering of clusters. In what follows we shall always consider

matrices of dimension m� l.

Let there be given N algorithms Ac
1, A

c
2,…, Ac

N for clustering and their solutions Ac
ν
Χð Þ ¼

Κ kαv
ijkm�l

��

for sample Χ. We denote Iν ¼ kαν

ijkm�l
an arbitrary element of the clustering

Κ kαv
ijkm�l

��

.

Therefore, we have Ι ¼ Κ I1ð Þ � Κ I2ð Þ �…� Κ INð Þ or set Ι ¼ I
0

1; I
0

2;…; I
0

N

� �

; I
0

ν
∈Κ Iνð Þ

n o

,

I
0

ν
¼ kα

0
ν

ij km�l
.

There are two problems.

1. Construction of the mapping Ι on, Κc, Ι ! Κc ¼ Κkсijkm�l

�

, сij ∈ 0; 1f g
�

(that is, the con-

struction of some kind of clustering).

2. Finding the optimal element in Κc (i.e. finding the best clustering in Κc).

Definition 6. An operator Β I
0

1; I
0

2;…; I
0

N

� �

¼ B ¼ kbijkm�l
is called an adder if bij ¼

PN
ν¼1 α

0
ν

ij .

It is clear that 0 ≤ bij ≤N, bij ∈ 0; 1; 2;…;Nf g .
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Definition 7. An operator r is called a threshold decision rule, if r Bð Þ ¼ С ¼ kсijkm�l
,

cij ¼
1, bij ≥ δi,

0, otherwise,

	

where δi ∈R.

Definition 8. By the committee synthesis of an information matrix С on an element

~I
0

¼ I
0

1; I
0

2;…; I
0

N

� �

let us call it a computation by the formula С ¼ rΒ ~I
0

� �

, provided that Β is

the adder and r is the threshold decision rule.

The general scheme of collective synthesis is shown in Figure 5.

We note that the total number of possible values B is bounded from above by a quantity l!ð ÞN.

Let s be the operator that performs permutation of columns of matrices m� lwith the help of a

substitution < j1, j2,…, jl >, S ¼ sf g is the set of all operators s. We believe that rs ¼ sr, ∀s∈S.

We continue s∈ S to the n-dimensional case σ ~I
0

� �

¼ s I
0

1

� �

; s I
0

2

� �

;…; s I
0

n

� �� �

. We denote

Σ ¼ σf g, σ is the extension of s. From the definition of the adder it follows that

σΒ ¼ Βσ,∀σ∈Σ. Further, ∀~I
0

∈ Ι, ∀σ∈Σ we have rΒ σ ~I
0

� �� �

¼ rσ Β ~I
0

� �� �

¼ s rΒ ~I
0

� �� �

and

finally σ ~I
0

� �

; σ∈Σ

n o

!
rΒ

s rΒ ~I
0

� �� �

; s∈S
n o

¼ Κ rΒ ~I
0

� �� �

¼ Κ kcijkm�l

��

. Therefore, the prod-

uct rΒ defines the desired mapping and specifies some ensemble clustering. It is necessary to

determine the optimal element from Κc, find it and ~I
0

.

Ι!
rΒ

Κc, A
c
~I
0 Χð Þ ¼ Κ rΒ ~I

0
� �� �

.

Figure 5. Scheme of committee synthesis.
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We introduce definitions of potentially best and worst-case solutions. As the “ideal” of the

collective solution, we will consider the case when all algorithms give us essentially the same

partitions or coverings.

Definition 9. A numerical matrix kbijkm�l
is called contrasting if bij ∈ 0;Nf g. A numeric matrix

kbijkm�l
is called blurred if bij ¼ δi ∈R.

As the distance between two numerical matrices, we consider the function

r B1
;B2

� �

¼
P

m

i¼1

P

l

j¼1

b1ij � b2ij

�

�

�

�

�

�.

Denote by Μ the set of all contrast matrices, and by ~M the set of all blurred matrices. We

introduce definitions for estimating the quality of matrices.

Definition 10.

Φ Bð Þ ¼ r B;Μð Þ!
B
min: (2)

Definition 11.
~Φ Bð Þ ¼ r B; ~Μ

� �

!
B
max: (3)

The set ~Μ
0

¼ ~Bg
�

(where ~B ¼ k~bijkm�l
, ~bij ¼

N
2 ) is called the mean blurred matrix.

Definition 12.

~Φ
0

Bð Þ ¼ r B; ~B
� �

!
B
max (4)

We note that the optimums according to the criteria (Eq. (2)) and (Eq. (3)) do not have to

coincide. The sets Μ and ~Μ intersect.

Figure 6 illustrates the sets of contrasting and blurred matrices. Arrows indicate some ele-

ments of sets.

Theorem 1. The sets of optimal solutions by criteria Eqs. (2) and (4) coincide.

Let us show that Φ Bð Þ+~Φ
0

Bð Þ = Nml
2 for any B. We write ~Φ

0

Bð Þ ¼
P

m

i¼1

P

l

j¼1

~α ij, ~α ij ¼ bij �
N
2

�

�

�

�,Φ Bð Þ

¼
P

m

i¼1

P

l

j¼1

α
∗

ij,α
∗

ij ¼ min bij;N � bij
� �

. If bij ≥
N
2 then ~α ij ¼ bij �

N
2 ,α

∗

ij ¼ N � bij, and ~αij+α
∗

ij ¼
N
2 . If

bij <
N
2 then ~α ij ¼

N
2 � bij,α

∗

ij ¼ bij, and ~α ij+α
∗

ij ¼
N
2 .
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Summing over all the set of values of pairs of indices i, j, we get that Φ Bð Þ+ ~Φ
0

Bð Þ = Nml
2 .

We consider the problem of finding optimal ensemble clusterings for the criterion (2). It is clear

that Φ Bð Þ ¼
P

m

i¼1

P

l

j¼1

min bij;N � bij
� �

.

We introduce the notations M ¼ 1; 2;…;mf g, Xj ¼ ijbij ≥
N
2 ; i ¼ 1; 2;…;m

� �

, Yj ¼ M∖Xj,

j ¼ 1, 2,…, l. Let πν ¼< μν

1,μ
ν

2,…,μν

l >, ν ¼ 1, 2,…, N be some permutation of the set

π0 ¼< 1, 2,…, l >. A set of permutations π ¼< π1,π2,…,πN > uniquely determines the matrix

of estimates.

B
0

¼ kb
0

ijkm�l
, b

0

ij ¼ bij πð Þ ¼
P

N

ν¼1

α
0ν
ij .

We will further assume that the “initial”matrix kαν
ijkm�l

of the algorithm Ac
ν
corresponds to the

permutation π0. kα
0ν
ij km�l

is the matrix of the algorithm Ac
ν
corresponding to some permutation

πν. Then α
0ν
ij ¼ αν

iμν

j
.

Consider ~Δν ¼
Pl

j¼1

P

i∈Xj
α
ν

ij
þ
P

i∈Yj
αν
ij


 �

, ~Δ
0

ν
¼

Pl
j¼1

P

i∈Xj
α

0ν

ij
þ
P

i∈Yj
α

0ν
ij


 �

.

ThenΔν ¼ ~Δ
0

ν
� ~Δν ¼

Pl
j¼1

P

i∈Xj
αν
ij � α

0ν
ij

� �

þ
P

i∈Yj
α

0ν
ij � αν

ij

� �� �

. We convert this expression.

Figure 6. The sets of contrasting Μ, blurred ~Μ matrices, and the set of matrices Bf g.
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The identity
Pl

j¼1

P

i∈Xj
αν
ij þ

P

i∈Yj
αν
ij

� �

¼
Pl

j¼1

P

i∈Xj
αν
iμν

j
þ
P

i∈Yj
αν
iμν

j

� �

is valid. Get

Δν ¼
Pl

j¼1

P

i∈Xj
αν
ij � αν

iμν
j

� �

þ
P

i∈Yj
αν
iμν

j
� αν

ij

� �� �

¼ 2
Pl

j¼1

P

i∈Xj
αν
ij � αν

iμν
j

� �

¼ 2
Pl

j¼1

P

i∈Xj
αν
ij � 2

Pl
j¼1

P

i∈Xj
αν
iμν

j
.

Thus, minimizing a function is equivalent to maximizing the second sum of the expression.

After applying the permutations π ¼< π1,π2,…,πN
>, the sets Xj, Yj, j ¼ 1, 2,…, l change. We

introduce the notations M1j ¼ Xj∖ Y
0

j∖Yj

� �

, M2j ¼ Y
0

j∖Yj, M3j ¼ Yj∖ X
0

j∖Xj

� �

, M4j ¼ X
0

j∖Xj.

Figure 7 schematically shows the changes in sets Xj, Yj, j ¼ 1, 2,…, l.

Theorem 2

ΔΦ ¼ Φ B
0

� �

� Φ Bð Þ ≤
X

N

ν¼1

Δν þ
X

N

ν¼1

M2j

�

�

�

�

�2, N � even,

�1, N � odd
þ M4j

�

�

�

�

0, N � even,

�1, N � odd

( !( 

The proof is given in [12, 13]. Theorem 2 is the basis for creating an effective minimization

algorithm of Φ.

Figure 7. Sets Xj, Yj, j ¼ 1, 2,…, l are changed.

Figure 8. All possible variants of
Pl

j¼1

P

i∈Xj
αν
iμν

j
for all admissible j and i.
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Since the second sum is always not positive, we have an upper bound. We consider the

problem of minimizing a function Δν. We write out all possible variants of the function
Pl

j¼1

P

i∈Xj
αν
iμν

j
in the form of a table in Figure 8. Then the minimum of this function is

reduced to finding the maximum matching of the bipartite graph, for finding which we can

use the polynomial Hungarian algorithm [16].

It is clear that min
πν

Δν ≤ 0. Now we can propose the following heuristic algorithm for steepest

descent.

Algorithm.

1. We calculate Xj, j ¼ 1, 2,…, l.

2. We find Δ
∗

ν
¼ min

πν
Δν for each ν.

If
PN

ν¼1 Δ
∗

ν
< 0, then apply the found permutations πν ¼< μν

1,μ
ν

2,…,μν

l > , ν ¼ 1, 2,…, N and

go to step 1).

If
PN

ν¼1 Δ
∗

ν
¼ 0 then the END of algorithm.

NOTE. We note that our algorithm does not even find a local minimum of the criterion Φ Bð Þ.

Nevertheless, this algorithm is very fast, its complexity at each iteration is estimated as

O l5mN
� �

.

4. The algorithm of collective k-means

Results of clustering by N algorithms of sampling of m objects to l clusters solutions are

obtained, which we can write in the form of a binary matrix kαv
ijk, ν ¼ 1, 2,…, N, i ¼ 1, 2,…,

m, j ¼ 1, 2,…, l. We assume that the cluster numbers in each algorithm are fixed. Then any

horizontal layer number i of this three-dimensional matrix will denote the results of object xi
clustering. As an ensemble clustering of the sample Χ, we can take the result of clustering the

“new” descriptions—the layers of the original matrix kαv
ijk, ν ¼ 1, 2,…, n. As a method of

clustering, we take the method of minimizing the dispersion criterion. Let there be a lot of N

clusterings kαv
i1 j
k, kαv

i2j
k,…, kαv

iN j
k with heuristic clustering algorithms, then we calculate their

sample mean kα∗ν
j k as the solution of the problem

Pt
μ¼1 α∗v

j � αv
iμ j

� �2
! min

α∗v
j

. Where do we

obtain α∗v
j ¼ 1

N

PN
μ¼1 α

v
iμ j
. Note that this method makes it possible to calculate such ensemble

clusterings Κ ¼ K∗

1;K
∗

2;…;K∗

l

� �

that the sets of heuristic clustering of the objects of some

cluster of the collective solution will be close to each other in the Euclidean metric. The

committee synthesis of collective decisions provides more interpretable solutions. Indeed, if

Κ
ν ¼ Kν

1;K
ν

2;…;Kν

l

� �

, ν ¼ 1, 2,…, N are separate solutions of heuristic clustering algorithms,

then the cluster of collective solution will be the “intersection” of many some original clusters

K1
i1
, K2

i2
,…, KN

il
.
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5. Man-machine (video-logical) clustering method

In the problems of ensemble clustering synthesis considered earlier, we did not consider the

number of initial clustering algorithms, their quality and their proximity. Ensemble clustering

was built and reflected only the opinion of the collective decisions that we used. “Internal”

indices [9] reflect the person’s ideas about clustering. You can think up examples of data when

known internal criteria lead to degenerate solutions.

At the same time, a person has the ability to cluster visual sets on a plane without using any

proximity functions, criteria and indices. The following idea was realized. A person can

personally cluster projections of sets of points from Rn into R2. Having made such clusterings

under different projections, we can construct generally speaking various N clusterings, which

we submit to the input of the construction of the collective solution. The person himself “does

not see” the objects in Rn, but can exactly solve the clustering tasks on the plane. Thus, here we

use N precise solutions, but of various partial information about the data. Consider this video-

logical method on one model example.

A sample of two normal distributions with independent characteristics was considered. The

first feature of the first distribution (200 objects) had zero expectation and the standard

deviation, the first attribute of the second distribution (200 objects) had these values equal to

5. All the other 49 attributes for all objects had аi ¼ 5, σi ¼ 5, i ¼ 2, 3,…, 50. That is, the two

sets had equal distributions for 49 features and one informative feature. Clustering of the entire

sample by minimizing dispersion is shown in Figure 9. Black and gray points on sample

visualization represent the objects of the first and second clusters. Here the fact of informative

character of the first feature is lost.

The program of the video-logical approach worked as follows. With the help of a single

heuristic approach, all C2
n projections are automatically ordered according to the descending

criteria of the presence of two clusters. Next we as experts consider some projections and with

the help of the mouse we select in each of them two clusters. Figure 10 shows two such

examples. Note that the first feature was present in all projections. It was used “manually” as

the defining area for the dense location of objects. Then 10 “manual” clustering went to the

program entrance for the committee synthesis of the collective solution. Note that only two

objects were erroneously clustered.

Figure 9. Clustering of a sample of model objects by the method of minimizing variance.
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6. Conclusion

This chapter consists of two parts. First, clustering criteria based on sustainability are intro-

duced. Next, we propose an approach to processing the sets of obtained partitions of the same

sample. As the initial clustering, it is better to use stable clustering. It is shown how a person

can be used in the construction of the committee synthesis of ensemble clustering.
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