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1. Introduction   

Modern control systems are characterized by increased complexity, flexibility, intelligence 
and enhanced ability to handle uncertainty. In order to incorporate the above features, the 
control systems need to possess significant capabilities such as perception, knowledge 
acquisition, learning, adaptability, and reasoning. The ability to percieve its environment 
forms a very important characteristic of such control systems. The revolutionary 
advancement in the field of sensor technology that has led to the development of superior 
sensing capabilities, and progress in computing and information processing, has made it 
possible to develop systems with enhanced perceptive abilities. Modern control systems 
generally employ multiple sensors to provide diverse, complementary as well as redundant 
information. These multiple sensor systems necessitate the development of sensor fusion 
algorithms that can combine information in a coherent and synergistic manner to yield a 
robust, accurate, and consistent description of quantities of interest in the environment.  
There are several issues that arise when fusing information (Brooks & Iyengar, 1998, Hall & 

Llinas 2001) from multiple sources, some of which include data association, sensor 

uncertainty, and data management. The most fundamental of these issues arise from the 

inherent uncertainty in sensor measurement. The uncertainties in sensor measurement are 

caused not only by the device impreciseness and noise, but also manifest themselves from 

the ambiguities and inconsistencies present within the environment, and from an inability to 

distinguish between them. The strategies used to fuse data from multiple sensors should be 

capable of handling these uncertainties, and combining different types of information to 

obtain a consistent description of the environment. Some of the popular techniques for 

sensor fusion that are explored extensively in literature include Dempster-Shafer theory for 

evidential reasoning (Dempster, 1968, Shafer, 1976), fuzzy logic (Yager & Zadeh, 1991, 

Mahajan et. al., 2001 ), neural network (Garg & Kumar, 2007, Chin, 1994), Bayesian approach 

(Press, 1989, Berger, 1985), and statistical techniques (McKendall & Mintz, 1992) such as 

Kalman filter (Maybeck, 1979, Kalman, 1960, Sasiadek, 2002). All of these methods differ in 

the manner they attempt to model the uncertainties inherent in the sensor measurements.  

Another possible uncertainty that arises in the sensor measurement process occurs when the 
measurements become corrupted and appear spurious in nature. Such corrupted 
measurements are difficult to model because they are not directly attributable to the 
inherent noise or other sources of uncertainty mentioned above. The cause of the corruption O
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may be due to events such as permanent sensor failures, short duration spike faults, or 
nascent (slowly developing) failures. Previous attempts at developing experimental models 
usually preclude the use of spurious measurements, and represent uncertainties attributable 
only to sensor noise and inherent limitations. Fusion techniques based on these incomplete 
models provide inaccurate estimation that can eventually result in potentially damaging 
action by the control system. Hence, a sensor validation scheme is necessary to identify 
spurious measurements so that they can be eliminated before the fusion process. There are 
several techniques reported in the literature for sensor validation and identification of 
inconsistent data. Many of them are limiting because they are based on specific failure 
models; these techniques can work well for events that occur due to known failure modes, 
however, they do not capture all possible failure events and often perform poorly when 
unmodeled failures occur. As a means to detect inconsistency, there should be either 
redundancy in the data, or some availability of a priori information. For example, in the case 
where a priori information is available, researchers have used the Nadaraya-Watson 
Estimator (Wellington et al., 2002) and a priori observations to validate sensor 
measurements. A few researchers have used a model based Kalman filter approach (Del 
Gobbo et al., 2001), while others have used covariance (Nicholson, 2004, Benaskeur, 2002), 
probability (Soika, 1997, Ibarguengoytia et al., 2001), fuzzy logic (Frolick et al., 2001), and 
neural network (Rizzo & Xibilia, 2002) based approaches. Some of these methods are explicit 
model-based, whereas others require tuning and training. In the general case, where a priori 
information is often not available, these approaches are typically deficient and can often 
lead to undesirable results. 
This chapter presents a unified sensor fusion strategy based on a modified Bayesian 
approach that can take uncertainty of sensor data into account and automatically identify 
the inconsistency in sensor measurements so that the spurious measurements can be 
eliminated from the data fusion process. First, a novel strategy to accurately and adaptively 
represent uncertainty in sensor data in the form of probabilistic sensor model is developed. 
The strategy establishes the dependence of sensor’s uncertainties on some of the 
environmental parameters or parameters of any feature extraction algorithm used in 
estimation based on sensor’s outputs. In order to establish this dependence, the approach 
makes use of a neural network that is trained via an innovative technique that obtains 
training signal from a maximum likelihood estimator. The proposed method, then, adds a 
term to the commonly used Bayesian formulation. This term is an estimate of the probability 
that the data is not spurious, based upon the measured data and the unknown value of the 
true state. In fusing two measurements, it has the effect of increasing the variance of the 
posterior distribution when measurement from one of the sensors is inconsistent with 
respect to the other. The increase or decrease in variance can be estimated using the 
information theoretic measure “entropy”. The proposed strategy was verified with the help 
of extensive computations performed on simulated data from three sensors. A comparison 
was made between two different fusion schemes: centralized fusion in which data obtained 
from all sensors were fused simultaneously, and a decentralized or sequential Bayesian 
scheme that proved useful for identifying and eliminating spurious data from the fusion 
process. The simulations verified that the proposed strategy was able to identify spurious 
sensor measurements and eliminate them from the fusion process, thus leading to a better 
overall estimate of the true state. The proposed strategy was also validated with the help of 
experiments performed using stereo vision cameras, one infra-red proximity sensor, and one 
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laser proximity sensor. The information from these three sensing sources was fused to 
obtain an occupancy profile of the robotic workspace.  
This chapter is organized as follows: First, it introduces Bayesian technique for sensor fusion 
in Section 2. Next, in Section 3, it presents the neural network based sensor modeling 
technique. The proposed strategy for inconsistency detection and data fusion in Bayesian 
framework is presented in Section 4. Simulation studies to verify the proposed method for 
inconsistency detection is presented in Section 5. Section 6 presents the experimental 
validation carried out in a robotic workcell using three independent sensory sources. 
Finally, conclusions are presented in Section 7. 

2. Bayesian technique for sensor fusion 

Bayesian inference (Press, 1989, Berger, 1985) is a data fusion algorithm based on Bayes’ 
theorem (Bayes, 1763)  that calculates posterior probability distribution of n-dimensional 
state vector ‘X’, after the observation or measurement denoted by ‘Z’ has been made. The 
probabilistic information contained in Z about X is described by a probability density 
function (p.d.f.) p(Z | X), known as likelihood function, or the sensor model, which is a 
sensor dependent objective function based on observation. The likelihood function relates 
the extent to which the a posteriori probability is subject to change, and is evaluated either 
via offline experiments or by utilizing the available information about the system. If the 
information about the state X is made available independently before any observation is 
made, then the likelihood function can be improved to provide more accurate results. Such a 
priori information about X can be encapsulated as the prior probability and is regarded as 
subjective because it is not based on observed data. Bayes’ theorem provides the posterior 
conditional distribution of X = x, given Z = z, as 
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)()|(

)()|(

)()|(
)|(

zZP

xXPxXzZp

dxxXPxXzZp

xXPxXzZp
zZxXp

=
===

=
===

===
===
∫

  (1) 

Since the denominator depends only on the measurement (the integration is carried out over 
all possible values of state), an intuitive estimation can be made by maximizing this 
posterior distribution, i.e., by maximizing the numerator of Equation (1). This is called 
Maximum a posteriori (or MAP) estimate, and is given by: 

 ( ) ( ) )(|maxarg|maxarg
^

xXPxXzZpzZxXpx
xx

MAP =======   (2) 

The data from multiple sensors can be fused simultaneously (centralized fusion scheme), or 
sequentially (decentralized fusion). In this chapter, we will focus on decentralized fusion 
scheme in which, at any given instant, only two measurements or beliefs are fused. The 
recent interest in sensor networks, where distributed nodes possess capability to process 
information, has necessitated the development of algorithms to fuse information in a 
decentralized manner. The decentralized approach can be easily implemented in a 
distributed Bayesian framework where the posterior distribution obtained from old 
measurements becomes the prior distribution. Hence, the addition of new sensor 

measurement zn to the belief obtained from n-1 sensors ( 1... 1
1 2 1
, ,...n

n
Z z z z− −= ) can be achieved 

in an incremental manner via Equation (3): 
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It may be noted that Equation (3) is valid only when measurements from different sensors 
are conditionally independent.  
The Bayesian approach offers several advantages, including: appropriate representation of 
uncertainties using probability distributions; a well-defined mechanism to combine prior 
information with current sensor information; the existence of several machine learning 
algorithms to carry out the calculation of estimates and predictions; and thorough statistical 
characterization of the quantities of interest. Since the estimation takes into account 
available data from all previous as well as current experiments, the approach leads to a 
theoretically optimal solution. However, for most practical applications, a lack of priors or 
use of non-informative priors presents difficulties for Bayesian-based sensor fusion 
approaches. Assumptions regarding informative priors creates the possibility of 
unreasonable fusion between priors and likelihood functions. Moreover, most of the fusion 
strategies based on Bayesian approaches reported in the literature handle inconsistency in 
data rather poorly. In practical real-world scenarios, where data generated by sensors might 
be incomplete, incoherent or inconsistent, this approach might lead to erroneous results. 
Consequently, the inconsistency in data needs to be dealt with accordingly when Bayesian 
approaches are used. 

3. Sensor modeling 

Sensor modeling (Manyika & Durrant-Whyte, 1994, Kumar et al., 2005b, Kumar et al., 2006a) 
deals with developing an understanding of the nature of measurements provided by the 
sensor, the limitations of the sensor, and probabilistic understanding of the sensor 
performance in terms of the uncertainties. The information supplied by a sensor is usually 
modeled as a mean about a true value, with uncertainty due to noise represented by a 
variance that depends on both the measured quantities themselves and the operational 
parameters of the sensor.  A probabilistic sensor model is particularly useful because it 
facilitates the determination of the statistical characteristics of the data obtained. This 
probabilistic model is usually expressed in the form of probability density function (p.d.f.) 

( )|p z x  that captures the probability distribution of measurement by the sensor (z) when the 

state of the measured quantity (x) is known. This distribution is extremely sensor specific 
and can be experimentally determined (Durrant-Whyte, 1988).  

3.1 Estimation of sensor model parameters 
Maximum Likelihood (ML) method is a procedure for finding the value of one or more 
parameters for a given statistical data which maximizes the known likelihood distribution. If 
Gaussian distribution is considered, the distribution representing the sensor model is given by: 

 ( )
( )2

221
| ,
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i i

i

z x

D i i
p z x e

σσ
σ π

⎧ ⎫− −⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭=     i=1,2,….n  (4) 

where the event Di represents the data (zi, xi) (xi is the true value of state, and zi is the 
corresponding sensor measurement), and , the standard deviation of the distribution, is the 
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parameter to be estimated. The likelihood function is the joint probability of the data given 
by: 
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and the parameter  can be estimated via ML method by maximizing L() given by Equation 
(5). This results in a constant value of  representing a rigid sensor model. 
Most of the published research on sensor fusion is based on the development of rigid sensor 
models. In practice, the performance of sensors or any source of information depends upon 
several factors. These include, for example, the environmental conditions under which the 
measurements were made, and the performance of estimation/calibration algorithm. 
Establishing dependence of a sensor’s performance on various parameters of environment 
and other signal/feature extraction algorithms is not a trivial task. Statistical techniques 
such as correlation analysis can be used to determine the manner in which these factors 
affect the sensor’s output. Selecting the factors that can possibly affect the sensor output is 
difficult, and is mostly based on heuristics. Many feature extraction algorithms include 
goodness-of-fit function that can be investigated to observe the correlation with 
uncertainties in sensor output.  
After the factor which affects the sensor’s performance has been selected, the next challenge 
is to establish a functional correspondence between the factor and the uncertainty in the 
sensor’s output. Statistical system identification, regression analysis, or any mapping 
algorithm can be investigated to establish the correspondence. It might be difficult, if not 
impossible, to obtain the mathematical relation, and in the absence of such mathematical 
relation, model-based statistical approach would be difficult to use. In this chapter, the 
universal approximation capabilities of neural networks have been used to establish this 
correspondence. 

3.2 Proposed neural network based sensor modeling 
A neural network (NN) (Rumelhart & McClelland, 1988, Haykin, 1998) is an information-

processing paradigm inspired by the way in which the heavily interconnected, parallel 

structure of the human brain processes information. They are often effective for solving 

complex problems that do not have an analytical solution or for which an analytical solution 

is too difficult to be found. Currently, they are being applied in many real-world problems 

(Garg & Kumar, 2007). Three-layered NNs (i.e., one input layer, one output layer and one 

hidden layer), with hidden layer having sufficient nodes and a sigmoid transfer function, 

and linear transfer function in the input and output layers (Hornik, 1989) are considered to 

be universal approximators. In this chapter, a three-layered NN has been used to obtain a 

correspondence between the parameters of the distribution representing the sensor model 

and the factors which affect sensor’s performance. The input to the neural network is the 

vector Q which represents vector of environmental or algorithmic factors that affect the 

sensor’s performance. Output of the network is the vector  of parameters of the distribution 

representing the sensor model. Hence, if the sensor model is represented by a Gaussian 

distribution, the parameter  is given by: 
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 ( )BWQNNET ,,=σ   (6) 

W is the weight matrix, and B is the bias matrix. Back-propagation (BP), based on gradient 
descent technique, is a fairly popular method for training neural networks that establishes a 
particular set of weights obtained by adjusting them based on the errors between the actual 
and target output signals. For the neural network considered for the system in this research, 
however, the target data for  is unknown, and cannot be obtained directly from 
experiments. Here, the neural network is trained in a novel manner from the signals 
obtained from Maximum Likelihood parameter estimation approach. Likelihood function that 
needs to be maximized is given by Equation (5), in which parameter  is represented by a 
neural network function given by Equation (6). Hence, the likelihood function that needs to 
be maximized by choosing appropriate weights and biases of the neural network is given by:  
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The weights and biases can be calculated using the gradient descent method or via 
evolutionary strategies (Goldberg, 1989). The technique described above has been used to 
obtain models of infra-red proximity sensor and vision sensors in stereo configuration. 

4. Fusion of inconsistent multi-sensor data 

Sensors often provide spurious data (Kumar et al., 2006b, 2007) which can be due to sensor 
failure or due to some inherent limitation of the sensor and/or some ambiguity in the 
environment. The Bayesian approach described in Section 2 is inadequate in handling this 
type of spurious data. The approach does not have a mechanism to identify when data from 
sensors is incorrect. The following paragraphs describe the use of a Bayesian-based 
approach for fusion of data from multiple sensors that takes into account measurement 
inconsistency. 
While building a stochastic sensor model, generally spurious data are identified and 
eliminated. Hence these experimentally developed sensor models represent uncertainties 
arising only from sensor noise. If the event s = 0 represents that the data obtained from a 
sensor is not spurious, then the sensor model developed in this manner actually represents 

the distribution ( )0,| === sxXzZp . From Bayes’ theorem, the probability that the data 

zi measured by sensor ‘i’ is not spurious conditioned upon the actual state x, is given by: 

 ( )[ ] ( )[ ] ( )[ ]
( )[ ] ( )[ ]∑ ==

====
====

s

iii

ii

ii
sxXzZpsP

sxXzZpsP
zZxXsp

,|

0,|0
,|0   (8) 

( )[ ]isP 0=  is the sensor specific prior probability that the data provided by Sensor i is not 

spurious. The denominator of the right hand side of the above equation is a summation 
carried over all possible values of s which are 0 and 1. The above equation can be re-written 
as: 
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To combine the sensor measurement from sensor n sequentially with the current belief 

obtained from sensors ‘1, 2…n-1’, Equation (3) can be re-written as: 
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Hence, the introduction of term ( )[ ]
nnzZxXsp === ,|0  in the denominator has the effect 

of increasing the spread (variance) of the posterior if the new measurement has a greater 

probability of being spurious, and decreasing the spread of the posterior if the new 

measurement has a lower probability of being spurious. The increase or decrease in the 

spread of the posterior distribution can be easily ascertained by determining the information 

content given by the entropy of distribution obtained from the following equation: 

 ( ) ( )dxzzzZxXpzzzZxXpXH nn∫ ====−= ),...,|(log),...,|( 2121
  (11) 

 

Entropy of a variable represents the uncertainty in that variable. A larger value of entropy 

implies more uncertainty and hence less information content. The fusion of a new 

measurement should always lead to a decrease in entropy, and fusion should always be 

done in order to reduce entropy. Based on increasing or decreasing the entropy of the 

posterior, this method can identify and eliminate spurious data from a sensor. It is noted 

that the prior probability ( )[ ]nsP 0=  has a constant value and simply acts as a constant 

weighting factor in Equation (10). This value does not influence the posterior distribution 

nor the MAP estimate of the state. 

4.1 Bayesian fusion without consideration of spuriousness in data (method 1) 
If the spurious nature of the sensor data is not considered, and the models of the ‘n’ sensors 
are given by the following Gaussian likelihood function: 

 ( )
( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −−

===
2

2

2

2

1
| k

kzx

k

k exXzZp
σ

πσ
k=1,2,…n  (12)  

then, from Bayes’ Theorem the fused MAP estimate is given by: 

 ( ) ( ) ( )[ ]xXzZpxXzZpxXzZpx n
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4.2 Bayesian fusion with consideration of spuriousness in data (method 2) 
If the spurious nature of the sensor data is considered, then the Gaussian sensor model 

represented by distribution ( )0,| === sxXzZp  is given by: 
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The probability that the measurement from Sensor ‘k’ is not spurious given the true state ‘x’ 
and measurement ‘zk’, is assumed to be represented by the following equation: 
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An advantage of choosing the above formulation for representing the probability is that the 

probability is 1 when measurement ‘zk’ is equal to the true state ‘x’, and decreases when the 

measured value moves away from the true state. The rate at which the probability decreases 

when the measured value moves away from the true estimate depends upon the parameter 

‘ak’. The value of the parameter is dependent on the variances of the sensor models and the 

distance between the output of sensor k with respect to other sensors. 

In the decentralized or sequential fusion scheme, measurements from only two sources are 
fused at once. The belief resulting from the fusion of two sensors is then fused with the next 
sensor, and the process continues henceforth. Fusion of two sensors ‘k’ and ‘k+1’ using 
Equation (10) yields: 
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The value of parameter ‘ak’ in Equation (15) is assumed to be given by: 
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which leads to 

 
( ) ( ) ( )[ ]

( ) ( )

( )[ ]
( ) ( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−−−

+
+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−−−

+
+

+

+

+
+

+

=×

=×
=

=
===

2
1

2
1

2
1

2
1

2

2
1

2

2

2

1

1

1

2

1

1

1

2

1
0

2

1
0

,

)(
,|

k

kk

k

k

k

kk

k

k

b

zz
zx

k

k

b

zz
zx

k

k

kk

kk

esP

esP
zzZP

xXP
zzZxXp

σ

σ

πσ

πσ   (18) 

The value of parameter ‘bk’ is chosen to satisfy the following inequality: 

 ( )22 2

1
2

k k k k
b z zσ +≥ −   (19) 

Satisfaction of this inequality ensures that the posterior distribution in Equation (18) remains 
Gaussian and hence has a single peak. The parameter value should be chosen based on 
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maximum expected difference (represented by ‘m’) between the sensor readings so that 
inequality (19) is always satisfied. Hence, 

 2 2 22
k k
b mσ=   (20) 

Substituting Equation (20) in Equation (18) gives: 
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It is apparent that the entire process has the effect of increasing the value of the variance of 

individual distribution by a factor of 
( ) ⎪⎭
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2

kk zzm

m . Larger differences in sensor 

measurement imply that the variance increases by a bigger factor. Depending on the 
squared difference in measurements from the two sensors, the variance of the posterior 
distribution may increase or decrease as compared to the variance of individual Gaussian 
distributions representing the sensor models. Therefore, the strategy is capable of 
determining if fusion of the two measurements would lead to an increase or decrease of the 
variance of the posterior distribution. In information theoretic terms, the strategy is capable 
of determining if the fusion leads to an increase in information content (or entropy given by 
Equation (11)) or not. Based on increasing or decreasing of entropy in the posterior, a 
decision can be made whether to fuse those two sensors or not. This approach provides an 
opportunity to eliminate sensor measurements that are spurious and fuse measurements 
from only those sensors that are consistent, ensuring an increase in information content after 
fusion. 

5. Simulation results 

A simulation study was carried out to validate the effectiveness of the proposed strategy in 
identifying inconsistent data while fusing data from three sensors. A comparative analysis 
was performed to study the efficiency with which the two methods (described in Section 4) 
were able to handle inconsistency in data. The following parameters were assumed in the 
simulation: 
 

Sensor 1: ( )
1

0 0.90P s⎡ = ⎤ =⎣ ⎦ and 
1

3σ =  

Sensor 2: ( )
2

0 0.98P s⎡ = ⎤ =⎣ ⎦  and 
2

2σ =  

Sensor 3: ( )
3

0 0.94P s⎡ = ⎤ =⎣ ⎦  and 
3

2.5σ =  

True value of state: 20x =  

Simulation data was generated so that Sensor 1 provided 90% of the time normally 
distributed random data with a mean value of 20 and variance 9. It provided incorrect data 
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10% of the time which was uniformly distributed outside the Gaussian distribution. Sensor 2 
provided 98% of the time normally distributed random data with a mean value of 20 and 
variance 4, and 2% of the time it provided incorrect data. Similarly, Sensor 3 provided 94% 
of the time normally distributed random data with a mean value of 20 and variance 6.25, 
and 6% of the time it provided incorrect data. It may be noted here that the values for 

( )[ ]
ksP 0= have been assumed simply for the purpose of generating simulated data. These 

are not used in the fusion algorithm. Since these values are constants, they do not have any 
effect on the posterior distribution or the MAP estimate. 
Figure 1.(a) illustrates a case when all of the three sensors are in agreement, and 
measurement from none of the sensors is inconsistent with the rest. It can be seen that 
posterior distributions obtained from both methods coincide resulting in the same value of 
MAP estimate. In Figure 1.(b), measurement from Sensor 1 is in disagreement from the other 
two sensors. Method 1, which is a simple Bayesian fusion and does not take into account 
inconsistency of data, results in the weighted average of the three measurements. Method 2 
identifies the sensor which provides spurious measurements and eliminates that from the 
fusion process. Hence, it simply considers measurements from Sensors 2 and 3, and fuses 
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Fig. 1. Fusion of Three Sensors 1.a: All Sensors in Agreement, 1.b: Sensor 1 in Disagreement, 
1.c: Sensor 2 in Disagreement, 1.d: Sensor 3 in Disagreement 
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them appropriately using Equation (21). In a similar manner, Figure 1.(c) and Figure 1.(d) 
respectively show that measurements from Sensor 2 and Sensor 3 are spurious. The figures 
show the efficiency with which Method 2 identifies and eliminates spurious measurements, 
and results in better estimates (closer to the true value) of the variable.  
Ten thousand (10,000) data points were generated in the manner described above and fusion 
was carried out using both methods. The mean value of the sum of squared error (MSE) 
between the fused value and true value for all ten thousand data points was computed. The 
values of MSE were found as 6.94 for Method 1 and 5.50 for Method 2. Hence, Method 2 was 
able to reduce the mean square error by approximately 21% when compared to Method 1. 

6. Experimental results 

The theories developed in Sections 3 and 4 were validated with the help of experiments 
performed in the Robotics and Manufacturing Automation (RAMA) Laboratory at Duke 
University. The objective of the experiment was to obtain a three-dimensional occupancy 
profile of the robotic workspace using three independent sensory sources: stereo vision, an 
infra-red proximity sensor, and a laser proximity sensor. This section provides in detail first 
the sensor modeling process for the three sensory sources, and then the experiments for 
fusing data from them.  

6.1 Sensor modeling 
Stereo Vision: One of the most important components of stereo vision algorithm is stereo 
matching (Garg & Kumar, 2003) which involves finding out the location of the point in right 
image plane corresponding to a point in the left image plane. The relative displacement of 
these two points, called disparity, is used to estimate the three-dimensional position of the 
point. The accuracy with which stereo vision sensors are able to specify three-dimensional 
positional information about a point depends on how precisely the stereo vision algorithm 
is able to find the match of the point. The correlation score (Zhang et al, 1995) of the 
matched points, which measures the correlation between two template windows from left 
and right images, is a measure of “goodness-of-match” of the two points. The score ranges 
from -1 to +1, -1 representing not similar at all, and +1 representing most similar. The sensor 
modeling technique formulated in Section 3 has been used to develop a model for the stereo 
vision sensors that could take into account the effect of performance of the stereo matching 
algorithm on the uncertainty in sensor’s output. 
An experiment was carried out in the RAMA Laboratory, wherein a set of fifty data points 
was obtained. The data set consisted of 3-D location of point in world coordinate system 
obtained via stereo vision sensors (via transformation as discussed in reference (Kumar & 
Garg, 2004)), correlation score for that point, and the actual 3-D location of the point in 
world coordinate frame.  
The strategy presented in Section 3.2 was used to develop a Gaussian model of the sensor. In 
this model the standard deviation of the distribution, which represents the uncertainty of 
the data, is dependent on the correlation score for the specific point. This dependence was 
modeled with the help of a neural network with five nodes in the hidden layer. This neural 
network takes correlation score as input, and outputs the value of standard deviation (sigma 

σ) for that particular correlation score. The neural network was trained via the process based 
on the Maximum Likelihod technique as presented in Section 3.2. Genetic Algorithm (GA) 
was used to maximize the likelihood function given by Equation (7). Though 
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computationally intensive as compared to back-propagation based methods, GAs provide 
globally optimum results. The likelihood function given by Equation (7) was calculated by 
obtaining the data set representing the actual 3D location of points and the corresponding 

measurements from the stereo vision. Figure 2 shows the graph of standard deviation σ  of 
the probability distribution function representing the model of stereo vision sensor as 
obtained by the neural network plotted against the correlation score of stereo matched 
points. As illustrated in Figure 2, the sensor model obtained from this approach separately 
for X, Y, and Z directions showed  the intuitive trend that as the correlation score increases, 
i.e., as the stereo match gets better, the standard deviation decreases. Smaller value of 
standard deviations implies that the positional information obtained from stereo vision is 
less uncertain, and hence the degree of belief in the sensor output is more. 
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Fig. 2. Stereo Vision Sensor Model: Variation of Standard Deviation of Sensor Model in X, Y, 
Z Directions with respect to the Correlation Score of Stereo Matched Points 

Infra-Red (IR) Proximity Sensor: The output of the IR proximity sensor is an analog voltage 
which is indicative of the distance of the object detected by the sensor. From the test data 
obtained from experiments, it was seen that the uncertainty in data increases when the 
distance to the object increases. Since the output of the sensor is indicative of the distance, 
sensor modeling process tries to capture the relationship between sensor’s uncertainties and 
sensor output. 
In the laboratory experiments, the Infra-Red sensor was mounted on the wrist of the robot 
so that it looked vertically down (negative Z direction in world coordinate frame). The IR 
sensor provided the information about the distance to the nearest object detected directly in 
front of the object. Information about the position of end effector was obtained from the 
encoders of the robot. Hence, IR sensor can be effectively used in conjunction with robot 
encoders to provide 3-D information about any object. Similar to vision sensor, in this 
research, the model of the IR sensor was obtained separately for all three X, Y, and Z 
directions based on the method described in Section 3.2. The variation of standard deviation 
of the Gaussian sensor model obtained from this approach, as illustrated by Figure 3, 
showed a decrease when the sensor output increased which means that when the distance to 
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the object decreases (i.e. sensor’s output is larger) the standard deviation becomes smaller, 
and the sensor’s measurement becomes less uncertain.  
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Fig. 3. Infra-Red Proximity Sensor Model: Variation of Standard Deviation of Sensor Model 
in X, Y, and Z Directions with respect to the Sensor Output 

Laser Proximity Sensor: Similar to IR proximity sensor, the output of laser sensor is 
indicative distance to the detected object. Sensor modeling for laser proximity sensor was 
done in a similar manner as the IR proximity sensor. The variation of standard deviation of 
the Gaussian sensor model obtained from this approach, as illustrated by Figure 4, showed a 
flat curve which means that the uncertainty in sensor measurement remained indifferent to 
distance to the detected object. In practice, the laser proximity sensor was very accurate, and 
the uncertainty in sensor measurement was not dependent on the distance. 
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Fig. 4. Laser Proximity Sensor Model: Variation of Standard Deviation of Sensor Model in X, 
Y, and Z Directions with respect to the Laser Sensor Output 
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6.2 Sensor fusion for 3D modeling of workspace 

The model of workspace was obtained in an occupancy grid framework. The occupancy 

grid (Elfes, 1992, Kumar et al, 2005a) is a multi-dimensional field (usually of dimension two 

or three) where each cell (or unit of the grid) stores or represents the probabilistic estimate of 

the state of spatial occupancy. Occupancy grids are one of the most common low-level 

models of an environment, which provide an excellent framework for robust fusion of 

uncertain and noisy data. If the state variable (occupancy, in this case) associated with a cell, 

Ci, is denoted by s(Ci), then the occupancy probability )]([ iCsP  represents the probabilistic 

estimate of occupancy of that particular cell. If 0])([ ≈= occCsP i
, then the cell is assumed 

to be empty, while, if 1])([ ≈= occCsP i
, then the cell is assumed to be occupied. If a single 

sensor is used to obtain the occupancy grid, Bayes’ Theorem can be used in the following 

manner to determine the state of the cell: 

 P[s(Ci) = occ | z] =
p[z | s(Ci) = occ]P[s(Ci) = occ]

p[z | s(Ci)]P[s(Ci)]
s(C i )

∑
  (22) 

where z is the sensor measurement. The probability density function (p.d.f.) 

])(|[ occCszp i = is dependent on the sensor characteristics and is called the sensor model. 

The probability ])([ occCsP i =  is called prior probability mass function and specifies the 

information made available prior to any observation. 
Occupancy grids were obtained individually for stereo vision, infra-red, and laser proximity 
sensors, and then the individual grids were fused using two techniques: i) Simple Bayesian 
Fusion, and ii) Sequential Bayesian Fusion with Proposed Inconsistency Detection and 
Elimination Strategy. The details of the process for obtaining occupancy grids and sensor 
fusion are explained in reference (Kumar et al, 2005a). 
In the experiment a cylindrical object was placed on the robot’s work-table. Figure 5 shows the 
images of the work-table obtained from the stereo cameras. Figure 6.a shows the actual 
occupancy grid of the workspace. This was obtained based on the geometric dimensions of the 
object and its location in the workspace. For the occupancy grid developed in this research, 
each grid is of size 5mm X 5mm X 5mm. Figures 6.b, 6.c, and 6.d show the occupancy grids 
independently obtained from stereo vision, IR proximity sensor, and laser proximity sensor 
respectively. Figure 6.e shows the occupancy grid obtained from simple Bayesian approach, 
and Figure 6.f shows the occupancy grid obtained from the Bayesian approach that utilizes the 
inconsistency detection and elimination technique proposed earlier. 
 

  

Fig. 5.  Images of the Worktable Obtained from the Left and the Right Cameras 
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Stereo 
Vision 

IR Proximity Laser Proximity 
Simple 

Bayesian 

Bayesian with 
Proposed 

Inconsistency 
Detection 

1279 1062 399 459 384 

Table 1. Error Associated with Occupancy Grids Obtained from Fusion Process 
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Fig. 6.  Occupancy Grids a) Actual Grid, b) Grid Obtained from Stereo Vision, c) Grid 
Obtained from IR Proximity Sensor, d) Grid Obtained from Laser Proximity Sensor, e) Fused 
Grid (Simple Bayesian Approach, Method 1), and f) Fused Grid (Proposed Bayesian Fusion 
with Inconsistency Detection and Elimination, Method 2) 
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To facilitate a comparison of the performance of the fusion process via different algorithms, 

a measure of error was formulated which is given by the following equation: 

 ( ) ( )[ ]2∑ −=
iC

sensoriactuali CsCsError   (23) 

 

where ( )
actualiCs  is the actual state of the cell, and ( )

sensoriCs  is the state of the cell obtained 

from the sensor and/or fusion process. The state of the cell is either 1 (for occupied) or 0 (for 

empty). Table I provides the error value associated with the occupancy grid obtained from 

the fusion process described above. The table compares the error value obtained via the two 

approaches. The first approach is based on the simple Bayesian fusion scheme, and the 

second approach is based on the proposed Bayesian fusion scheme embedded with the 

mechanism for inconsistency detection and elimination. 

From the figures as well as from the table of results, it is evident that the proposed fusion 

scheme based on Bayesian approach with inbuilt mechanism to identify and eliminate 

spurious/inconsistent measurement presented in this chapter has been able to reduce the 

uncertainty inherent in individual sensors. The proposed method has been able to reduce 

the error by approximately 70% as compared to stereo vision, 64% as compared to IR 

proximity sensor, and 4% as compared to laser proximity sensor. On the other hand, simple 

Bayesian technique was able to reduce the error by approximately 64% as compared to 

stereo vision and by 56% as compared to IR proximity sensor. The technique based on 

simple Bayesian approach led to an increase in error by approximately 15% as compared to 

laser proximity sensor. The increase in error demonstrates the fact that it is not necessary 

that incorporation of additional sensor data will lead to improved accuracy of estimation. 

This is particularly more evident in cases when the accuracy of measurements from sensors 

differs by a large amount. In this case, the measurements from laser proximity are far more 

accurate (as seen from sensor models) than measurements from the stereo vision or IR 

proximity sensor, and fusion of measurements from the laser with stereo vision and IR 

proximity leads to an increase in error. However, the proposed technique has an inbuilt 

mechanism to determine if the fusion process leads to an increase in the information 

content, and, in this way was able to eliminate inconsistent data and improve the overall 

accuracy of the fusion process. Of the 24000 points (or cells) where the fusion of data from 

three sensors occurred (fusion occurred at 30x40x20 cells of the occupancy grid), the 

proposed technique detected 393 points where data from IR sensor were inconsistent and 

1028 points where data from stereo vision were inconsistent. None of the data from laser 

sensor were detected to be inconsistent. This observation is consistent with the fact that laser 

sensor was far more accurate than the other two sensors. 

One of the limitations of the proposed technique is that when there is a large number of 

sensors supporting an inconsistent measurement, then, based on the beliefs of the individual 

measurements, the technique may consider inconsistent measurement to be the correct one, 

and might disregard the correct measurements obtained by fewer numbers of sensors. In 

psychology, this kind of problem is termed as group conformity. For example, when an 

individual’s opinion differs significantly from that of others in a group, the individual is 

likely to feel extensive pressure to align his or her opinion with others. In the case of sensor 
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systems, this kind of condition is more likely to occur in adversarial situations, such as the 

battlefield, where events are prone to be camouflaged to escape detection. Hence, a formal 

criterion to establish the difference between spuriousness and opinion difference must be 

developed for the sensor fusion process to be accurately carried out in such adversarial 

situations. For example, in these situations, the technique proposed in this chapter could be 

applied if sensor models could be developed that represent the possibility/likelihood of 

events being camouflaged. Real time implementation and scalability aspects of the proposed 

sequential scheme have to be considered. To improve real time applicability of decentralized 

sensor fusion approaches, concepts from parallelization of processing can be incorporated. 

The recent interest in distributed sensing can incorporate such parallel/distributed 

framework of processing and sensor fusion. 

7. Conclusions 

Sensors measurements are inherently uncertain and often inconsistent. Appropriate 

consideration of uncertainty and identification/elimination of inconsistent measurements 

are essential for carrying out accurate estimation. The research reported in this chapter 

proposes a unified and formalized approach to fuse data from multiple sources which can 

take uncertainty of sensor data into account and automatically identify inconsistency in 

sensor data. Appropriate modeling of uncertainties in sensor measurement is necessary. 

This chapter presents an innovative neural network based method to model sensor’s 

uncertainties. Further, the chapter presents a strategy that adds a term to the popular 

Bayesian approach corresponding to a belief that the sensor data is not spurious 

conditioned upon the data and true state. An information theoretic measure is utilized to 

observe the information content of the posterior distribution to identify and eliminate 

inconsistent data. An extensive simulation study was performed where data from three 

sensors was fused. It was observed that the presented method was very effective in 

identifying spurious data, and, elimination of spurious data ensured more accurate 

results. Finally, the effectiveness of the proposed technique to identify and eliminate 

inconsistent sensor data in sequential Bayesian fusion was demonstrated with the help of 

an experiment performed in a robotic workcell where measurements from stereo vision, 

infra-red proximity, and laser proximity sensor were fused to obtain three-dimensional 

occupancy profile of robotic workspace. 
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