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1. Introduction 

1.1 A definition of information and image fusion 
The principle of information fusion is widely used in image-based processes where the data 

are acquired from several sources, e.g. in the fields of remote sensing (Lennon et al., 2000), 

satellite (Wald, 2002) or biomedical imaging (Barra & Boire, 2001a). L. Wald defined the 

fusion operation as “a formal framework in which are expressed the means and tools for the 

alliance of data originating from different sources”. According to the same author, the aim 

of a fusion process is to improve the quality of the available information, where the notion 

of quality depends on the application context. I. Bloch et al. give a more specific definition of 

fusion: “data fusion consists in combining several pieces of information issued from 

different sources about the same phenomenon, in order to take a better decision on this 

phenomenon” (Bloch & Maître, 1997). In accordance with this statement, the fusion of image 

data is viewed as the joined use of heterogeneous images for decision aid. 

The first and most obvious difference between these definitions (and the numerous others 

proposed in the literature) lies in the aim of the fusion process. That is, the goal to reach is 

here either to improve the information provided by the different sources, each of them 

considered as being imperfect (Dubois & Prade, 1994), or to take a decision about the 

observed scene. The first objective may be viewed as a qualitative improvement (reducing 

information imperfections), while in the second case the aim is to reduce the doubt about 

the validity of the decision by increasing the amount of available information. This last case 

may thus also be viewed as a quantitative improvement of the information. 

Whatever the definition for the fusion process, data stemming from one source are generally 

used to compensate for a lack of information or as a medium for complementary features 

about the physical object or phenomenon studied. In this chapter, image fusion will refer to 

a computer-based process aiming at extracting knowledge from an image set, which was 

obviously not visible in the original images. This new information may consist in either 

image data (visual result) (Aguilar & New, 2002; Montagner et al., 2005a), numerical indexes 

(Wang et al., 1998; Montagner et al., 2005b), or even subsets of image regions (image 

segmentation in e.g. binary sets) (Bloch et al., 2003). O
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1.2 Relevance of information fusion in computer-based diagnosis-aid processes 
In the general field of medical imaging, with a special interest here for the study of the 
human brain, the collection of various data coming from anatomical and functional imagery 
is becoming very common for the study of a given pathology. The treatment of these data is 
performed by a physicist, who analyses and aggregates them according to his knowledge. 
The aim is to provide a better medical decision, to propose a prognosis, or to assist 
physicians in a surgical intervention. This approach may clearly be modeled and automated 
by means of an information fusion process, with the interest of providing accurate 
numerical information to the physicist. 
The sensitive nature of the brain makes imaging to be a major investigation tool (rather than 
a surgical approach), and one can find many medical examples and interests for such an 
automatic process. Morphological aspects of the human brain are mainly studied using 
magnetic resonance imaging (MRI). An MR image is a 3D data volume that gives 
information on structural composition of the organ (distribution of tissues, fine spatial 
resolution). It can be obtained using a wide range of parameters, so that the resulting images 
provide sufficient contrasts between the different structures to be located (tissue interfaces, 
tumors, etc.). The brain may also be studied from a functional point of view, using two 
major functional modalities: PET and SPECT (positron/single photon emission 
tomography). The images are obtained by injecting or inhaling a radioactive tracer that 
preferentially characterized a physiologic (e.g. glucose metabolism) or a biologic (e.g. blood 
flow) process, and then measuring the resulting particle emission. Both PET and SPECT 
provide 3D datasets reconstructed from these planar projections (Hudson & Larkin, 1994). 
Such images have a poor spatial resolution and are not informative on what they are not 
supposed to represent. Figure 1 shows examples of anatomical and functional images of a 
same brain. 
 

           
                    (a)                                      (b)                                 (c) 

Fig. 1. Three views of a same brain: anatomical (a. MR image) and functional (b. and c. 
SPECT images respectively showing the blood perfusion and dopamine receptors density) 

The main interest of a fusion between information stemming from both MR and such 
functional images is to supply anatomical information for the accurate detection of 
pathologic areas characterized in functional imaging by physiological abnormalities (Barra 
& Boire, 2000b, Barra & Boire, 2001a ). Clinical implications are various and numerous, from 
the detection of functional abnormalities in the study of dementia (Julin & al., 1997) to the 
precise location of activity sites in neurotransmission SPECT imaging, or the accurate 
quantification of monoamine transmitters density. Several examples of the fusion scheme 
we propose will be detailed at the end of this chapter. From a more clinical standpoint, these 
applications of multisource medical brain imaging can be explained as follows: 
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• brain tissue segmentation can be carried out as an accurate mean of quantifying the 
volume of brain matters in diseases such as Alzheimer’s dementia, epilepsy, or 
hydrocephalus, for purpose of diagnosis, treatment, and general understanding; 

• accurate segmentation of subcortical brain structures is a fundamental issue in several 
applications like the assessment of structural brain abnormalities, the study of abnormal 
entities (e.g. carcinoma), the mapping of functional activation onto human anatomy, the 
study of brain disorders (e.g. schizophrenia) or computer-assisted neurosurgery; 

• effects of Parkinson’s disease and Parkinsonian syndromes on striatal structures are 
commonly characterized by mean of functional imaging (Catafau, 2001). However, an 
early detection of these effects remains inaccessible to the single visual examination of 
SPECT (or even PET) images. A quantification process can provide objective numerical 
indexes in relation with the pathology severity, but it highly depends on the difficult 
location of regions of interest (ROIs). A fusion with  a morphological image of the same 
brain may represent a suitable solution to this critical segmentation problem; 

• new diagnosis elements may also be obtained by the synthesis of an image holding both 
functional and anatomical information. An advanced fusion strategy (not limited to a 
color channel combination) allows the physicist to select image features to be displayed, 
to avoid spatial covering or frequency mixing that would hinder a good perception of 
the diagnostic information (e.g. hypoperfused gray matter for patients suffering from 
probable Alzheimer’s disease (Colin & Boire, 1999)). 

1.3 Managing characteristics and structure of heterogeneous image information 
When considering the fusion process, input images intensities are often not directly 
compatible, owing to their numerical nature (numerical type, value range, etc.) and, above 
all, their physical meaning. Aggregating the information held by two corresponding pixels 
thus implies to model this information in a common formalism. Handling heterogeneous 
data also occurs when considering information stemming from different sensors, but of 
different types (e.g. signal and image sensor, expert knowledge and image sensor). Here 
again, a common theoretical formalism is needed to embed these data, and the choice of this 
framework is guided by the nature of available information. 
As stated above, medical information acquired from automated sensors, and especially 
medical images, holds an imperfect information in a sense commonly admitted in the field 
of information fusion: data are often subject to many uncertainties (e.g. which tissue 
class(es) associated with a given image intensity range?), possibly due to both inaccuracies 
(e.g. quantization of image intensities, single value standing for large spatial regions) 
and/or some inherent ambiguities (e.g. several possible reasons/classes). 
SPECT images are a relevant example of these uncertainties. In addition to the mandatory 
corrections of scattering and other quality-loss phenomena during the tomographic 
reconstruction (i.e. attenuation, depth-dependent resolution, etc.) (Soret et al., 2003), 
computer-based diagnosis processes have to face the problem of low spatial resolution 
intrinsically linked with SPECT images (PET images having a higher resolution, but being 
more expensive). Consequently, the 3D reconstruction process builds quite large-size voxels, 
and generates partial volume effects (PVE). Even after PVE correction (Boussion et al., 2006), 
the image information is therefore the object of some imprecision that makes it impossible to 
accurately define the boundaries of anatomical structures of interest. Furthermore, the 
functional information held by tomoscintigraphic images is intrinsically not well fitted to 
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such a task, because of its possible double meaning: if a low image intensity theoretically 
follows a low fixation rate of the tracer, it nevertheless remains difficult to determine from 
the image alone whether this level is associated with an out-of-structure site, or to an 
abnormal functional activity within structure boundaries (Fig. 2). 
The three most common approached used to represent and manage heterogeneous 
information in that context are the well known probability theory, the belief functions 
theory (Shafer, 1976), and the possibilistic logic based on the fuzzy sets formalism (Zadeh, 
1978 ; Dubois & Prade, 2004). 
 

                                
                                                           (a)                                      (b) 

Fig. 2. Co-registered MR (a. showing striatal structures) and neurotransmission SPECT 
images (b); Outlines of caudate nuclei are roughly defined on (b), whereas boundaries of 
putamens disappear with the lose of dopamine receptors 

Digital images stemming from acquisition processes cited in 1.2 are composed of discrete 
sets of numerical values (2D/3D arrays of image intensities), standing for given features of 
the physical phenomenon measured. A pixel (or voxel in 3D) from one of these images is 
viewed here as the region of the real space in which the associated value has been 
quantified. Both the numerical aspects and the spatial distribution of image intensities have 
therefore to be managed in the fusion process, each of these features being of equal 
relevance in the definition of image information. If the questions of information modeling 
and aggregation of numerical information using fuzzy sets or other uncertainty models have 
been widely studied, the problem of spatial matching of data sets to fuse is often considered 
of secondary importance. 
In the case where all images have the same size and spatial resolution, a fusion process can 
sometimes be directly performed by aggregating information stemming from image 
numerical values (Bloch, 1996) associated with a unique pixel (with the same index in image 
arrays). This is only possible if acquisitions have been made from in the same geometrical 
referential, and if the object of interest is represented with the same size in each image. Since 
this configuration rarely occurs (because of practical acquisition constraints such as sensor 
size or spatial and temporal resolutions), most numerical values in a given image don’t have 
direct spatial correspondence with intensities from other data sets (Fig. 3). 
In order to manage both geometrical relations (only affine relations are addressed here 
because of the nature of organs we are interested in) and the difference in spatial resolution 
between images, most methods process the image information in a multiscale context. Such 
processes are either based on frequency analysis of data, e.g. managing all image 
information on a common wavelet base (Pajares & De La Cruz, 2004), or on a “resolution 
hierarchy” obtained by iterative degradation of original images (Matsopoulos et al., 1994). 
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The problem is often reduced to the trivial fusion case presented above by a simple 
registration of image data in a common geometrical base, including an interpolation of 
numerical data. But the choice of an interpolation method relies on strong assumptions (e.g. 
linear variation of the measured phenomenon in the real space) that on the one hand 
simplify the fusion, but also introduce some unwanted imprecision in the data that may 
hinder an accurate quantification of brain activity in MRI/SPECT fusion. In this case, 
authors only commonly align the MR image on the SPECT image in order to preserve data 
to quantify (Soret et al., 2003 ; Rousset et al., 1998). But this method dramatically decreases 
the anatomical precision. 

 

Fig. 3. a. A slice from MR (left) and SPECT (right – original and registered) images of the 
same brain; b. Consequences of co-registration on voxels from original images through the 
example of an anatomical structure (putamens) 

1.4 A fusion framework for medical images 
This chapter describes an information fusion scheme devoted to 2D/3D medical images. 
Both the different stages of this process and the global architecture were designed to answer 
practical problems and give assistance for diagnosis using medical image processing and 
information fusion. This work is typically related to the fusion of different kind of medical 
images (in which numerical intensities express different physical phenomena), with 
different spatial orientation and resolution. In the following, the method is presented 
through examples of brain images processing and illustrated in the case of two input 
images, although it can be applied to both a more general fusion problem and to other 
organs. Details of the method are given under the assumption that input images are 3D 
datasets (collections of voxels), but the extension to the 2D images case is trivial. Most of the 
illustrations are given in 2D for visual convenience. 
The  fusion process we propose here is guided by the intrinsic nature of images, viewed as 
digital information embedded with a given geometrical structure. This multilevel fusion 
scheme is designed to manage the possibly different spatial distributions of image data 
apart from other heterogeneity sources, in order to preserve the accuracy of initial data 
through the whole process. The fuzzy formalism is used as a theoretical framework to 

(a) 

(b) 
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represent image data, and possibly other kind of information (e.g. expert knowledge). The 
management of image geometrical features is based on principles and algorithms stemming 
from the field of discrete geometry to preserve the accuracy of original data to fuse 
(avoiding early interpolation). 
The first part of this chapter is centered on the presentation of methodological aspects of this 
work. Section 2 introduces the general structure of the generic fusion scheme. Sections 3 and 
4 respectively focus on the theoretical background for the fuzzy modeling/fusion of image 
numerical data, and geometric principles and algorithms used for the management of the 
spatial structure of input images. 
Depending on both the nature of the information to fuse and the objective of the fusion, the 

tools defined by this fusion scheme may be used in several scenarios. For example, fusing 

two images with different spatial resolution will highly take benefit from the management 

of image geometrical features, while the fusion of an image with symbolic information (i.e. 

with no particular spatial structure) will only require a single-level fusion based on fuzzy 

modeling. Moreover, this fusion scheme is versatile enough to allow multistage fusion too: 

during the modeling stage, the information representation may also consists in a first 

complete fusion process. 

The second part of this chapter presents three practical examples of brain image fusion 

relying on the proposed scheme in the case of three different scenarios. Section 5.1 illustrates 

an example of a 1 level/1 stage fusion scenario aiming at the refinement of brain tissue 

segmentation from multispectral MR images. The second fusion level (management of 

image spatial features) is first illustrated in section 5.2 (1 stage only), with the synthesis of an 

unique image from multimodal information sources. Finally, section 5.3 illustrates the 2 

levels/2 stages fusion process, by means of a functional quantification of the brain activity 

from SPECT images, using an MR image to locate anatomical structures of interest. The 

segmentation of such anatomical structures is driven by expert information in a first 

MRI/symbolic information fusion. 

2. A theoretical framework for the fusion process 

2.1 General fusion scheme 
This fusion architecture is an improvement of an existing fusion process, that was designed 
making use of fuzzy logic (Barra & Boire, 2001a). Input images were supposed to be initially 
aligned, and this first registration stage was followed by three fusion steps: 
1. Information modeling step: datasets were first represented in a common theoretical 

formalism, in order to compensate for the heterogeneous nature of the information 
provided by the images. The choice of using fuzzy logic is explained in section 3.1, and 
details on the modeling itself are given in sections 3.2. 

2. Aggregation step: information models were injected into a fitted fusion operator, 
designed to either produce a new information expressed under the same formalism, or 
to emphasize information buried into original images (section 3.3). 

3. Decision step: the information produced by the previous step was taken back to the 
relevant numerical domain or to the decision context in which the fusion process is 
involved, possibly resulting in a final formalism conversion. Moreover, this step came 

possibly out to a crisp information model (α-cut, thresholding, etc.), once the amount of 
information aggregated during the fusion process was sufficient to take a decision. 
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As stated above, the major problem for e.g. activity quantification purpose using 
morphological and functional images is the initial registration stage that introduces some 
additional uncertainties about the information to measure. The generic fusion scheme 
proposed in this chapter is designed to be possibly used both for classical fusion tasks, i.e. to 
answer fusion problems that were previously coped thanks to the fusion process presented 
above, and to preserve as long as possible the accuracy of initial data for a use in more 
complex fusion problems based for example on multiresolution data. 
 

 

Fig. 4. A synoptic diagram of the fusion process designed in this chapter. This process is 

illustrated in the case of two input images { }2,1,
0 ∈iI
i

, each being represented by both a 

numerical model 
i

NM  and a geometrical model 
i

GM ; The final aggregation stage provides 

a fused information model f
IM  that leads to a decision in the sense given above (point 3) 

For this last purpose, all information sets cannot always be modeled using the same 
formalism, or can even not get modified at the modeling stage (e.g. binary masks of ROIs vs. 
original SPECT data). This methodological aspect is the first particularity of the fusion 
process we now propose: the modeling step is extended to the use of compatible theoretical 
frameworks, which have together a physical meaning, instead of strictly equivalent 
formalisms. The problem to be solved here is more particularly to give both information 
stemming from the modeling stage a spatial coherence. 
To do so while preserving the accuracy of initial information, we choose to delay the 
management of this spatial correspondence as far as possible in the fusion process. The 
solution we propose consists in managing the image spatial structure apart from image 
numerical intensities.  For each input image, these two sets of characteristics are modeled 
separately, leading to running (partially) two independent fusion processes in parallel. 
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Fusion operators are designed to aggregate information models in each domain. These 
operators are finally combined to provide the final aggregation function (Fig. 4), 
transforming information represented by intensities and structural information models 
together into the final fusion result. 

2.2 Definitions and relations with classical information fusion processes 
The modeling, aggregation and decision stages presented above are commonly accepted as 
a structure for fusion-based processes (Wald, 2002). The estimation of information models, 
considered as an additional task by some authors, is for us fully included in the modeling 
stage (as shown in 3.2). Each branch of the improved version of the process (Fig. 4) follows 
the same classical scheme, until aggregation operators are designed to achieve a global 
fusion between corresponding voxels from input images, represented in the corresponding 
formalism (i.e. voxel to voxel/geometrical matching of image structures at the voxel level, as 
described in section 4). 
Dasarathy proposed three levels of fusion (Dasarathy, 1997), corresponding to three 
abstraction levels for representing information: data fusion (values directly provided by the 
sensors), feature fusion (information derived from previous data) and decision fusion 
(information expressing hypothesis to be confirmed). The process depicted on Figure 4 is 
composed of two fusion levels, the first one being performed separately on the two image 
features sets. This first level clearly occurs at the feature level, since input images are first 
modeled in each domain, and no decision is moreover taken until both aggregation models 
are combined. This last step can be associated to an additional fusion level considered by 
some authors: model fusion, aiming at combining pieces of information that represent a 
method or process. 
A distinction is usually made between two kinds of information as an input of the fusion 
process: numerical information vs. symbolic information. The architecture of the fusion 
process described in this chapter allows the description of two other categories of 
information extracted from input images: structural information of digital images, managed 
through the right path of the schematic description of the process (Fig. 4), and numerical 
models of image semantic information (left path). This last category is obviously not 
independent from a classical description of input information, since it may refer to 
numerical representation (fuzzy logic) of both image numerical intensities and symbolic 
information transcribed in the same geometrical referential as image data. Because of the 
theoretical frames chosen to represent structural information and the previous group of 
information type, we may also refer to these domains as respectively the geometrical (or 
spatial) model and the numerical model. 

2.3 The different scenarios of fusion 
Depending on both the spatial referential in which are expressed the information to fuse and 
the aim of the fusion, applications based on the scheme described here may use only one or 
both processing paths illustrated on Figure 4. Considering the left branch alone (no 
geometrical information to manage), the model aggregation level is then avoided, and the 
combination operator at level 1 may thus achieve a single-level feature-based aggregation, 

directly providing f
IM  (Fig. 7.a and 11.b). 

The multistage aspect of the fusion architecture refers to the ability to achieve building the 
image numerical model as a complete iteration of the fusion process (Fig. 11). Image 
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intensities are injected as inputs for the sub-fusion process. Consequently, this fusion stage 
is carried out based on numerical models only, but may also involve external sources such 
as expert knowledge (symbolic information) (Fig. 11.b). The result of the sub-fusion stage is 
then used as a model of image numerical intensities in the first stage process. 

3. Numerical information modeling and related aggregation operators 

3.1 Possibilistic logic as a theoretical framework 
Data we will have to manage are quite imprecise and uncertain, due for example to partial 
volume effects or noise. We, thus chose to model these data with a theory managing 
uncertainty and imprecision, and we particularly focused on possibilistic logic. Possibilistic 
logic was introduced by Zadeh in (Zadeh, 1978) in order to simultaneously represent and 
manage imprecise and uncertain knowledge. In fuzzy set theory, a fuzzy measure is a 
representation of the uncertainty, giving for each subset Y of the universe of discourse X a 
coefficient in [0,1] assessing the degree of certitude for the realization of the event . In 
possibilistic logic, this fuzzy measure is modeled as a measure of possibility Π satisfying 
( ) ( ) 10, =XΠ=Π ∅ and ( )i

psu
i

i
i

YΠ=YΠ∪ . An event Y is fully possible if ( ) 1=YΠ , and 

impossible if ( ) 0=YΠ . Zadeh showed that Π  could completely be defined from the 

assessment of the certitude on each singleton of X. Such a definition relies on the definition 
of a distribution of possibility π , satisfying ( ) 1=xπpsu

Xx∈
. Fuzzy and crisp sets can then be 

represented by distributions of possibility, from the definition of their characteristic 
function. 
We choose the possibilistic logic as the common theoretical frame for the representation of 
the available data. More precisely, we model all the information using distributions of 
possibility, and equivalently we represent this information using fuzzy sets. 

3.2 Information modeling: from image data to semantic knowledge 
We consider in the following two types of information to be represented by numerical 
models: the information extracted from images, we call the numerical information, which 
mainly consists in tissue characterization (morphological images) or activity distribution 
(functional images), and the symbolic or semantic information modeling the linguistic data 
that may be provided by an expert. 
• Numerical information: numerical information is directly extracted from images, and is 

modeled as distributions of possibility either representing brain tissues, (cerebrospinal 
fluid (CSF), white matter (WM) and gray matter (GM) distributions in morphological 
images), or distribution of the functional activity. These distributions are computed 
using a possibilistic clustering algorithm (Krishnapuram & Keller, 1993) on particular 
feature vectors representing voxels (Barra & Boire, 2000b). If each voxel Nj ≤≤1 is 

described by a p-dimensional feature vector jx , the possibilistic clustering algorithm is 

an iterative algorithm that searches for C compact clusters gathering in { }jx=X  the 

jx 's by computing both a fuzzy partition matrix ( ) NjC;iu=U ji, ≤≤≤≤ 11, , 

( )jπ=u iij  being the membership degree of jx to class i, and unknown cluster centers 

( ) Cib=B i ≤≤,1 . The algorithm uses iterative optimizations to find the minimum of a 

constrained objective function 
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 ( ) ( ) ( )∑∑∑∑ − m
ijiij

m
ij uη+b,xdu=XU,B,J 1²  (1) 

subject to [ ] 00,1 >uN,<u,u ijmax
i

ijij ∑∈ and iη being the intra-class mean fuzzy 

distance as proposed in (Krishnapuram & Keller, 1996). Parameter m controls the 
degree of fuziness of U, and is chosen equal to 2 in the following. d is the Euclidean 

distance in R
p

. 

• Semantic information: symbolic information was given by clinicians and experts and 
consisted in topological and morphological information These fuzzy propositions might 
typically be modeled in the possibilistic logic frame. We already propose a theoretical 
framework to model approximate distance and direction information as fuzzy sets and 
we refer the reader to (Barra & Boire, 2001b) for a detailed description of the modeling 
process. 

3.3 Aggregating the information: definition of fusion operators 
Fuzzy sets and the possibilistic logic both offer a wide range of combination operators and a 

flexible way to choose them. (Bloch, 1996) proposed a classification of these operators with 

respect to their behavior (in terms of conjunctive, disjunctive or compromise), the possible 

control of this behavior, their properties and their decisiveness, which proved to be useful 

for several applications in image processing.  

Generally speaking, a fusion operator aggregates Ni distributions of possibility iπ into a 

fused distribution π , using a fusion operator F : ( )NππF=π ...1, . The definition of F, its 

mathematical properties and its behaviour with respect to the agreement and the conflict 

between the iπ are driven by the application. Some examples of such fusion operators are 

given in the application section. 

4. Spatial information modeling and fusion using discrete geometry 

The core of the proposed method is a geometrical model representing the spatial structure of 

input images at the voxel level, and allowing the fusion of the corresponding features 

considering geometrical relation between images. This model has been chosen considering 

the fusion process backward, from model aggregation to the modeling stage. The central 

point was to give the spatial information a final form that was compatible with the final 

information stemming from the fusion of numerical models, making it possible to merge 

fusion operators which produced them. 

4.1 The redistribution principle: getting coefficients from spatial relations 
In the case where a two-levels fusion is performed, the final aggregation stage we propose to 

carry out is called “redistribution” (i.e. redistribution of the numerical information held by 

image voxels). The information provided by the geometrical aggregation operator aims at 

representing spatial relations between images by simple sets of numerical values (spatial 

coefficients). These values, thus consistent with image numerical models, are thereafter used 

during the final aggregation stage, as weighting factors in the assignment of data from one 

image or information model to another one (usually from a low-resolution one to a  high-
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resolution one in a multiresolution problem), in order to compensate for the difference of 

spatial referential (orientation, resolution, etc.). 

If we again consider the two images case, let ρ be a spatial coefficient locally modeling 
spatial relations between both images. Since the elementary part of a 3D digital image is the 

voxel, ρ = ρ(v1,v2) models the basic spatial relation between a voxel v1 from image I1 and a 
voxel v2 from image I2. Note that in the following, v and V will stand for v1 and v2 for 
typographic convenience. This notation is moreover justified since images I1 and I2, in the 
case where they have to be geometrically registered, often have different spatial resolution 
that implies voxels with different sizes. Voxel v thus denotes the spatial element with the 
highest resolution/the smallest voxel size, and V the element with the largest size. 
Spatial coefficients have to express spatial relations between both images, in order to 
combine information really stemming from the same spatial location. Image numerical 
intensities are obtained by integrating the measured phenomenon in regions of the real 
space corresponding to image voxels. To study the spatial distribution of image intensities 
and spatial relations linking an image to another one, the model thus simply consists in 
representing the influence region of each numerical value during the measurement, i.e. 
modeling image voxels themselves. Modeling the whole image thus boils down to define a 
tilling of the image space by these voxel models. 
For the sake of simplicity, only the case of cubic voxels is addressed here (an hexagonal 
model is for instance a better representation of a spherical influence area, but leads to much 
more time-consuming algorithms). Discrete geometrical tools used in the following have 
been chosen under this assumption. The digital nature of image information has also guided 
the choice of the processing operator used to obtain spatial coefficients from the geometrical 
models. The question of studying spatial relations between two voxel lattices is indeed very 
close to the classical discrete coordinates changing problem (Reveilles, 2001). Discrete and 
computational geometry provide efficient tools to answer such a problem. 
The extension of the tilling created by image voxels to the whole space may be considered as 
a discrete coordinate system. Therefore, the problem of spatially matching a given image 
with another one is intrinsically linked with the question of accurately expressing, in a target 

basis B2, discontinuous information from a basis B1, B1 ≠ B2. A solution was proposed in 
(Reveilles, 2001) with a suitable formalism for 3D image fusion. When images have close or 
equal spatial resolutions, the ratio between edge length of v and V is not sufficient to 
disregard the committed error when rounding to integers the results of classical basis 
change formulas (Fig. 5). In this case, one shall determine the volume of the geometrical 
intersection between unit elements of the grids and use this value in an interpolation step. 
Hence, this last processing stage finally appears to be compulsory, but guided by all the 
available image spatial information. 

4.2 Geometrical modeling and fusion operators based on computational geometry 
Both the difference in spatial resolution and the spatial misalignment of corresponding 
structures in images have to be managed during the modeling. When considering two 
images I1 and I2, these spatial features make information from I1 and I2 to be expressed in 
two different geometrical spaces, which have to be linked through the geometrical model. 
The geometrical transform resulting from the usual registration step is not applied to the 
data (and in particular data are not interpolated), but we use the corresponding 
mathematical function to generate the geometrical model. Both images are modeled as 
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                                           (a)                                       (b) 

Fig. 5. Illustration of the discrete coordinates changing problem in 2D (a. different grid sizes, 
b. grids with quite similar pixels). Basis change formulas associate part of pixels in light gray 
to the right pixel in the other grid, while dark gray surfaces show possible errors 

tilings of the geometrical space by cubic voxels, each grid being positioned with respect to 

each other using this transform. One of the input images I1 being used as a geometrical 

reference, let us assume that its voxels are represented by elementary unit volumes of the 

canonical basis. The underlying idea is to build a set of vectors from the transform, which 

will generate the cubes that represents voxels in general position (voxels from I2). 

In the case of brain imaging, a rigid transform is often sufficient to match images of cerebral 

structures from both data sets, since the brain is considered as a non-deformable solid. The 

rigid transform is initially composed of rotations and translations (6 parameters in 3D). A 

difference in spatial resolution implies a third part in the transform, based on the 

application of a scaling factor. In this case, let I1 be the image with the highest spatial 

resolution, and suppose that the registration operation aims at aligning I2 on I1. 

Let T be the registration operator. The generating vectors of the base cube in general 

position are the images of canonical unit vectors by T, and this cube has its origin on a point 

p ≠ 0 because of translation components in T coming from the image registration 

(p = T⋅(0 0 0 1)t in homogeneous coordinates). Other cubes of the tiling are obtained by 

translation of this origin voxel. More details about the model building process may be found 

in (Montagner et al, 2005c). 

Geometrical relations between the digital grids are then identified by processing spatial 

coefficients ρ, i.e. volumes of the polyhedra resulting from the intersection between cubic 
voxels in general position and unit cubes (Fig. 6.d). 
The intersection volume between two given voxels V and v is computed using an efficient 

cube intersection algorithm (Reveilles, 2001). The processing cost is lower than the one 

obtained using a general convex polyhedra intersection algorithm, thanks to the use of cube 

symmetries and resulting analytical formulas. The algorithm runs through the 6 faces of 

both cubes, processing a polygonal boundary of the volume at each iteration. Let I be the 

polygon obtained as the intersection between the support plane P of the current cube square 

face F and the other cube (Fig. 6.a). Analytical formulas provide 3D coordinates of this 

intersection in a canonical space (Fig. 6.b), and the polygon is then brought back to its real 

position using the octahedral group of cube symmetries (Fig. 6.e). At this stage, I is possibly 

larger than the real polygonal face. It is therefore restricted to its common part with F (Fig. 

6.c) using an adapted version of the O’Rourke’s general polygon intersection algorithm 

(O’Rourke, 1998). 
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 (a)              (b)                   (c)                      (d)                      (e) 

Fig. 6. a-c. Steps of the algorithm used to process the intersection polyhedron (d) between 
two cubic models of voxels C1 and C2, using cube symmetries (e) 

4.3 Final model aggregation stage: combination of numerical and geometrical 
information 

If ρ is the result of the elementary fusion between basic elements v and V of the geometrical 
model, the final redistribution process can be expressed for general purpose as 

 ( ) ( ){ }VVvVv g,,, ρδ Δ=  (2) 

where Δ{⋅,⋅} is the redistribution function, assigning to voxel v a part δv,V of the information 
held by V, either in its direct form (initial image intensity in the case of the quantification 

process) or resulting from the image numerical modeling (g(⋅) is a general information 
function). The final aggregation step then brings together the fusion operators from both 
domains to compute the result of the global fusion process. The elementary part of this 

result ϕv,V, for example in the spatial base of image I1 (e.g. at the highest spatial resolution) is 
processed as 

 ( ){ } ( ) ( ) ( ){ }VVvvv VvVv g,,,fφ,fφ ,, ρδϕ ==  (3) 

where ϕ{⋅,⋅} is the aggregation operator, and f(⋅) is another information function. Functions 

f(⋅) and g(⋅) represent information provided by image numerical models, or even stand for 
information derived from a first fusion stage in which spatial relations have no influence 
(case of the multistage use of the general fusion scheme). 

Using the intersection volumes between voxels v and V as spatial coefficients ρ(v,V), 

equation (2) thus simply becomes δv,V = ρ(v,V)·g(V). Hence, the value assigned to voxel v is 
processed from the redistributed intensities of voxels Vi in a neighborhood of v as 

 ( ) ( )∑
∩

=
vV

iiv

i

VVv g,ρδ  (4) 

where Vi∩v refers to the set of voxels Vi having a non-null intersection with v. Formula (4) 

processes the value δv associated with v as a combination of the information g(Vi) associated 
with surrounding voxels Vi, where the contribution of Vi is proportional to its common 
volume with v. As a matter of fact, this computation mode is very close to a linear 
interpolation of g(Vi), in the case where v straddles several voxels Vi. But this process uses 
the maximum of information available in the image structure, thus minimizing the 
hypothesis required on the distribution of the physical phenomenon measured. When 
building image models, reference voxels v are moreover represented as unit volumes. 
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Spatial coefficients ρ(v,V) are thus numerical values ranging from 0 (no intersection between 

v and V) to 1 (full intersection, i.e. v ⊆ V), and ( )∑ ∩
=

vV
i

i

Vv 1,ρ  for a given voxel v. The 

redistribution process is thus normalized so that each piece of information δv naturally 
belongs to the same value range as the original numerical support of g(V). In the case where 

v is fully included in V (∃!Vi, Vi = V/Vi∩v ≠ ∅), the information δv = g(V) is kept unchanged 
since the whole unit volume stems from the intersection with an unique voxel V. 

4.4 Relations with data interpolation 
As stated above, information redistribution expressed through equation (4) can be 
considered, from a computational point of view, as an interpolation of the numerical 
intensities from image I2. But the interpolation is no longer uniform: the redistributed 

information is processed like in a nearest-neighbor interpolation when v ⊆ V , or is linearly 
interpolated with respect to intersection volumes when V intersects v boundaries. This 
adaptive way of processing minimizes the estimation error of the average activity in the set 

{vj/vj∩V ≠ ∅}, in comparison with a linear variation of 
jvδ with respect to the distance to 

voxels Vi. Moreover, representing the spatial relation between input images through 

coefficients ρ establishes an accurate link between pieces of numerical information they hold 
without modifying them. This straightforward matching makes it possible to adapt 
numerical intensities stemming from image I2 to the content of image I1, e.g. for 
measurement purpose. This second property will thus naturally find a direct application in 
the quantification of neuronal activity presented in section 5.3. 
Finally, the redistribution principle is also characterized by two major methodological 

points: the nature of weighting factors in interpolation formulas, built from objective image 

spatial structure and relations, and the ability to introduce spatial coefficients into advanced 

aggregation models at the final aggregation step. Indeed, the general operation expressed by 

equation (2) can obviously be delayed, and split up into new parts of equation (3) so that 

coefficient ρ, g(V) and f(v) are combined differently by the aggregation operator ϕ. 

5. Application to medical image analysis 

5.1 Multispectral MR images fusion 
The first application we propose is a 1 level/1 stage fusion scenario (Fig. 7.a), and concerns 

the fusion between several MR brain images stemming from different acquisition 

techniques. Images reflect the same type of knowledge (anatomical distribution of brain 

tissues), and provide complementary information with the use of different acquisition 

parameters. Numerous applications can benefit from the MR images fusion process, from 

abnormal tissue segmentation (tumors (Dou et al., 2006, Philipps et al., 1994), encephalitis, 

etc.) to the quantification of white matter, gray matter and cerebrospinal fluid volumes in 

normal (e.g. Wagner et al., 2006) or pathological people (e.g. Swayze et al., 2003). 
The aim here is thus to extract C tissue classes from a set of n MR images. Following the 
theoretical framework proposed in this chapter, each MR image Ii first provides C 

distributions of possibility i
Tπ , modeled as C fuzzy tissue maps. Given a tissue T, the 

corresponding C fuzzy maps have then to be fused using a fusion operator. Since the 
original MR images provide distinct but complementary information about the distribution 
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                     (a)                                                                     (b) 

Fig. 7. Instantiation of the fusion scheme in the MR/MR fusion (a) and image synthesis 
examples (b). The decision step (defined in 2.1) concerns the production of segmented 
images in the first case, and is not applied in the second case (direct display of fusion result) 

of T in the brain, the only areas of ambiguity may be due the transitions between T and 

neighboring tissues, or may be related to the pathological signature of T (e.g. a tumor 

imaged with a contrast agent may have a very significant hyper or hypo signal, not related 

to a pure anatomical acquisition). The fusion operator has thus not only to underline the 

redundancies between the i
Tπ 's, but also to shed light on possible areas of conflict between 

the distributions of possibility. We illustrate the construction of the fusion operator in the 

case n=2, and the extension to any n is trivial (Dubois & Prade, 1992). If both distributions of 

possibility 1
Tπ and 2

Tπ agree and are reliable, a renormalized T-norm is used to aggregate 

the information: 

 ( ) hπ,πmin=π 2
TTT /1  (5) 

where 
( ) ( )| |( )
N

iπiπ
=h

TT∑ −
−

21

1  measures the agreement between both distributions of 

possibility. On the contrary, if only one of the distributions is reliable, the operator has to be 
cautious and gradually reports the confidence on the union of the distributions, guided by 
(1-h), an estimation of the conflict: 

 ( )[ ]hπ,πmaxmin=π 2
TTT −,11  (6) 

In order to manage both situation, the final operator acts as 

 
( ) ( )[ ]⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
− hπ,πmaxmin,

h

π,πmin
max=π 2

TT

2
TT

T ,11
1

 (7) 
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This gives for each tissue T a fused distribution of possibility, and each voxel i is thus 

defined by C values ( ) ( )( )iπiπ C...1 . Since the aim of the fusion is to provide a volumetric 

quantification of brain tissues, the decision stage labels a voxel i as belonging to tissue ( )iT̂  

such as 

 ( ) ( ){ }iπArgMax=iT TT
ˆ  (8) 

As test data, we used simulated MR images generated with the online MRI Simulator at the 
McConnell Brain Imaging Centre (BrainWeb , http://www.bic.mni.mcgill.ca/brainweb/) in 
Montreal. The data sets are based on an anatomical model of a normal brain that results 
from registering and preprocessing of 27 scans from the same individual with subsequent 
semi-automated segmentation. In this data set the different tissue types are well-defined, 
both fuzzy and crisp tissue membership are allocated to each voxel. From this tissue labeled 
brain volume the MR simulation algorithm, using discrete-event simulation of the pulse 
sequences based on the Bloch equations, predicts signal intensities and image contrast in a 
way that is equivalent to data acquired with a real MR-scanner (T1-weighted, T2-weighted 
and Proton Density). Both sequence parameters and the effect of partial volume averaging, 
noise, and intensity non-uniformity (RF) are incorporated in the simulation results (Kwan et 
al., 1999).  In order to obtain the true, i.e. reference volumes, the voxels labeled as gray, 
white matter and CSF in the discrete brain phantom (noise=0%, RF=0%) were counted. 20 
additional simulated BrainWeb data sets that were used are each based on an anatomical 
model of an individual normal brain (for details see (Aubert-Broche et al., 2006)). 
Figure 8 presents the results obtained for the fusion of several couples of images of the 
model. The T1/T2 fusion provides a very accurate WM map, a CSF map very close to the one 
provided by the T2 image only, and a GM map suffering from several drawbacks (mainly a 
poor definition of some gray matter structures (basal ganglia)). The T1/PD and the T2/PD 
fusions exhibit a poorly informative CSF map, since both acquisitions suffer from a lack on 
information on the distribution of this tissue, especially in sub-arachnoïd spaces. The other 
fused distributions are very close to those provided by BrainWeb.  
Figure 9 shows the final segmentation map, obtained with the three types of fusion. Each 
segmented map was assessed with respect to the reference map provided by BrainWeb, both 
using an expert evaluation (a neurosurgeon visually assessed the accuracy of the segmented 
maps), and quantitative indexes: 

• the confusion matrix M, giving for each tissues T and T' the number MTT' of voxels 
being classified as T in the BrainWeb segmentation, and as T' in the computed 
segmented image; 

• the Tanimoto indexes (TI) (Duda et al.,2001) computed from M, and allowing an 
accurate comparison between two segmentation results; 

• for each tissue T, the relative errors (RE) in volumetric quantification between the 
computed map and the reference one. 

Table 1 presents some of these results for the three types of fusion. Globally, best results 
were obtained with the T1/T2 fusion process, those images being indeed very discriminant 
for brain tissue segmentation (Kiviniity, 1984), but need a preliminary registration step. 
Finally, Table 2 presents a comparison between the fusion method and three classical 
segmentation methods, either using a clustering algorithm on one image only, or a 
bidimensional histogram analysis in the (T1,T2) space. The best quantitative indexes were 
obtained using the fusion process, for all tissues. 
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 Réf T1/T2 T1/PD T2/PD 

 Vol (%) TI Vol (%) RET (%) TI Vol(%) RET (%) TI Vol(%) RET (%) 

CSF 5,96 0.71 6.94 14.1 0.63 6.75 13.25 0.66 7,43 24.6 

WM 23,5 0.82 22.72 3.32 0.85 23.13 1.57 0.75 24.14 2.72 

GM 20,07 0.76 20.67 2.98 0.80 20.45 1.89 0.71 18.76 6.52 

Table 1. Quantitative evaluation of the MR/MR fusion process 

 

CSF 

   

WM 

   

GM 

   

 BrainWeb T1/T2 T1/PD T2/PD 

Fig. 8. Fused tissue maps 

   
BrainWeb T1/T2 T1/PD T2/PD 

Fig. 9. Segmented images obtained from several fusion processes 
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 T1 only T2 only 2D histo. analysis T1/T2 Fusion 

 TI RET (%) TI RET (%) TI RET (%) TI RET (%) 

CSF 0.63 14.2 0.79 13.6 0.67 15.98 0.77 14.1 
GM 0.82 3.87 0.58 7.81 0.78 5.12 0.82 3.32 
WM 0.76 3.14 0.65 5.45 0.76 3.05 0.76 2.98 

Table 2. Comparison of segmentation results between the fusion method and classical 
algorithms 

5.2 Image synthesis from multimodal information 
This application of the general fusion scheme aims at accurately locating the functional 

information extracted from a SPECT image of the brain with respect to underlying 

anatomical structures. The difficulty of representing both complete pieces of information on 

the same image was pointed out in early studies on this subject (Hill, 1993), stating that the 

efficiency of displaying superimposed color layers decreases when the number of image 

features to show increases. Conversely, an advanced image fusion strategy, such as the one 

proposed in this chapter, can avoid spatial covering or frequency mixing by selecting 

features from each image that are relevant for diagnosis. 

The image fusion is performed between an MR image, and either a brain perfusion or a 
neurotransmission SPECT image. The first functional imaging modality provides diagnostic 
information for brain pathologies where a visible reduction of blood supply is 
representative for the dead of neuronal cells in the related region of the brain, such as 
Alzheimer type dementia. The second one gives information about a specific neuronal 
activity, possibly responsible for pathologies such as Parkinson’s disease and Parkinsonian 
syndromes (low level in target anatomical structures, mostly putamens and heads of 
caudate nuclei). In both cases, the difference in spatial resolution between MR and SPECT 
images requires a geometrical modeling of image spatial features, i.e. using the 2-level 
fusion capability of the fusion scheme (Fig. 7.b). 

Referring to formula (2), the information function g(⋅) is a direct reference to initial values 

associated with voxels V from image I2 = If holding the functional information. Using the 

redistribution principle, the final model aggregation assigns to voxel v the redistributed 

intensity δv processed from formula (4) with g(V) = If(V), the original numerical value 

associated with V in the SPECT image. Formula (4) thus finally becomes 

 ( ) ( )∑
∩

=
vV

ifiv

i

VIVv,ρδ  (9) 

Let πC(v) be the fuzzy membership degree of voxel v to the tissue class C (white matter, gray 

matter, and cerebrospinal fluid) from the numerical model of the MR image (computed as 

explained in section 3.2). An activity μC is associated with each anatomical class, either from 

an arbitrary gray level adapted to the human visual perception to emphasize important 

information, or from a mean functional activity for class C. In each case, μC may be 

considered as the second part of the numerical model representing image I2. Anyway, the 

anatomical information is preserved in the global shape of brain tissue classes, and local 

variations of the functional activity within each class are injected, in addition to μC in the 

proposed model, through the adapted form of equation (3): 
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( ) ( )∑∑
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=
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Vvv

v

,ρπ

δμπ
ϕ  (10) 

where δv is the redistributed functional activity mixing the geometrical information with 
original intensities from I2 = If (first part of the numerical model for this image). The other 

part of the numerator stems from the aggregation of numerical models only, μC (second part 
of numerical model for I2) being independent of any spatial context. Formula (10) is thus a 
good example of the introduction of spatial coefficients into advanced aggregation models 
detailed in section 4.4. 
The image synthesis process has been applied to both brain perfusion SPECT ([99mTc]-ECD) 
and neurotransmission SPECT ([123I]-FP-CIT) images, in the case of a patient suffering from 
a multiple system atrophy (MSA, Parkinsonism plus syndrome – Fig. 1). A single T1-
weighted MR data set is associated with perfusion and neurotransmission SPECT images, 
which were simultaneously acquired (El Fakhri et al., 2001). Both SPECT images and the 
pre-processed MR image are isotropic, with voxel sizes of 2.33 mm and 1.5 mm respectively. 
The quality of synthetic images (Fig. 10) was assessed by an expert, focusing on the 
following diagnosis elements: activity peaks and lacks, shape and position of anatomical 
structures. He answered the following questions for both the brain perfusion and the 
neurotransmission images: 
1. Is the ability to locate functional activity in relation to anatomical structures really 

improved? 
2. Are diagnosis elements clearly visible on the synthetic image? 
For purpose of assisting the diagnosis task, the perfusion information (Fig. 10.a to d) has to be 
emphasized in the region of cerebral cortex (gray matter). The concentration level of the tracer 
within CSF structures is null. Variations are visible in the WM and mostly in the GM (activity 
ratio estimated to 1/4), corresponding to the above requirement. High activity levels in the 
cortical region are clearly visible, this effect being reinforced by the already high mean activity 
of this structure. Nevertheless, hypoperfusion zones are mostly visible in regions with low 
base activity, i.e. thanks to remaining diffused activity in the surrounding white matter. 
In the case of the neurotransmission image (Fig. 10.e to h), the high activity bound in the 
striatum implies a decrease of visual contrast in the surrounding region. However, deducing 
the shape and position of anatomical structures remains possible thanks to the outlines of 
close tissue classes. Indeed the functional activity presents only low variations outside the 
striatum (CSF in the ventricular system and GM in the cortex). Likewise, edges of the 
putamens and caudate nuclei can also be deduced from areas with a low activity levels 
within the striatum itself (see Fig. 10.h). The synthesis process thus emphasizes the 
information brought by lacks of activity. 

5.3 Quantification of functional activity using a multistage information fusion 
The solution we propose for measuring brain activities in a SPECT image uses both the 
multilevel (management of multiresolution discrete data) and the multistage aspects of the 
fusion architecture (Fig. 11.a). This last point refers to modeling image activities as binary 
maps of subcortical brain structures used as measurement ROIs. This segmentation task is 
achieved as a second iteration of the fusion process (1 level/1 stage) with MR images and 
symbolic information as inputs (Fig. 11.b). We refer the reader to (Barra & Boire, 2001b) for a 
detailed description of this modeling stage. 
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   (a)                            (b)                       (c)                                 (d) 

       
   (e)                             (f)                      (g)                                 (h) 

Fig. 10. Image synthesis from MR/perfusion fusion (a-d) and MR/neurotransmission fusion 
(e-h) 

     
                        (a)                                                                         (b) 

Fig. 11. Fusion scheme for the example of a brain activity quantification process (a); Original 

intensities from 0

2
I  (SPECT) are combined, through spatial coefficients, with ROIs Boolean 

models stemming from the second fusion stage (b); The decision in (a) may consist in 

classifying the whole SPECT exam according to the quantification index f
IM  

As in section 5.2 (and referring to equation (2)), the numerical model of a voxel V from the 
SPECT image is g(V) = If(V), the original numerical value associated with V. Let Sa be this 
binary mask representing the brain structure of interest (‘a’ standing here for “anatomical”). 
The contribution of voxel v to the fusion result may thus be expressed as 
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since formula (3) is also multiplicative with f(v) = Sa(v) (crisp membership) when using 
intersection volumes as spatial coefficients, and referring to equation (9). Consequently, the 
functional activity in out-of-structure anatomical voxels, in which the numerical expression 
of this activity is mostly due to the multiresolution partial volume effect (PVE), is naturally 
cancelled. The final result of the fusion process can be expressed as 

 
( )

ns

nst

S

SS

ϕ

ϕϕ
ϕ

−
=  (12) 

and is seen as an estimation of the radiotracer binding potential (Soret et al., 2003). ϕSt is the 
global activity of the target anatomical structure (we use mean values), processed from the 
binary mask St through equations (11). In the same way, the quantity ϕSns is processed for a 
non-specific region of the brain (i.e. not influenced by the studied pathology). 
The following tests have been carried out for a methodological assessment of the proposed 
quantification process. Since the method has been designed to overcome partial volume 
effects due to multiresolution, the assessment protocol aims at evaluating the accuracy of 
activity measurement from highly PVE-prone ROIs, in the context of several ratios of spatial 
resolutions between input images (this kind of PVE is mostly due to voxels from the 
functional image located at the external bound of the measurement region). The 
quantification has been performed on series of ROIs with a reference shape but different 
volumes (slice selection). Performances have been compared with the method considered as 
reference: registration of the MR image on the SPECT image. 
The test dataset is made of a numerical phantom dedicated to the study of deep brain 
structures and dopamine neurotransmission phenomena involved in Parkinson’s disease and 
Parkinsonian syndromes. It results from a Monte-Carlo simulation of the striatum-based 
neurotransmission (El Fakhri et al., 2001) using theoretical binding values in associated 
structures from a brain morphological phantom (Zubal et al., 1996). This phantom is also used 
as an anatomical reference for the data fusion process, and specially to build the image 
geometrical model. The functional image resulting from the simulation is initially aligned with 
the input data. A linear transform is applied to anatomical data to preserve the original 
functional information (including image rescaling by various factors, so that the ratio between 
voxel sizes is successively 1/2, 1/4 and 1/8). The initial measurement ROI is limited to right 
and left putamens. In simulated data, the tracer fixation ratio between putamens and the non 
specific (NS) reference region (here the occipital cortex) corresponds to a healthy case. 
Table 3 shows the results obtained when quantifying the phantom activity within regions 
described above. Results are assessed in termes of relative error |ϕ-ϕref|/ϕref, where ϕ is the 
estimated binding potential (BP) processed through equation (12) with ϕSt relative to the 
truncated putamens and ϕSns standing for the non-specific occipital cortex region. ϕref refers 
to the same quantity, processed from the a priori model activities. Error values are averaged 
from quantities measured after applying linear transforms with 5 sets of parameters 
(rotation angles and translation vectors). 
The quantification error is always lower for the redistribution method. The maximum 
difference is obtained for a resolution ratio of 1/4, due to the value quantified within the non 
specific region, that has a high influence on the BP estimated (see equation (12)). Conversely, 
the irregular and thin shape of this structure allow results to be quite constant (between ratios 
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1/2 and 1/4) using the MR registration method. The higher the resolution ratio, the more 
constant the size of the interpolated ROI, because of the effects of thresholding mask 
coefficients. The minimum error always corresponds to the largest measurement ROI (close to 
initial volume), and the maximum value to the thinnest one, except in the case of 
redistributions with a ratio of 1/8, due to the influence of the NS region again. 
 

  Resol. ratio 1/2 Resol. ratio 1/4 Resol. ratio 1/8 

  Error (%) Volume Error (%) Volume Error (%) Volume 

Min. 20.4 9909 24.8 9625 44.6 8859 
MR image regist. 

Max. 34.0 1341 24.9 9710 44.6 8859 

Min. 11.8 9923 2.9 9918 24.16 1961 
Redistribution 

Max. 24.7 1980 8.6 1691 31.2 9920 

Table 3. Minimum and maximum relative quantification errors (depending on the actual 
volume of the measurement ROI, also indicated in cm3 for comparison with the volume of 
the original putamen structure = 104 cm3, that provided the quantitative reference value) 

6. Conclusion 

The collection of anatomical and functional images, as well as the expert knowledge and 
habits play nowadays in clinical routine an important role for the study of a given 
pathology. The clinician merges and aggregates all this complementary, redundant and 
sometimes conflicting information to provide a better diagnosis. We proposed in this 
chapter a theoretical framework mimicking this aggregation process, based on the use of 
fuzzy logic modeling, fusion operators, and we enrich this classical fusion process with the 
introduction of spatial information modeling. This allows the information to be preserved 
until the final fusion step, and gives the opportunity to introduce the original image 
information into complex fusion operators. We provide the clinician with several outputs, 
from segmented images to quantitative indexes or synthesis images, and we think our 
process to be generic enough to allow the introduction of other information sources. 
The multilevel information fusion is applied to three clinical applications, involving 
anatomical and functional images, and also geometrical and structural information. Results 
prove the efficiency of the approach, and shed light on several potential new applications 
not only in brain imaging, but also in the multimodal study of other organ, or even to other 
branches where several images, with several geometrical properties, are used, registered 
and merged. 
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