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Abstract

Responsible for up to 30,000 deaths annually, leishmaniasis is a complex spectrum of 
diseases endemic in 97 countries around the globe. Disease control relies heavily on the 
early diagnosis and treatment of the active cases (relevant for anthroponotic disease), 
although it is widely accepted that a prophylactic vaccine for human leishmaniasis is the  
way to achieve the successful elimination of human disease (taking in consideration the 
vast list of non-human reservoirs that enable the perpetuation of parasites all around 
the globe). The notion that infection leads to strong and long-lasting immunity against 
leishmaniasis supports vaccination as an achievable goal. However, and in spite of the 
different candidates tested along the years, till date, we still do not have an approved 
vaccine for humans. In this chapter, we will explore the last advances made in the field 
of vaccines against Leishmania without forgetting the historical perspective, essential to 
the understanding of the road already undergone. We will then discuss the correlates 
of disease and protection, still neither consensual nor definitive, as well as the issue of 
pre-clinical to clinical translation. The complete understanding of these issues will be 
essential for the approval of a successful vaccine for human leishmaniasis.

Keywords: leishmaniasis, human vaccines, correlates of protection, cellular immunity, 
cross-protection

1. Introduction

Vaccination is undoubtedly one of the greatest achievements of modern medicine, respon-

sible, together with the use of antimicrobials and access to clean water and sanitation, for the 

global human demographics transformation in the past two centuries [1–3]. The apparently 
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insignificant proportion of the world population, whose lives are spared annually, thanks to 
vaccines (0.04 or 0.1%, if we include deaths avoided by smallpox eradication), is equivalent to 

up to 3 (or 8) million lives spared per year and a cumulative of more than half a billion deaths 

avoided just in the twentieth century [4, 5]. Nevertheless, and notwithstanding the significant 
and successful global efforts toward the goal of universal health protection/promotion, the 
picture could be much better. On the one hand, just by improving global vaccination cover-

age, an additional 1.5 million deaths could be avoided yearly [5]. On the other hand, there are 
still many deadly infectious diseases, whose prevention through vaccination is theoretically 

possible but for which there are no vaccines approved [6–8]. There are different compatible 
explanations/hypothesis that together justify it. The first one has to do with legal and ethical 
reasons: to test/approve/administer a pharmaceutical product nowadays is harder than it was 
100 years ago [9]. Also in a chronologic point of view, it is not surprising that there are still 

no vaccines available for emerging diseases (e.g., Zika or MERS-CoV) [10, 11]. Other reasons 
have to do directly with the convergence of the nature of the pathogens with the evolution of 

vaccine technologies [12]: (i) almost all vaccines available till date are humoral based, which 

is not the best option against intracellular pathogens (e.g., Leishmania spp., Trypanosoma cruzi) 

[13, 14] and (ii) there are pathogens with immune-evasion strategies dependent on high anti-

genic variability that poses a challenge in vaccine development [6, 15]. Lastly, but not least 

important, there are diseases more relevant from an economic standpoint than others: many 

diseases for which there are still no vaccines available affect almost exclusively the poorest of 
the poor (neglected tropical diseases—NTDs) [8, 16, 17].

Fortunately, with the arrival of the new millennium, WHO/UN initiatives such as the 
Millennium Development Goals (Goal 6, Target 3) and more recently the Sustainable 

Development Goals (Goal 3, Target 3.3) contributed to an increase in the awareness on the 

NTDs and consequently the investment on strategies to control them [18, 19]. The best exam-

ple of concrete measures undertaken to “end the neglect” is given by the London Declaration 

on NTDs, signed in 2012 by 20 parties (including governmental organizations, non-profits 
and pharmaceutical companies) and endorsed thereafter by many others, that proposes to 

meet the goals set by the WHO Roadmap to overcome the global burden of NTDs (2012–
2020), that include the elimination of five diseases and the control of five others. One of the 
potential short-term controllable NTDs is the fatal form of leishmaniasis [20].

Endemic in 97 countries around the globe, leishmaniasis is a complex spectrum of diseases 

[21, 22]. The first layer of complexity is given by its vector-borne nature, which introduces 
an extra variable (the phlebotomine vector) to the binomium host pathogen. The second one 

is given by the 20 Leishmania species known to cause human diseases (usually in a species/
disease-manifestation-specific fashion), which is mostly but not exclusively of zoonotic origin 
(there are no animal reservoirs recognized for L. donovani) [23]. The third one relates to the 

infectious process, which frequently does not lead to an overt disease but instead to a chronic 

and “benign” asymptomatic state [24]. These are some of the main challenges to consider 

within the topic of disease control, which relies heavily on the early diagnosis and treatment 

of the active cases (whose influence in the diminishment of disease incidence should be rel-
evant in anthroponotic versus zoonotic leishmaniasis) [25, 26]. Although till date there is no 

vaccine available against human leishmaniasis, not only is it widely accepted that the devel-

opment of an effective vaccine is possible but also it is recognized that vaccination is the only 
viable option to achieve zoonotic disease elimination [25].
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With this chapter, we propose to explore the broad anti-Leishmania vaccines field, with humans 
as the focus population. Starting from a historical perspective, we will clarify where we stand 

today by discussing the different candidates and approaches followed along the years, situat-
ing them in the vaccine development pipeline. Additionally, we will debate what is missing 

(focusing mainly, but not only, on the correlates of protection and the disease models) as a way 

to substantiate why currently there are no vaccines against leishmaniasis approved for humans.

2. Vaccines for human leishmaniasis: where do we stand?

2.1. Leishmanization as the proof of principle of vaccines against leishmaniasis

The close relation of the human host and Leishmania parasites is quite ancient: there is evidence 

of parasite genetic material (identified retrospectively) in mummies from the year 2000 B.C. 
[23, 27]. However, the major breakthroughs in the leishmaniasis field were only achieved 
starting from the beginning of the twentieth century, with the identification of the causative 
agent(s), the incrimination of the vector(s), and consequently the understanding of parasite(s) 

life cycle and the distinct physiopathologic mechanisms that characterize each of the leish-

maniasis forms [23, 28]. The definitive allocation of leishmaniasis within the infectious (or 
communicable) diseases, in convergence with the “success of variolation” and the birth of 

vaccination [29], boosted the investigation of the anti-Leishmania immune response envision-

ing the development of an effective prophylactic approach. The first reports date from early 
1900 and are based on either contemporary common “medical practices” from Old World 
Cutaneous Leishmaniasis (CL) endemic countries or directly on evidence produced in human 

clinical trial-like studies [30, 31]. The general conclusions of these pioneer “vaccine studies” 

that used as inoculum either material from CL patient’s ulcers or live parasites collected from 

in vitro cultures (L. tropica) were (i) only the individuals that developed a lesion and then self-

healed were resistant to reinfection and (ii) reinoculation of immune individuals led to what 

is nowadays known as Type I delayed type hypersensitivity (DTH) reaction [30, 31]. Such 

studies established the dogma accepted today by the scientific community—“previous infec-

tion leads to robust immunity against Leishmania”—and were the proof of principle of the 

only prophylactic approach clinically used against leishmaniasis known as leishmanization.

Leishmanization was no more than the controlled induction of the cutaneous disease to pre-

vent the consequences of natural infection, such as the scarification of exposed body parts 
(particularly the face) and the consequent life-long psychosocial impact and simultaneously 

to decrease the disease incidence in hyperendemic areas [32, 33]. In the 1970s and 1980s, sev-

eral trials were performed using live virulent L. major parasites with promising results (up to 

80% efficacy, Table 1) [32, 34–36]. This vaccine approach was accepted in countries such as the 

former Soviet Union, Iran, Israel, and Uzbekistan [32, 36, 37]. However, it was generally aban-

doned (with the exception of Uzbekistan, where it is still a licensed approach according to the 
most recent reviews on the field [34, 36, 38]) due to a number of concerns such as: (i) some 

individuals (1–2/10,000 inoculations) developed non-healing lesions, hard to resolve with che-

motherapy [32, 39]; (ii) live vaccines (even the attenuated) are contraindicated to immuno-sup-

pressed individuals [40] (whose worldwide prevalence has increased in the modern days, due 

not only to the HIV pandemic but also, for instance, to the increase of organ transplantation  
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procedures [41]); (iii) batch-to-batch variability issues of such complex immunogens raise 

reproducibility concerns [36, 42]; and (iv) complex logistics are usually associated with live 

vaccines [42].

2.2. An overview of the vaccine candidates against human leishmaniasis explored 

since leishmanization until the present day

The knowledge produced by leishmanization trials and campaigns conducted at the end of 

the last century is the most important evidence that the development of a vaccine against 

leishmaniasis is quite far from being impossible. The quest for such an essential pharmaceu-

tical, indispensable for the achievement of global disease control, has been continuous (in a 

scale proportional to the funding for NTD research) and fruitful if we consider the number 

of candidates and different approaches tested. Here we will separate them into five major 
groups: live vaccines (“leishmanization like”), first-, second-, and third-generation vaccines, 
and vector-derived vaccines. Table 1 compiles the information to be discussed in the next sub-

headings, presenting not only the different candidates/approaches tested along the years but 
also the disease form they were destined to prevent, their placement in the vaccine develop-

ment pipeline, and the main findings reported.

2.2.1. Live vaccine candidates

The success of leishmanization is still used to support the investigation of vaccine approaches 

based on live parasites (called by some as leishmanization revisitation [38]), that according to 

the authors have the advantage of at least partially reproducing the normal infectious process 

(and consequently induce a “close-to-natural” anti-Leishmania memory) [43]. This includes for 

some candidates the long-term parasite persistence in the site of inoculation that will continu-

ously boost the immune system and prevent the loss of immunity to reinfection [44–46]. The 

first two approaches explored, relying on parasite persistence as the key to effectiveness, are 
readaptations of leishmanization directed toward the prevention of visceral disease and pro-

posed the controlled infection with either virulent L. major parasites or with a virulent but 

dermotropic L. donovani strain to promote heterologous or homologous protection against vis-

ceral disease caused by viscerotropic L. infantum or L. donovani strains, respectively [38, 47–49]. 

Still, both approaches, although shown effective in the pre-clinical context, will unlikely pro-

ceed in the vaccine development pipeline, mainly due to the safety concerns always raised by 

the use of virulent pathogens. As a way to partially overcome this barrier, different live vac-

cine approaches proposed the use of attenuated parasites, that would still mimic the natural 
infection (although in a sub-clinical form) and induce anti-Leishmania memory but in most of 

the cases would then be completely eliminated. In the pre-genomic era (but not only) chemi-

cally and physically attenuated parasites were shown to be effective, in pre-clinical trials, 
against CL, muco-cutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL) [50–52]. 

These attenuation approaches that did not assure a homogeneous parasite population (with 
an unpredictable potential of reversion to the virulent form) were almost completely replaced 

by the genetically modified parasites in the post-genomic era. Two main groups of genetically 
modified Leishmania parasites were used in the pre-clinical context: loss-of-function mutants  
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Type Approach/vaccine candidate(s) Disease 

form

Vaccine 

development 

pipeline

Efficacy/outcome Reference

Inoculation of live, virulent L. major parasites: 

Leishmanization

CL Effective clinical 
use in the former 

Soviet Union, Israel 
and Middle East* 

(discontinued)

About 80% efficacy [31, 34, 36]

Heterologous protection mediated by inoculation of 

live, virulent L. major

VL Pre-clinical studies 

in mice

No effect in BALB/c mice; protection in 
C57Bl/6 mice

[46–48]

Live vaccines Inoculation of a dermotropic L. donovani VL Pre-clinical studies 

in mice

Protection against challenge with 

viscerotropic L. donovani in BALB/c 
mice

[37]

Physically attenuated parasites CL/
MCL/
VL

Pre-clinical studies in 

mice and hamsters

Homologous protection for L. major, L. 

tropica, L. amazonensis, L. donovani and 

L. braziliensis; no effect for L. Infantum

[49–51]

Non-defined 
composition; live, 

attenuated and/
or drug-sensitive 

parasites (through 

culture, chemical, 

radiation or genetic 

manipulation)

Chemically attenuated parasites (N-nitrosamines/
antibiotic pressure)

CL/
MCL/
VL

Pre-clinical studies in 

mice and dogs

Homologous protection for L. major 

and L. mexicana in BALB/c mice; 
promising results for L. infantum in 

dogs

[51]

Genetically attenuated parasites (Lmajdhfr-ts, 

LmexCystProt, LmajLPG2, LmajPPM, LdCen1, 

LiHSP70-II, Ldp27, LdALO and LdBT1 null mutants; 
LiSIR2 sKO)

CL/
MCL/
VL

Pre-clinical studies in 

mice/hamsters/dogs/
macaques

Homologous protection for L. major 

in mice, but not monkeys; L. mexicana 

in mice and hamsters; L. infantum in 

mice and L. donovani in mice, hamsters 

and dogs; heterologous protection for 

L. major in mice, L. braziliensis in mice 

and hamsters and L. infantum in dogs 

(mediated by L. donovani KO parasites)

[51–55]

Genetically modified parasites (gain of function)—
suicide mutants: L. major tk-cd+/+ (susceptible to 
Ganciclovir and 5-flurocytosine), L. amazonensis 

alad-pbgd+/+ (used in the context of photodynamic 
vaccination)

CL/VL Pre-clinical studies in 

mice and hamsters

Homologous long-term protection 

(lesion free) in mice for L. major; 

heterologous protection against L. 

donovani mediated by L. amazonensis: 

99% reduction in parasite loads and 

suppression of disease

[50, 56, 57]
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Type Approach/vaccine candidate(s) Disease 

form

Vaccine 

development 

pipeline

Efficacy/outcome Reference

Immunization with non-pathogenic L. tarentolae (wild 

type or genetically modified strains producing LPG3, 
LdA2 or LdA2/CPA/CPB)

VL Pre-clinical studies in 

mice and dogs

Promising results in mice and dogs [50, 60, 61]

First generation 

vaccines

ALM adjuvanted with BCG CL/VL Pre-clinical and 

human clinical 

studies

Protection in macaques against L. 

donovani challenge; poor efficacy in 
humans. Protection in mice against L. 

major infection; clinical studies with 

disappointing results

[54, 65, 67, 

68]

Alum-ALM adjuvanted with BCG CL/VL Pre-clinical and 

human clinical 

studies

Immunogenic and safe in humans; 

protective (single dose) in macaques 

challenged with L. donovani; moderate 

efficacy against canine visceral 
leishmaniasis; protection in BALB/c 
mice against challenge with L. major

[54, 56, 69]

Autoclaved L. donovani VL Pre-clinical studies 

in mice

Significant levels of homologous 
protection

[70]

Phenol or Heat inactivated L. guyanensis, L. braziliensis 

and L. amazonensis adjuvanted with BCG
CL/
MCL

Human clinical 

studies

52% Efficacy in endemic area 
(phenol inactivation); no protection 

against L. amazonensis infection (heat 

inactivation)

[65, 67]

Merthiolate-killed L. amazonensis (with/without BCG) CL Pre-clinical and 

Human clinical 

studies

Protection in mice not reproduced in 

humans

[65, 73, 74]

Non-defined 
composition; whole 

killed parasites or 

parasite fractions

Sonicated L. donovani (whole cell or soluble antigens) 

adjuvanted (MPL-A, BCG, liposomes)
VL Pre-clinical studies 

in mice hamsters and 

monkeys

Good homologous protection in all 

species; liposomal formulation elicits 

the best protection in mice

[36, 54, 71, 

72]

Liposomal L. major soluble antigen adjuvanted with 

CpG

CL Pre-clinical studies 

in mice

Significant levels of homologous 
protection

[36]
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Type Approach/vaccine candidate(s) Disease 

form

Vaccine 

development 

pipeline

Efficacy/outcome Reference

Fucose-Manose ligand adjuvanted with saponin VL Pre-clinical studies in 

mice and hamsters; 

“clinical” studies in 

dogs

Protection in mice and hamsters 

challenged with L. donovani 

(homologous); effective heterologous 
protection (against L. Infantum) 

in dogs; transmission blocking 

potential; commercialized as a 

canine anti-Leishmania vaccine 

with the name Leishmune in Brazil 
(commercialization license suspended 

in 2014)

[66, 75]

L. infantum or L. amazonensis excreted-secreted antigens 

adjuvanted with saponin

VL Pre-

clinical/“Clinical” 
studies in dogs

Significant, long-lasting protection 
against canine VL in a field trial in an 
endemic area (Li); promising results 

in terms of heterologous protection 

against Leishmania infantum (La); 

commercialized as a canine anti-

Leishmania vaccine with the name 

CaniLeish in Europe (Li)

[54, 66, 76, 

77]

Second generation 

vaccines

Membrane proteins: native LdDp-72, gp63 and PSA-2 

and recombinant LiLCR1, LdHASPB1, KMP-11 and 
gp63; adjuvanted (BCG, CpG-ODN, MPL-SE, IL-12, 
saponin, cationic nanoparticles, liposomes)

CL/VL Pre-clinical studies 

in mice, dogs and 

macaques

Promising results regarding 

homologous protection in mice; 

dubious protection in monkeys against 

L. major challenge (gp63)

[50, 54, 71, 

83–85]

“Soluble proteins”: recombinant LdA2, LiPHB, LdF14, 

Ldp27, LdpSP LdP45, LdPDI, LdTPI, LdTPR, LiP0, 

LmajSTM1, LiTDR-1, LbHyp, EiF5a, eIF-2, NH, CPA 

and CPB, SMT, PEPCK, Histone H1, Heat shock 
proteins (HSP), LiRibosomal proteins, LiHypothetical 

amastigote-specific protein, cysteine proteinases, 
LACK; adjuvanted (BCG, ALD, P. acnes, CpG-ODN, 
MPL-SE, IL-12, saponin, cationic nanoparticles)

CL/
MCL/
VL

Pre-clinical studies in 

mice, hamsters and 

dogs; ex vivo human 

studies

Promising results in mice and 

hamsters; a major limitation is that 

most of the antigens were not tested 

in superior models; positive response 

in ex vivo human studies for LdelF-2; 

partial homologous and heterologous 

(L. infantum) protection in dogs and 

heterologous protection in mice 

challenged with L. infantum and L. 

amazonensis (LdA2: licensed veterinary 

product in Brazil—LeishTec)

[36, 50, 54, 

67, 84, 85, 

87–90]
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Type Approach/vaccine candidate(s) Disease 

form

Vaccine 

development 

pipeline

Efficacy/outcome Reference

Defined antigens: 
(native) or produced 

through DNA 

recombinant 

technology (more 

frequent)

Peptides: CPA, GP63, LmSTI1, LiKMP-11, PEPCK; often 

associated DC-based vaccination or nano-sized vaccine-

delivery systems; adjuvanted (MPLA, CpG-ODN)

CL/VL Pre-clinical studies 

in mice

Partial protection for L. infantum; 

differential protection for L. major

[71, 89, 93, 

94]

Fusion protein/polyprotein: Q protein, 
Leish-F1 (Leish 110-f), Leish-F2 (Leish 110-f), 

Leish-F3, Leish-F3+, KSAC, 8E + p21 + SMT, 

KMP-11 + LJL-143 + Leish-F3 + (in virosomes), 

rLiHyp1 + rLiHyp6 + rLiHyV+rHRF multiepitope; 

adjuvanted (BCG, Saponin, CpG-ODN, GLA-SE, 
MPLA, ALD and MPL-SE)

CL/VL Pre-clinical studies 

in mice, hamsters, 

dogs and macaques; 

human clinical 

studies

Promising results in mice (CL 

and VL) and hamsters; protection 

conferred to dogs against challenge 

with L. infantum (Q protein, Leish 
110-f, Leish-F1, KSAC); protection 

of macaques challenge by L. major 

(Leish-F1); vaccines safe and 

immunogenic in humans (Leish-F1, 

Leish-F2 and Leish-F3); licensed 

veterinary product in Europe (Q 
protein—Letifend)

[54, 84, 85, 

95–105]

Third generation 

vaccines

DNA plasmidic vaccines (usually self adjuvanted): 

LdPDI, tuzin, HbR, A2, Histones+p36, LACK, 

TSA + LmSTI1, gp63, KMP-11, CPB, ORFF, NH36, 
TRYP, PSA-2, γGCS, PEPCK, LeIF, GP63 + HSP70, 
LeIF+/orTSA; MIDGE-Th1 vectors encoding conserved 
T-cell epitopes from KMP11, TSA, CPA, CPB, and P74

CL/VL Pre-clinical studies in 

mice, hamsters, dogs 

and macaques; ex 

vivo human studies

Generally good protective responses 

in mice and hamsters correlated 

with the induction of Th1 immunity; 

partial (Histones+p36) and good 

(LACK, cysteine proteinase) protection 

in dogs; protection in macaques 

(TSA + LmSTI1); effective in mice 
in immuno-chemotherapeutic 

approaches (MIDGE Th1); strong 

possibility of human immunogenicity 

(MIDGE Th1)

[36, 50, 54, 

84, 85, 89, 

110–117]

DNA vaccination 

and/or modified 
expression systems

Recombinant viral vectors: recombinant/modified 
vaccinia virus expressing TRYP, LACK, KMP-11; 

recombinant Influenza virus expressing LACK; (non-
replicative) recombinant adenovirus expressing A2, 

Leish-F3 or KMP-11-HASPB; recombinant lentivirus 
expressing KMP11-HASPB

CL/VL/
PKDL

Pre-clinical studies 

in mice, dogs and 

macaques; human 

clinical studies

Promising results obtained in all 

animal models; vaccine safe and 

immunogenic in humans (replication 

defective adenovirus coding for 

KMP-11-HASPB)

[50, 83, 

119–123]
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Type Approach/vaccine candidate(s) Disease 

form

Vaccine 

development 

pipeline

Efficacy/outcome Reference

Live recombinant bacterial vectors: Lactococcus 

lactis expressing A2 and LACK+IL-12; recombinant 

S. typhimurium vaccine strains expressing gp63, 

LinJ08.1190 and LinJ23.0410; recombinant L. 

monocytogenes (attenuated) expressing LACK

CL/VL Pre-clinical studies 

in mice

Different results obtained, varying 
from disease exacerbation (A2 L. 

lactis), to limitation of pathology 

(LACK L. monocytogenes) or protection

[51, 124]

Vector-derived 

vaccines

Th1 immunity inducing sand fly salivary proteins: 
recombinant or DNA encoding LJM-19 (SALO), PdSP-
15, PpSP15 (also L. tarentolae based), PpSP-44, LJM-143, 

LJM-17, LJM-11 (also L. monocytogenes based); alone, or 

in combination with common anti-Leishmania vaccine

CL/
MCL/
VL

Pre-clinical studies in 

mice, hamsters, dogs 

and macaques

Evidences or described effect in 
protection from (natural) infection in 

all animal models, except with PpSP-

44 which leads to exacerbation of 

cutaneous disease

[128–135]

Recombinant or 

DNA coding for 

sand fly derived 
proteins (including 

heterologous 

expression systems)

Insect-based transmission blocking vaccine: anti P. 

papatasi galectin (sand fly midgut protein) antibody
CL In vitro and in vivo 

insect studies 

(artificial feeding)

86% reduction of sand fly-midgut 
L. major infection; impairment of 

metacyclogenesis

[136–137]

A2, amastigote specific protein 2; ALM, autoclaved L. major; ALO, arabino-1,4-lactone oxidase; Cen, centrine; BCG, Bacillus Calmette–Guérin; CL, cutaneous Leishmaniasis; 
CPA/B, cysteine peptidase A/B; CystProt, cysteine proteinase; dhfr-ts, dihydrofolate reductase-thymidylate synthase; elF, elongation factor; GCS, glutamylcysteine 
synthetase; GLA, glucopyranosyl lipid A; gp, glycoprotein; HASP, hydrophilic acylated surface protein; HbR, hemoglobin receptor; HSP, heat shock protein; IL, 

interleukin; KMP, kinetoplastid membrane protein; LACK, Leishmania homolog of receptors for activated c-kinase; Ld, L. donovani; Li, L. infantum; LJL, Lutzomyia longipalpis 

Jacobina large; LJM, Lutzomyia longipalpis Jacobina medium; Lmaj, L. major; Lmex, L. mexicana; LPG, lipophosphoglycan; MIDGE, minimalistic immunogenically defined 
gene expression; MCL, mucocutaneous leishmaniasis; MPL, monophosphoryl lipid A; NH, nucleoside hydrolase; ODN, oligodeoxynucleotides; ORFF, open reading frame 
fragment; P0, acidic ribosomal protein P0; PDI, protein disulphide-isomerase; PdSP, Phlebotomus duboscqi salivary protein; PEPCK, phosphoenolpyruvate carboxykinase; 

PHB, prohibitin; PKDL, post kala-azar dermal Leishmaniasis; PPM, phosphomannomutase; PpSP, Phlebotomus papatasi salivary protein; PSA, promastigote surface 

antigen; SE, stable emulsion; SIR, silent information regulator; SMT, sterol 24-c-methyltransferase; TDR, thiol-dependent reductase; TPI, triose phosphate isomerase; TPR, 

trypanothione reductase; TRYP, tryparedoxin peroxidase; TSA, thiol-specific antioxidant; VL, visceral leishmaniasis.*Supposedly still used in some extent in Uzbekistan 
[56].

Table 1. Different anti-Leishmania vaccine candidates explored in the last century.
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(knock-out) and gain-of-function mutants (knock-in). In respect of the first group, nine null mutants  
[L. major dihydrofolate reductase-thymidylate synthase (dhfr-ts−/−), L. mexicana Cysteine pro-

teases (CPA/CPB−/−), L. major lipophosphoglycan 2 (LPG2−/−), L. major phosphomannomutase 

(PPM−/−), L. donovani Centrin (Cen−/−), L. infantum heat shock protein 70 type II (HSP70-II−/−), L. 

donovani amastigote specific protein p27 (p27−/−), L. donovani arabino-1,4-lactone oxidase (ALO−/−) 

and L. donovani biopterin transporter 1 (BT1−/−)], and one single knock-out [L. infantum silent 

information regulatory protein 2 (SIR2+/−)] were proven, in most cases, as effective vaccine candi-
dates (CL, MCL, and VL) [52–56]. Concerning the second group, two gain-of-function mutants 

were shown effective as vaccines for CL and VL. Both trials relied on the generation of “suicidal 
mutants” that would be completely eliminated from the immunized host either by the action 

of chemotherapeutics [L. major thymidine kinase (herpes simplex virus), cytosine deaminase 

(Saccharomyces cerevisiae) knock-in: tk-cd+/+], or by photodynamic therapy (L. amazonensis 

δ-aminolevulinate dehydratase, porphobilinogen deaminase knock-in: alad-pbgd+/+) [51, 57, 58]. 

Yet, although safer in theory than both live virulent and pre-genomic attenuated vaccine candi-
dates, post-genomic live attenuated vaccines still raise safety concerns, both due to the potential 
for reversion to virulence (higher for gain-of-function parasites but not negligible for knock-out 

parasites as was reported [59]) and due to the potential risk to the immunosuppressed (that was 

not explored in most of the trials). The last tested live vaccine approaches we will discuss here 

propose the use of closely related non-pathogenic parasites as a way to overcome all the live vac-

cine safety-related red flags. Leishmania tarentolae parasites infect reptiles but are unable to gener-

ate a sustained infection in humans (although able to enter into human phagocytic cells, there is 

no evidence of efficient intracellular replication) [60]. Importantly, they share >90% of the gene 

content with the other Leishmania species [60] which makes these parasite species an innocu-

ous source of native Leishmania antigens (although some of the important virulence factors of 

pathogenic parasites that may be essential to the induction of a protective prophylactic response 

are missing). Using this premise, both wild-type and genetically modified (LPG3, amastigote-
specific protein (A2), or A2/CPA/CPB knock-in) non-pathogenic parasites were reported, in the 
pre-clinical context, as promising vaccine candidates for VL [52, 61, 62].

2.2.2. First-generation vaccine candidates

Together with live attenuated vaccines, killed whole pathogens or fractions of them (inacti-
vated and fraction vaccines) comprise a large proportion of the approved vaccines for humans 

today [63]. In line with what happened chronologically in modern vaccinology, killed/fraction-

ated vaccines against leishmaniasis were developed both contemporarily and posteriorly to the 

“leishmanization era,” to answer to the safety concerns associated with live virulent/attenu-

ated vaccines. The main advantage of first-generation vaccines in relation to the live vaccine 
counterparts is consequently their innocuity: the pool of antigens in its native form will still be 

“delivered” and elicit a specific memory response (diversity in antigenic repertoire given by live 

parasites will be at least partially maintained), while no pathology is expected, even in immuno-

compromised individuals (no infection = no disease) [64]. This, however, may as well be a dis-

advantage: while regarding live vaccines, the antigen delivery will be sustained; that will not 

be true for killed vaccines that may require more than one administration (prime homologous 

boosts immunization schemes) and/or the co-administration of an immune response enhancer 
or adjuvant (usually not required in live vaccine approaches) [65], which may or may not be 

enough to generate long-lasting protection. Additionally, all of the manufacturing and logistics 
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issues discussed earlier for leishmanization (and live vaccines in general) are also applicable to 

killed/fractionated vaccines. Notwithstanding, first generation vaccines for leishmaniasis are 
the better studied ones in the clinical context (the only leishmaniasis vaccine candidates which 
have undergone phase 3 clinical trials) [66], by itself very relevant for the anti-Leishmania vac-

cine development field, and are available today in the market as approved vaccines for canine 
VL (Leishmune® in Brazil and CaniLeish® in Europe) [67]. The better recognized vaccine can-

didate within this sub-topic is the autoclaved L. major (ALM) adjuvanted with BCG, tested in 
the pre-clinical and clinical contexts, with promising results in the first that were not confirmed 
in the second [55, 66, 68, 69]. This candidate was then optimized by adsorption of the antigenic 

fraction to alum (alum-ALM + BCG) and retested once again in both pre-clinical and clinical 
contexts (CL and VL), with reported different degrees of efficacy in animal models and good 
immunogenic and safety profiles in humans [55, 66, 70]. A similar parasite-killing approach 

was used with L. donovani parasites, tested in a vaccine pre-clinical trial for VL (mice) that 

revealed significant homologous protective potential [71]. In parallel, a different inactivation 
strategy (sonication) was used also with L. donovani, and the obtained total or soluble antigens 

were used together with MPL-A, BCG, or liposomes as vaccine candidates for VL in pre-clinical 
trials with promising results in all models tested (mice hamsters and monkeys) [37, 55, 72, 73]. 

Only two other candidates were tested in the clinical context, this time in the New World as CL 
and/or MCL vaccines. One of them was a trivalent formulation of phenol or heat-inactivated 
L. guyanensis, L. braziliensis, and L. amazonensis adjuvanted with BCG [66, 68], while the other 

consisted of merthiolate-killed L. amazonensis (with/without BCG) [66, 74, 75]. Curiously, in 

line with what was verified in the Old World with ALM-BCG, although effective in the pre-
clinical context, both candidates generally failed as human vaccines [66, 75]. Apart from crude 

extracts, parasite fractions have been tested. Liposomal L. major soluble antigens adjuvanted 

with CpG were tested as a vaccine candidate for CL with significant levels of homologous pro-

tection observed in mice [37]. A glycoproteic fraction of L. donovani parasites (fucose-mannose 

ligand—FML) adjuvanted with saponin [67, 76] and L. infantum (or L. amazonensis) excreted-

secreted proteins (ESP) also adjuvanted with saponin [55, 67, 77, 78] were tested as vaccine 

candidates for VL in canines, whose determined efficacy, and safety profiles, was sufficient 
to warrant their registration as veterinary vaccines (L. donovani FML as Leishmune®—out of 

the market nowadays—and L. infantum ESP as CaniLeish®). Nevertheless, they were never 

tested in the human clinical context, which may be due to different reasons, all connected to 
the notion that the requirements needed for the approval of a human pharmaceutical are much 

more strict than the ones required in the veterinary context: (i) the heterogeneous antigen for-

mulation, harder to standardize, may have been considered an obstacle or (ii) the data obtained 

in the pre-clinical context may not have been sufficient (vaccines conferred only partial protec-

tion [67]).

Although it is a topic we do not explore in this chapter, it is important to stress that killed 

vaccines, different from what was observed in the prophylactic context, have shown great 
promise in a therapeutic context (revised in [79]).

2.2.3. Second-generation vaccine candidates

The birth and evolution of the molecular biology field contributed immensely to the rhythm 
of science in general. Today, the production of a single antigen is usually easily achievable, 
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as it is the possibility of scaling-up the process to an industrial level. Second-generation 

vaccines are a consequence of this scientific evolution (although some are native proteins, 
most of them are recombinant antigens) and consist of defined antigens, generally together 
with an immune response enhancer. They are usually accepted by the scientific community, 
as well as by the regulatory entities that so far have approved three vaccines for human use 

(including the hepatitis B recombinant vaccine that replaced the traditional plasma-derived 
one [80]). The main advantage of these vaccines in relation to the ones earlier discussed is the 

defined composition that allows an easier standardization. Another advantage we can think 
of is the elimination of immuno-dominance events that invariably occur if a complex antigen 

mixture is used as a vaccine and may hinder the potential of good vaccine candidates [81]. 

As disadvantages, the following should be considered: (i) the limited duration of antigen 

availability might impact the memory pool and limit the “protection window” [82] (more 

complex immunization schemes have to be used) and (ii) recombinant proteins, usually 

expressed in heterologous systems, may be slightly different from native proteins (particu-

larly concerning post-translational modifications [83]) which might impact their immuno-

genic potential (more relevant for humoral responses, considering conformational epitopes).

Second-generation vaccines against leishmaniasis are the group with higher representative-

ness. Here, for the sake of clarity, we separate them into four different groups: membrane and 
soluble proteins (full single recombinants), peptides, and polyproteins (multivalent), whose 

main candidates are enumerated in Table 1. The studies from fractionated parasites postulated 

that parasite membrane proteins had a good vaccine potential. Because of that, and also due 
to their relative abundance, relevant in terms of antigen presentation, many membrane pro-

teins were explored as vaccine candidates in the pre-clinical context for both CL and VL with 

promising results [51, 55, 72, 84–86]. Among these is the well-known, and extensively studied 

in the context of anti-Leishmania vaccination, kinetoplastid membrane protein-11 (KMP-11) [87]. 

Importantly, most of these proteins were identified by classical immuno-proteomic approaches 
considering always the amastigote parasite form as the most relevant in the human infectious 

process and are known virulence factors. This fact is also true for most of the non-membrane 

proteins (we name here “soluble proteins”) also tested in the last decades as vaccines against 

leishmaniasis, although most of them only in rodent models of CL, MCL, and VL (translatability 

to humans is not assured) [37, 51, 55, 68, 85, 86, 88–91]. Ribosomal proteins (e.g., P0), metabolic 

enzymes (e.g., TPI), stress-related proteins (e.g., HSP), antioxidant-machinery components (e.g., 

TPR), and even hypothetical proteins (Table 1) are found among them. One of these candidates,  
L. donovani A2, is today a licensed veterinary vaccine against leishmaniasis in Brazil—LeishTec® 

(that needs however to be optimized, according to a recent efficacy field trial performed in an 
endemic area with high transmission rates [92]). In the past few years, the development of vac-

cine candidates against leishmaniasis became more refined and rationale based, following the 
trends of twenty-first-century vaccinology [93]. New studies are now usually based in an ini-

tial in-silico prediction of immunogenicity, validated later ideally through ex vivo studies using 

samples from exposed human individuals, all performed before the design of any clinical trial. 

Furthermore, the antigens/antigen portions should be “broad spectrum”—conserved in all the 
pathogenic Leishmania spp.—and very different from human “self-antigens.” From the appli-
cation of such approaches and selection criteria, promising new candidates were proposed. 

Among them, peptide vaccines, chosen from immunogenic portions of known vaccine candi-

dates such as KMP-11, were tested pre-clinically, often associated with DC-based vaccination 
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strategies or nanosized vaccine-delivery systems [72, 94, 95]. Interestingly, a recently published 

work proposes a peptide vaccine candidate (from Leishmania phosphoenolpyruvate carboxyki-

nase—PEPCK) that may be effective for both VL and CL should the results obtained in the 
pre-clinical context translate into the clinical one [90]. However some argue that to use a single 

antigen, or a peptide as vaccine, may be less than optimal, considering that there will be a limita-

tion in terms of epitope diversity. To answer to this, some propose the use of defined polyanti-
gen vaccines (fusion proteins or mixed recombinants), also rationale based, as a way to generate 

“first-generation-like” second-generation vaccines, increasing epitope diversity and conse-

quently in theory enhancing recognition by human T cells (Table 1) [55, 85, 86, 96–101]. Some 

of these candidates are among the second-generation vaccines that went further in the vaccine 

pipeline. Q protein (a fusion protein containing portions of L. infantum p2a, p2b, and P0 ribo-

somal proteins and histone H2A) that was demonstrated effective in a pre-clinical trial in dogs 
infected with L. infantum is today the newest approved vaccine for veterinary use—Letifend® 

[102, 103]. Leish-F1 [fusion protein containing epitopes from Leishmania elongation initiation 

factor (LeIF), thiol-specific antioxidant (TSA), and Leishmania major stress-inducible protein 1 

(LmSTI1)], Leish-F2 (same immunogenic portions as Leish-F1 but his tagged), and Leish-F3 

(fusion protein containing portions of Leishmania nucleoside hydrolase and sterol 24-c-methyl-

transferase), which revealed promising and safe candidates in the pre-clinical context (for both 

CL and VL), were tested in phase I/II clinical trials that confirmed the translatability of results 
obtained with animal models to humans [97, 104–106]. Nevertheless, the researchers involved 

in these clinical trials think that there is still space for improvements and recently presented an 

improved version of Leish-F3 (with cysteine protease B as an extra fused antigen—Leish-F3+) 

that is going through the pre-clinical phase of the vaccine development pipeline, with promis-

ing results, either alone [99] or in combination with KMP-11 and the vector-derived antigen 

LJL-143, within a virosomal formulation [96].

We cannot end this sub-section without stressing that generally these second-generation vac-

cine candidates require the co-administration of adjuvants to warrant their efficacies as vac-

cines for leishmaniasis. Table 2 resumes the relevant information on the topic, extensively 

covered by two recently published reviews [107, 108].

2.2.4. Third-generation vaccine candidates

The notion that intradermal or intramuscular injection of a plasmid into an animal model would 

be enough to generate antigen-specific immune responses was responsible for the creation of 
a new arm in the vaccine research field. Although Initially DNA vaccines were not as well 

accepted as first- and second-generation vaccines, not only due to potential ethical implications 
(injection of foreign genetic material into humans that could, for instance, integrate within the 

human genome) but also due to safety concerns such as the possible generation of autoimmune 

pathologies initiated by the generation of anti-DNA immune responses [109]. However, these 

potential issues of DNA vaccines were, with time, shown to be irrelevant, both through exten-

sive pre-clinical research and through several clinical trials performed that confirmed DNA vac-

cines as safe and immunogenic in humans (although for some candidates, the immunogenicity 

data was not as promising as expected) [109, 110]. Yet, contrary to the other vaccine approaches 

discussed earlier, we still have no data from phase IV studies of DNA vaccination, since till date 

there is no third-generation vaccine approved for human use (although there are already four 
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approaches approved for veterinary use) [109, 110]. However, considering that third-genera-

tion vaccines are the most recent approaches (studies started in the 1990s), it is likely a matter 
of time until the approval of the first DNA vaccines considering some advantages attributed 
to them: (i) they are easy to design, produce, and scale up (potentially more cost-effective); 
(ii) they are quite stable, which minimize distribution and logistics-related complications; and 

(iii) they can induce both humoral and cellular immune responses (including CD8+-mediated 

cytotoxicity) [110]. Here, we categorize third-generation vaccines in three clusters: DNA vac-

cines, viral heterologous expression systems, and live bacterial expression systems. DNA vac-

cines are the more expressive in respect of the number of candidates explored, containing the 

simplest vaccine candidates: consist of usually non-adjuvanted plasmids (the “real DNA vac-

cines”). Similar to what was described for second-generation vaccines, both membrane (e.g., 

KMP-11 and gp63) and non-membrane antigens (e.g., NH, CPB, HSP70, and A2) were explored 
in the context of plasmid vaccine candidates (Table 1), pre-clinically, using animal models for 

both CL and VL [37, 51, 55, 85, 86, 90, 111–118]. Interestingly, many of the candidates tested 

as second-generation vaccines (and particularly those that have shown some degree of prom-

ise) were retested as DNA vaccines, either individually or in “multi-antigen” approaches (e.g., 

KMP-11, A2, LACK, and TSA+LmSTI1), showing the adoption of a rationale-based vaccine 

development [114]. The general reproduction of the results obtained with second-generation 

vaccines, after immunization with their DNA counterparts (CL and VL models, including mice, 

hamsters, dogs, and macaques), validated these approaches as potentially effective agents in 

Adjuvant Class Mechanism of action Type of 

immune 

response

Licensed for use in 

human vaccines

Aluminum mineral salts Particulate 

formulation; 

antigen depot

NALP3, ITAM, 

antigen delivery, IL-1 

secretion, necrosis, 

inflammasome

Antibody, Th2 ✓ (adjuvant of different 
commercially available 

vaccines)

Simple or emulsified Lipid 
A analogues (e.g., GLA, 

MPL)

Immuno-

modulatory 

molecule

TLR-4 agonists Antibody, Th1 ✓ (in combination with 

Alum in HBV and HPV 
vaccines)

Imidazoquinolines (e.g., 

Imiquimod, R848)

TLR-7, TLR-8 agonists Antibody, Th1 X (clinically tested in 

cancer immuno-therapy)

CpG-ODN TLR-9 agonists Antibody, Th1, 

Th2, CD8+ T 

cells

X (clinically tested 

in HBV, malaria, 
influenza and anthrax 
vaccines and in cancer 

immuno-therapy)

Saponins (e.g., QuilA, 
QS21)

Unknown / X (clinically tested 

in combination with 

cholesterol in HCV, 

influenza and HPV 
vaccines and in cancer 

immuno-therapy)

Nanoparticles (e.g., 

Virosomes*, Liposomes)

Particulate 

formulation

Antigen delivery; 

cross-presentation 

enhancer*

Antibody, Th1, 

Th2

✓ (HAV and Influenza 
vaccines)

Adapted from [106, 107].

* The asterisk means that only virosomes are cross presentation enhancers (asterisk in both)

Table 2. Main adjuvants used in anti-Leishmania vaccines development.
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the context of anti-Leishmania vaccine prophylaxis [51, 55, 85, 86, 90, 114]. In this sub-group, we 

would like to highlight the LEISHDNAVAX approach, recently proposed for VL. Completely 

based in a modern vaccine development approach (rationale based), this vaccine candidate, 

shown to protect mice from an intravenous challenge with L. donovani, is composed of five 
individual plasmid (MIDGE-Th1 vectors) coding for five Leishmania antigenic determinants, 

chosen based on inter-species conservation, “pan-immunogenic” potential (in different human 
populations), and content of T-cell-restricted epitopes (KMP11, TSA, CPA, CPB, and P74) [112]. 

This approach, which, according to the authors, is a candidate for clinical trials, has as the 

main advantage the modular nature: the vaccine is multivalent, but the antigens are not fused 

together, allowing the rapid modification and adaptation of the vaccine (exchange, addition, or 
elimination of antigens) [112]. Still within third-generation vaccines, more complex candidates 

were explored as well, in the form of heterologous expression systems. Among them are viral 

vectors, referred to as an improvement of classical DNA vaccines, once in one way allow in 

situ antigen expression, and also have an intrinsic adjuvant activity (mediated by pathogen-

associated molecular patterns (PAMPs) immune recognition) [119]. One important prerequisite 
of such vectors is their relative innocuity, being in most cases either human-approved vaccine 

strains (which have the same counter-indications for immuno-compromised individuals) or 

replicative-deficient strains. Till date, more than 5 viral-recombinant vaccines (using as viral 

platforms modified vaccinia virus, influenza virus, non-replicative adenovirus and lentivirus) 
coding for de facto effective antigens such as KMP-11, LACK, Leish-F3 and HASPB, were tested 
in the pre-clinical context for both CL and VL, with promising results obtained in all animal 

models used (mice, dogs and macaques) [51, 84, 120–123]. Remarkably, one of them was the 

first third-generation anti-Leishmania vaccine candidate to undergo human clinical trials. The 

adenoviral-based vaccine (non-replicative strain) expressing a self-cleaving polyprotein (L. 

donovani KMP-11+HASPB) was shown safe and immunogenic in humans, inducing particu-

larly specific CD8+ T cell responses, and importantly is being proposed as, more than a pro-

phylactic vaccine, a therapeutic vaccine destined to aid in the control of post-kala-azar dermal 

leishmaniasis—PKDL (“the neglected form of leishmaniasis” in respect of the anti-Leishmania 

vaccine studies) [124]. Last but not the least, some bacterial-based heterologous systems were 

proposed as anti-Leishmania vaccines although with disappointing results in some cases [52]. 

Also, to these ones, because they are live organisms, the disadvantages discussed earlier for live 

attenuated vaccines apply (such as counter-indication to immuno-suppressed) with the excep-

tion of the use of non-pathogenic organisms, such as Lactococcus lactis. From these candidates, 

we highlight the recombinant Salmonella typhimurium vaccine strains and the attenuated Listeria 

monocytogenes expressing different Leishmania antigens (e.g., gp63 and LACK), the ones that 

have shown the most promising results, although only in rodent models of CL/VL [52, 125].

2.2.5. Vector-derived vaccine candidates

It has become clear that to consider the sand fly vector only from the perspective of vector-control 
strategies would be not only reductive but also contribute to a major delay in the achievement of 

the disease elimination objective. The anti-Leishmania vaccine field became more complex from 
the moment Kamhawi, Belkaid, and colleagues showed that a previous exposure to uninfected 
sand fly bites (or to sand fly saliva) would be enough to confer protection against CL [126, 127]. 

Curiously, the anti-saliva-generated DTH responses were shown to be sufficient to negatively 
impact Leishmania parasites (indirectly). And importantly, such responses are apparently not 
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influenced by constant saliva exposure that could induce tolerization [128]. Such pieces of evi-

dence supported the exploitation of defined sand fly salivary proteins as anti-Leishmania vac-

cine candidates (either as single recombinant proteins or DNA vaccines—both plasmids and 

heterologous systems—alone or in multivalent approaches together with Leishmania-derived 

antigens) [129–136]. Several antigens, derived from different sand fly species from both New 
[129–131, 136] and Old [133–135] Worlds, were explored in the pre-clinical context in mod-

els of CL, MCL, and VL, most of them with promising results. The most relevant candidate 

is PdSP15, which was shown to be protective against cutaneous disease in different models, 
including in non-human primates (DNA protein prime-boost approach) [133–135]. Another 

candidate that deserves to be highlighted is LJM-19 (or SALO), which was demonstrated simul-

taneously as a good candidate against visceral (“homologous protection”) and mucocutaneous 

(“heterologous protection”) disease [131, 136]. Still within vector-based anti-Leishmania vaccine 

approaches, and although it is an option which is exploited very little, we believe that transmis-

sion blocking vaccines deserve to be mentioned. Such vaccines will act by impacting parasites’ 

development within the vector, impeding, therefore, their transmission to a new host [137]. For 

their engineering, however, the insect midgut proteins that allow parasite attachment during 
development (assuming such a process is dependent on specific interactions) have to be identi-
fied, which was described only for Phlebotomus papatasi (galectin—PpGalec) [138]. Interestingly, 

this study that shows that flies pre-fed with PpGalec murine pre-immune serum and posteri-
orly infected with L. major parasites were reproducibly less infected than the controls (an 86% 

decrease in the number of parasites retained in the midgut after blood meal excretion which led 

to at least a 5-fold reduction in the frequencies of mature infection development) is a proof of 

principle of Leishmania transmission blocking vaccines that may be used, for instance (but not 

only), in animal reservoirs and still impact human disease incidence [137, 138].

2.3. Questions that deserve to be answered

As a connecting point between the current and subsequent sections, we raise some questions for 

which we still do not have a clear answer today. The first one is if the development of a pan-Leish-

mania vaccine sensum latum (both prophylactic and therapeutic; for endemic and non-endemic 

individuals; against all disease forms) is something over-ambitious. And such a question makes 

sense, not only because of the time and investment that are expected to be involved—for the case 

of leishmaniasis, the non-existence of prophylactic agents implies the “faster is better” motto. For 
instance, in our recent work, we show that the pre-administration of a salivary antigen, followed 

by a boost with the same salivary antigen together with two other parasite-derived proteins, 

has a direct impact in the immunogenicity of the latest [96], which may suggest that vaccines 

for endemic individuals may not work equally in non-endemic ones and vice versa. This point is 

particularly relevant if we use vector- and parasite-derived components in the vaccines against 

leishmaniasis, which is related with the second question we pose: should vaccines for leishmani-

asis always contemplate both parasite- and vector-derived components? Studies that show the 

improvement of parasite-derived vaccine candidates when co-administered with vector-derived 

antigens support this hypothesis [54, 64]. However, there are still some issues that have to be 

addressed, such as the possibility of tolerance induction, that is known to be dependent on the 

amount of antigen [139] (expected to be higher in a defined antigen-based vaccination approach, 
compared with a sand fly bite). Furthermore, another question relates to clinical research. How 
can we test the effectiveness of safe and immunogenic vaccine candidates? The last phase III 
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clinical trials were performed more than half a century ago and against the cutaneous disease. 

But, contrary to other deathly parasitic diseases, such as malaria [140], to perform controlled 

infections with L. infantum, L. donovani or even L. braziliensis or L. guyanensis would be unethical, 

to say the least. Therefore, such trials would have either to evaluate cross-protection to cutane-

ous disease (controlled infection with L. major that still raises ethical issues) and extrapolate 

results to the mucocutaneous/visceral forms or be designed and conducted directly as phase IV 
clinical trials (although to use a placebo in this context would probably also not be admissible).

3. Vaccines for human leishmaniasis: what is still missing?

So far, and consciously, we described the different vaccine candidates explored till the present 
days as vaccines against leishmaniasis, highlighting only their effectiveness in a qualitative way 
(effective/non-effective, promising or not) and not discussing the immune mechanisms linked 
to those results: first, because Table 1 contemplates vaccine candidates developed for the differ-

ent leishmaniasis forms, whose pathogenic mechanisms are distinct (and not completely under-

stood) [141] and additionally, because the correlates of protection (that may also be distinct, 

depending on the disease form) are still far from being well established (they are neither con-

sensual nor definitive). Such facts may have different justifications, as (i) we are still missing key 
insights concerning vector-parasite-host interactions (both in disease and in health states); (ii) the 

translation value of the animal models used is limited; or (iii) the models used are not adequate.

3.1. From “mice to man”: the issue of animal models, correlates of protection, and 

translation

Being Leishmania parasites obligatory intracellular pathogens (in the mammalian host), it is 

not surprising that humoral-based responses will be less important than cellular-based ones. 

Indeed, in animal models of VL, the absence of B-cells contributed to decreased susceptibil-
ity to infection [142, 143]. Additionally, it has been shown that antibody-opsonized parasites 

are more efficiently taken by phagocytes that will become “permissive hosts” due to the high 
IL-10 and low IL-12 secretion phenotype induced by antibody Fc-receptor (FcγR) interactions 
[144–147]. Importantly, one of the hallmarks of human disease, is hypergammaglobulinemia 

(that correlates with disease severity), resultant from a polyclonal B-cell activation, being con-

sequently most of the circulating antibodies non-parasite specific [148–150]. Still, and because 

the development and role of humoral responses in leishmaniasis is controversial and not com-

pletely understood, they may be important [151, 152]. For instance, the type and functionality 

of the antibodies may be relevant from the standpoint of a vaccine approach, considering 

lytic functions [e.g., antibody-dependent cell-mediated cytotoxicity (ADCC)] or even “Th1-

inducing” FcγR ligation [153]. Yet, even for the proper mounting of effective antigen-specific 
humoral responses, cell-mediated immunity is of paramount importance [154].

What is known today regarding cellular immune responses to Leishmania infection was built on 

top of the Th1/Th2 paradigm defined on the basis of susceptibility versus resistance to L. major 

infection (one of the known CL etiologic agents) [155]. Indeed, the IL-12-mediated IFN-γ pro-

duction by Leishmania-specific CD4+ T cells is essential to promote the switch on of the oxidative 

cell-parasiticidal machinery, important for infection control both in animal models and in human 
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disease [156–158] (although in mucocutaneous forms, inflammation is also the cause of pathol-
ogy [159]). However, while in cutaneous disease a general correlation between Th1 versus Th2 

responses and immunity versus susceptibility is observed, in VL, where the major source of the 

regulatory cytokine IL-10 is Leishmania-specific Th1 cells (Tr1), that is not observed. This mecha-

nism of self-regulation (to prevent inflammation-mediated tissue damage) contributes to parasite 
persistence [160]. Yet, most of the anti-Leishmania vaccine studies rely on the quantification of the 
levels of IL-10 and IFN-γ-secreted ex vivo in response to either the vaccine antigen or to parasite 

total proteins and use the Th1/Th2 paradigm as a justification for the candidate potential. Others 
use multi-parametric flow cytometry (or ELISPOT) that allows the characterization of individual 
cell populations and the disclosure of which cytokines they are producing (most of the times after 

an ex vivo stimulation step): often IFN-γ versus IL-10 (individually) or more recently multi-func-

tional T cells [161]. Still, one may claim that results based on such approaches may have a lim-

ited validity due to the artificiality of the system: (i) the type and amount of antigen used in the 
recall and (ii) exclusion of parasite immuno-modulatory potential. To measure directly cytokine 

expression in the target organ (in an efficacy pre-clinical trial), as is sometimes done in CL mod-

els, is a way to bypass the potential limitations of ex vivo stimulation approaches. Importantly, the 

correlates of protection proposed and used should always correlate well with parasite burdens. 

Another issue that deserves to be emphasized is the cell type(s) we need to look at. Although 

CD4+ T cells are important in anti-Leishmania immunity, so are CD8+ T cells (important from both 

therapeutic and prophylactic standpoints) that are however many times almost not accounted 

for in vaccine studies [162]. These cells are nowadays known to be important for resistance to 

Leishmania infection and cure, either by production of IFN-γ (that will activate the microbicidal 
machinery) or by secretion of cytotoxic mediators that will directly kill infected cells [70, 163, 164]. 

And because of this, usually, the secretion/expression of IFN-γ or granzyme-B by ex vivo-recalled 

CD8+ cells is used to qualify their responsiveness and considered as potential correlates of protec-

tion. Having in consideration what was referred above for CD4+ T cells, an additional problem of 

translation must be considered. It is known that human CD8+ T cells (and other cytotoxic subsets) 

produce an antimicrobial peptide (granulysin) with direct parasite-cytotoxic effect, while murine 
cells do not. Curiously, the infection of a humanized mouse model (granulysin knock-in) with 

T. gondi and T. cruzi was less severe than in WT animals, as probably will be reproduced with 

Leishmania spp. [165]. Another important factor to be considered in vaccine effectiveness evalu-

ation is the relevance of the local versus systemic responses. Although in CL models, most of the 

times “specific-systemic responses” are investigated (e.g., recall experiments using splenocytes), 
it was recently shown that Leishmania-specific skin-resident CD4+ T cells are able to confer protec-

tion to cutaneous diseases, independently of the central/effector memory pool [166]. However, 

the immune response in the skin is often not accounted for. Although natural infection (inde-

pendently of the disease form) always begins by the deposition of parasites in the host dermis 

(excluding vertical transmission and accidental “human-made” infections resulting from, e.g., 

blood transfusions), most of the animal models used today in vaccine studies, particularly if we 

consider VL, completely bypass the skin (controlled infections are performed most of the times 

either intravenously or intraperitoneally). Therefore, in one way, we may be losing information 

on the contribution of skin immunity to the protective potential of a given vaccine candidate 

but on the other hand we may be “overloading the system” and induce responses quite differ-

ent than the normal ones (too many parasites = excessive inflammation or immuno-modulation) 
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[167]. Additionally, most of the times in experimental infections, and in this case not only in VL 

models, the vector is completely disregarded. Importantly, vector saliva was shown to exacer-

bate infection in different disease models [126, 168, 169]. Also, we have to consider the vector 

microbiome as a potential infection modulator, as it has been hypothesized [170]. Additionally, 

parasite-excreted-secreted virulence factors (e.g., promastigote secretory gel and extracellular 

vesicles/exosomes), or death parasites, all expected to be part of the natural infectious inoculum, 
were also shown to promote infection [171–173]. Probably, one or the combination of all of these 

components was the factor responsible for the data published by Peters et al. [174] that have 

shown the loss of efficacy of the ALM vaccine candidate when tested in the sand fly versus needle 

challenge contexts (“reproducing” the results obtained in the clinical trials of a similar vaccine 

candidate—ALM + BCG). All of the above discussed point to the use of pre-clinical models to 

test vaccines that should be as close to what is observed in nature (bearing in mind that even a 

laboratory-based sand fly transmission model will not be indistinguishable from the natural one, 
considering the expected differences in the microbiomes [175] and the heterogeneity in vectorial 

capacities [176]. To improve the chances of translatability (even if the correlates of protection 

were concrete, the use of an inadequate model would “invalidate” the results), the minimum 

requirements of vaccine development pre-clinical infection model should be the co-inoculation 

of parasites together with vector saliva (particularly if the vaccine candidate consists [partially] 

of vector-derived antigens) in the host dermis, naturally or artificially, by needle injection. No 
model is perfect and pre-clinical investigation shall ever replace clinical research. However, the 

system simplification, which is generally used in scientific research as a way to eliminate noise, 
can also be the reason of loss of translatability. Most of the models used in vaccine development 

studies have a defined and identical genetic background—they are inbred [177]. Interestingly, 

vaccine candidates show contradictory results concerning efficacy, depending on the inbred 
murine model used [178]. We need to have in mind that humans, the target population of the vac-

cines, are quite a heterogeneous population, with more than 7000 HLA alleles identified so far to 
which we have to add heterozygosity favored by natural selection [179]. To address this issue, we 

can start by the vaccine engineering phase that should be more and more rational (using reverse 

vaccinology approaches [180]) and predict the immunogenicity in different human populations, 
as a proof of principle that is expected to be validated first pre-clinically and then clinically.

In respect of these three subjects (correlates of protection, animal models, and translatability of 

pre-clinical studies to humans) that have major overlaps and cannot be separated, there are still 

too many shades of gray to account for. As a way to eliminate the fogginess, it will be impor-

tant to identify the divergent and common points of many anti-Leishmania vaccine pre-clinical 

and/or translational studies performed so far. The field would gain a lot from the elaboration 
and publication of bibliographic statistic studies such as meta-analysis or systematic reviews. 

Additionally, as suggested by Gannavaram and colleagues, the leishmaniasis research field 
needs to turn to more complex approaches, such as systems vaccinology, to be able to answer 

the questions that the community posed a while ago but still remain quasi-unanswered [181].

3.2. From “man to mice”: the insufficiency of prospective studies

Leishmaniasis animal models have been undoubtedly an extremely useful tool to understand 

better the host–parasite interactions that influence either resistance to infection or disease 
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development [157, 182]. This is true for both cutaneous and visceral diseases, although much 

more relevant in the latest. It would be both unethical and dangerous to biopsy diseased 

individuals spleen, liver, or bone marrow (target organs of the viscerotropic L. infantum and 

L. donovani) just to better understand the infectious process. However, an animal model, even 
when it combines both conceptual and facial validities, is still just a model; in other words, 

translation to human health and disease may not always be achievable. In other diseases, 

prospective studies in human populations have produced valuable information not only from 

epidemiological and pathological standpoints but also applicable to the vaccine development 

field [183, 184]. On the other way, till the present days, most of the prospective studies per-

formed in leishmaniasis had an epidemiological character (as invaluable in what respects the 

common goal of the community, which is disease control) [24, 44]. The development of such 

studies, focusing on systemic immune responses (particularly cellular based), would be of 

paramount importance to better understand both disease and resistance in leishmaniasis. For 
that, there are two target populations that deserve to be studied longitudinally: cured indi-

viduals and asymptomatics. While the following of the first population would help to answer 
the questions related to long-lasting immunity, the following of the second would help to 

define the potential host factors that determine susceptibility versus resistance. Yet, we have 

to consider as a possible limitation of studies with asymptomatics the less-than-clear and con-

sensual definition of these individuals [24]. Nevertheless, the information generated by such 

studies would be then possibly “translated back” to animal models, used to better define the 
correlates of protection to improve vaccine design.

4. Conclusion

Today we still do not have a vaccine approved for human leishmaniasis (regardless of the 

disease form). Many candidates were tested in the last century, and up to nowadays only vec-

tor-derived vaccines were not tested in the clinical context; for all the other parasite-derived 

candidates, regardless of the vaccine generation they are part of, we have proof of principle of 

at least immunogenicity and safety (in human healthy individuals) and therefore a precedent is 

open. Yet, the efficacy clinical trials performed so far (the last more than 50 years ago), exclud-

ing leishmanization, were overall disappointing. Such information is however as valuable as 

any positive result and should be used from a perspective of “learning from our mistakes.” 

There are still many questions to be answered in the anti-Leishmania vaccine development field, 
such as which parameters should be used as correlates of protection and how we should test 

our vaccine candidates in a way that warrants translation to the clinical context. Additionally, 

to define the vaccine effectiveness in the clinical context in a controlled way is essential. To 
address all of these issues, the vaccine development should be more and more rationale based, 

taking advantage of the modern and of the ancient. Observational studies of target human 
populations associated with systems biology may for instance help once and for all to disclose 

the health versus disease determinants and contribute to the final establishment of flawless 
correlates of protection. Additionally, immuno-informatic tools may help to design or refine 
(through a reverse vaccinology approach) the future vaccine(s) for human leishmaniasis.
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