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Abstract

Recent interest in the study of Staphylococcus aureus derives from the high frequency of 
antibiotic-resistant strains that cause frequent outbreaks of infection, especially methicil-
lin-resistant S. aureus (MRSA). The objective of this chapter was to study the population 
genetic structure and the origin of MRSA isolation. Classification of staphylococcal cas-
sette chromosome mec (SCCmec) is the most important method to identify and define the 
S. aureus methicillin-resistant clonal nature. Molecular epidemiological studies have dem-
onstrated dissemination patterns of few strains which are responsible for the important 
worldwide problem. There is a predominance of pandemic clones of MRSA associated to 
hospital-acquired infections (HA-MRSA) which has been replaced today by community-
acquired strains (CA-MRSA). Understanding the epidemiology and clonality of S. aureus 
infections has important implications for future efforts to control of the emergence of 
multidrug-resistant strains and the spread of clones resistant and sensible to methicillin.

Keywords: methicillin-resistant S. aureus, clonal complex, molecular epidemiology, 
classification, typing

1. Introduction

Staphylococcus aureus is one of the most common pathogenic organisms responsible for a wide 

variety of infectious syndromes [1, 2]. Significant increase in the prevalence and emergence 
of methicillin-resistant S. aureus (MRSA) is a serious public health concern and has a dra-

matic negative impact on medical practices [3, 4]. Therefore, identification of MRSA strains is 
important for both clinical and epidemiological implications.
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distribution, and reproduction in any medium, provided the original work is properly cited.



On the other hand, it is important to carry out the typing of S. aureus to defining the occur-

rence of an epidemic, monitoring the transmission of the organism among carriers, contrib-

utes to the evaluation of nosocomial infection outbreaks, recurrent infection and the use of 

the appropriate measures in a local environment. In addition, determining the origins of these 

strains can help in delineating their circulation among different environments [5, 6].

Different genotypic and phenotypic methods have been developed for this purpose. However, 
each method has its own advantages and disadvantages, so the optimal method of bacterial 

strain typing depends on the objectives of data collection and available resources [7–9]. Thus, 

techniques with high discriminatory power with the ability to distinguish between epide-

miologically unrelated bacterial strains are adequate for carrying out locally restricted epide-

miological studies or epidemic outbreaks. While, the sequence-based techniques that analyze 

more stable genetic markers are more appropriate for recognizing ancestral relationships 

between the bacterial strains [9].

In this chapter, we expose the methods of detection and typing of S. aureus and MRSA isola-

tions, through which progress has been made in understanding the molecular epidemiology 

of the bacterium.

2. Identification of S. aureus

The high pathogenicity of S. aureus causes frequent nosocomial and community infections, 

so its isolation and rapid identification is extremely important for timely treatment [1, 2]. The 

diagnosis of diseases caused by S. aureus should be based first of all on the clinical picture and 
then confirm with a culture where it is isolated [6, 10].

Gram staining of the colony and tests for the production of catalase and coagulase are the ideal 

techniques that allow the rapid identification of coagulase-positive S. aureus [11, 12]. Another 

very useful test for its identification is the production of thermostable deoxyribonuclease [12].

2.1. Latex agglutination test

S. aureus produces two forms of coagulase: bound coagulase, or “clumping factor”, can be 

detected by carrying out a slide coagulase test, and free coagulase can be detected using a 

tube coagulase test. Hemagglutination test with fibrinogen-sensitized sheep erythrocytes is 
used for the detection of clumping factor.

Also slide agglutination test with plasma-coated latex is used for the simultaneous detection 

of clumping factor and protein A. In principle, plasma contains fibrinogen, which has the 
capacity to bind to clumping factor, and immunoglobulin, which has the capacity to bind to 

protein A through its Fc fragment. Hence, the presence of either clumping factor or protein A 

on the bacterial cell results in co-agglutination of cells and latex particles [13].

There are variants of the agglutination tests that use different surface antigens, specific for  
S. aureus, which contributes to an increase in the sensitivity of the tests, especially for some  

S. aureus isolates that produce relatively small amounts of coagulase or protein A [14].
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On the other hand, the techniques based on the molecular identification of S. aureus like fluo-

rescent in situ hybridization (FISH) use artificial probes labeled with fluorescent molecules 
and specific for S. aureus are applied in order to differentiate this species [15]. Molecular tests 

based on the PCR method, which demonstrate the genes which code nuclease (nuc), coagulase 

(coa), protein A (spa), femA, femB, sa442, 16SrRNA and fibrinogen-binding proteins [16–18].

3. Detection of MRSA isolates

The fact that methicillin resistance is undoubtedly related to the importance of the mecA gene, 

makes it possible to create molecular tests relatively quickly for definite proof of MRSA.

S. aureus acquires methicillin resistance through mecA gene that is responsible for the synthesis 

of a 78-kDa protein, called penicillin-binding protein 2a (PBP2a). PBP2a substitutes other PBPs, 

that catalyze the transpeptidation reaction that is necessary for cross-linkage of peptidoglycan 

chains, but its active site blocks binding of all β-lactams but allows the transpeptidation [19, 20].

The mecA gene is regulated by the repressor MecI and the trans-membrane β-lactam-sensing 
signal transducer MecRI, both of which are transcribed divergently. However, in the absence 

of a β-lactam antibiotic, MecI represses the transcription of both mecA and mecRI-mecI. In the 

presence of a β-lactam antibiotic, MecRI is cleaved autocatalytically, and a metallo-protease 
domain, which is located in the cytoplasmic part of MecRI, becomes active. The metallo- 

protease cleaves MecI bound to the operator region of mecA, which allows transcription of 

mecA and subsequent production of PBP2a [19].

The mecA gene is part of a genomic island designated staphylococcal cassette chromosome 
mec (SCCmec) [21].

SCCmec elements integrate sequence at the bacterial chromosomal attachment site (attBscc) 
that is located near the origin of replication, at the 3′ end of an open reading frame of unknown 
function, termed orfX, well conserved among both MRSA and MSSA strains [21–23].

The attachment site contains a core 15-bp sequence, called the integration site sequence (ISS) 
that is necessary for ccr-mediated recombination [21]. SCCmec integrated into the chromo-

some consists of mec complex, composed of mecA operon, ccr gene complex, composed of 

cassette chromosome recombinase (ccr) gene(s) and three regions bordering the ccr and mec 

complexes, designated as joining (J) regions, that is, with composition presented as follow: 

(orfX)J3-mec-J2-ccr-J1 [21, 22].

The 2.1-kb mecA gene is regulated by the repressor MecI and MecRI that are transcribed diver-

gently. In the absence of a β-lactam antibiotic, MecI represses the transcription of both mecA 

and mecRI-mecI. In the presence of a β-lactam antibiotic, MecRI is activated by autolytic cleav-

age and cleaves MecI bound to the operator region of mecA, which allows transcription of 

mecA and subsequent production of PBP2a [21–23]. Both mecI and mecRI can be truncated by 

insertion sequences IS431 or IS1272, and these results in derepression of the mecA gene [24].

There is a mecA homolog, termed mecC, which is only ∼69% identical to conventional mecA 

at the DNA level, and the encoded PBP2a/2′ is ∼63% identical at the amino acid level. Similar 
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to conventional mecA, mecC is located within a SCCmec element inserted into the 3′ region 
of orfX but it had divergent ccrA and ccrB recombinases (belonging to the ccrA1 and ccrB3 

groups and representing a novel combination of recombinase groups designated type 8 ccr), 

divergent mecA regulatory genes (mecI/mecR) and the absence of one of the three joining 

regions (J3) that are normally present [25].

In the identification of MRSA, MRSA Screen Latex agglutination test is a slide agglutination 
assay to detect penicillin-binding protein (PBP2a) from isolates of Staphylococci. The tool con-

tains latex particles sensitized with a monoclonal antibody against PBP2a [26]. The Cefoxitin 

Disc Diffusion and Oxacillin Agar Screen developed on Muller Hinton agar plates are the 
phenotypic tests used routinely [27–29]. Methods based on detection of the mecA gene, the 

PCR method are also used in many laboratories [30, 31].

4. Typing of S. aureus

Everyday, the techniques of bacterial molecular typing become more available. Optimal type-

ability, a high degree of reproducibility, adequate stability and unprecedented resolving 

power characterize the “gold standard” typing technique [8].

4.1. Phenotypic methods

The conventional methods used for the typing of S. aureus and especially of the MRSA strains 

emerged in the 1950s and 1960s, all being phenotypic methods, among these methods, biotype, 

serotyping, fagotipage and resistograms (resistance to chemicals and dyes) were highlighted 

[8, 9]. In the case of resistograms, ethidium bromide, cadmium nitrate, phenyl mercuric ace-

tate and mercuric chloride have been used on the basis of the susceptibility pattern produced.

4.2. Serotyping

Serotyping is based on fact that strains of same species can differ in the antigenic determi-
nants expressed on the cell surface such as lipopolysaccharides, membrane proteins, capsular 

polysaccharides, flagella and fimbriae exhibit antigenic variations. Strains differentiated by 
antigenic differences are known as ‘serotypes’.

Serotyping of capsular polysaccharides in S. aureus has allowed to establish a total of 11 cap-

sular types, but 85–90% of clinical isolates belong to just two of them. For example, in SARM 

only serotype 5 or 8 is detected.

This method has limited application in epidemiological studies because a large number of 

unrelated isolates belong to a small number of capsular serotypes [32].

4.3. Phage typing

Strains can be characterized by their pattern of resistance or susceptibility to a standard set of 
bacteriophages. This relies on the presence or absence of particular receptors on the bacterial 
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surface that are used by the virus to bind to the bacterial wall. This method is used to type 

isolates of S. aureus and is referred as ‘phage types’ and was standardized by the International 
Subcommittee on Phage Typing of Staphylococci [33].

Human strains of S. aureus are classified according to their susceptibility to a set of set of 23 
phages (group I—29, 52, 52A, 79 and 80; group II—3A, 3C, 55 and 71; group III—6, 42E, 47, 

53, 54, 75, 77, 83A, 84 and 85; group V—94 and 96; not classified—81 and 95) internationally 
accepted for typing. The technique requires maintenance of biologically active phages and 

is available only at reference centers. This technique has been reported to be valuable in the 

identification of known epidemic strains among endemic strains and is preferred as first line 
approach in epidemiological investigation of MRSA strains [32]. Phagotyping also has limited 

application since a significant number of isolates are not susceptible to bacteriophages and it 
is not possible to apply this method to them [33].

4.4. Biotyping

Biotyping is a rapid and inexpensive method that makes use of the pattern of metabolic activi-
ties expressed by an isolate, colonial morphology and environmental tolerances and strains 

are referred to as “biotypes”.

Devriese proposed a simplified biotyping system for the typing of S. aureus strains on the 

basis of the evaluation of synthesis of fibrinolysin and β-hemolysin, coagulation of bovine 
plasma and type of growth on medium containing crystal violet [34]. This method allows 

to differentiate S. aureus isolates from host specific (HS) ecovars: human, bovine, ovine and 
poultry biotypes; the strains which could not be classified into any of these biotypes on the 
basis of their properties were referred to as non-host-specific (NHS).

In the 1990s, Isigidi et al. described a new biotype, P-like pA+ (poultry-like protein A posi-

tive), and was tentatively designated as an “abattoir” biotype [35]. The introduction of an 

additional biochemical test, protein A production permitted showed typical properties of the 
poultry biotype but differed from it in terms of the synthesis of protein A. This biotype was 
initially described solely in meat products and meat industry workers. In 2016, Piechowicz 

and Garbacs, revealed that the P-like pA+ biotype strains can be also present in hospitalized 

patients and extra-hospital carriers with greater genetic variability [36].

This method has been useful in tracing the origin of S. aureus isolates in food animal and food 

industry and the probable source of contamination of foods by S. aureus. Kitai et al. showed 

that retail raw chicken meat in Japan is frequently contaminated with S. aureus strains belong-

ing to the human and poultry biotypes [37].

Hakimi et al. showed that different animal ecovars were characterized among human and 
bovine raw milk isolates, confirm the possibility of the transmission of S. aureus strains among 

humans and different animal species, and this can be very important, especially when such 
strains carry antibiotic resistance genes [38].

Hennekinne et al. investigated the genotypic discrimination between S. aureus strains 

assigned to different biotypes with PFGE patterns showing a strong correlation between  
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pulsotypes and biotypes, and confirm the abattoir biotype as an individual group [39]. 

However, strain discrimination is limited, variation in gene expression, due mainly to point 

mutations is the most common reason for isolates that represent single strain to differ in one 
or more biochemical reactions.

4.5. Antimicrobial susceptibility typing (antibiogram)

Phenotyping methods also include examination of susceptibility to antimicrobes, which has 

the practical value in recommending treatment for the infection and as a strategy in the con-

trol of resistance to antibiotics [28, 29].

A common method for the detection of MRSA employs the technique of diffusion in hypersaline 
Mueller Hinton agar, with a disc of 1 μg of oxacillin, incubating at 35°C for 24–48 h (halo inhi-

bition ≤10 mm) [40] or the study of the minimum inhibitory concentration (MIC) by means of 

an E-test with oxacillin strip. Additionally, it has been demonstrated that cefoxitin (cefamycin)  

in vitro, induces the production of PBP2a in strains of sensitive methicillin S. aureus [27]; there-

fore, the disc diffusion method using cefoxitin (FOX 30 μg) has proven to be a good assay for 
the detection of low level resistance to oxacillin in strains of S. aureus. Currently, the cefoxitin 

disc is used as a substitute for oxacillin for the phenotypic detection of MRSA strains [29].

Antibiogram typing profiles or antibiotypes involves comparison of susceptibilities of isolates 
to a range of antibiotics. Isolates differing in their susceptibilities are considered as different 
strains. An unusual pattern of antibiotic resistance among isolates from multiple patients is 
considered as an indication of an outbreak [41].

Antibiotic susceptibility patterns has been the main typing tool in many hospital outbreaks 
since the technique is widely available and standardized. With the use of the antibiogram, it 

has been shown that the pattern of susceptibility to antibiotics varies according with time and 
geographical location [42]. However, antibiotic resistance patterns are also, to some extent 
influenced by the local environment, selective antibiotic pressure, acquisition and loss of plas-

mids carrying resistance genes and various other genetic mechanisms.

One way to optimize the antibiotype to evaluate the clonal relationship between two bacteria 

is given by the quantitative antibiogram. This mathematical technique proposed for Giacca 

et al. is based on disc zone sizes, in order to assess the probability of two or more clinical 

isolates to be the same strain [42]. Method uses the comparison of the diameters of the inhibi-

tion rings in the disc diffusion technique (Kirby Bauer) [41]. Antimicrobials are selected with 

greater variation for the strain under study, to allow better discrimination. The result of the 
summation of the inhibition zones of a bacterial isolation is evaluated and compared with the 

other isolation by using a coefficient of similarity.

Similarity of strains is reported in a dendrogram, in which strains are successively fused. 

Strains that share a common susceptibility pattern are considered a “cluster” [42].

Although useful as a screening method for detecting certain resistance profiles and for selecting 
potentially useful therapeutic agents, conventional antimicrobial susceptibility testing methods 

are insensitive tools for tracing the spread of individual strains within a hospital or region [8, 9].
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4.6. Molecular typing techniques of S. aureus

In order to examine more thoroughly the molecular evolution of S. aureus, especially of MRSA 

and its spread in world terms, several molecular typing techniques have been developed [5, 6, 

8, 9]. These methods involve the study of the microbial DNA, the chromosome and plasmid, 

their composition, homology and presence or absence of specific genes. These techniques are 
more frequently applied and better appreciated than the phenotypically oriented approaches 
in taxonomy, epidemiology and evolutionary studies that have enhanced our understanding 

of disease epidemiology and provided insight into the evolution of bacterial pathogens [5].

4.7. Plasmid profile analysis

Plasmid analysis was the first molecular technique used for epidemiological investigation of 
MRSA and MSSA [43].

In this technique, the isolates are differentiated according to the number and sizes of plasmids 
carried by an isolate, but its reproducibility suffers due to the existence of plasmids in differ-

ent molecular forms such as supercoiled, nicked or linear, each of which migrates differently 
on electrophoresis.

The plasmids contain resistant genes against a number of antimicrobial agents, so it has been 

useful to assess the relatedness of individual clinical isolates of S. aureus, in the epidemiologi-

cal surveillance of disease outbreaks and in tracing antibiotic resistance [44].

Agbagwa and Jirigwa determined the antibiotic-resistant pattern and plasmid profile of S. 

aureus obtained from wound swabs and found similar antibiotic resistance pattern, while 
different plasmid sizes was observed in the isolates [45]. Jaran also found no direct correla-

tion between the patterns of antibiotic resistance and plasmid profiles in clinical isolates of S. 

aureus in hospitals of Saudi Arabia [46]. This disparity can be due to R-plasmids of different 
sizes which are also responsible for the presence of multiple resistances.

The technique has not been found to be very useful for the investigation of outbreak infec-

tions because the plasmids can be spontaneously lost or readily acquired, related strains can 

exhibit different plasmid profiles. Also, certain genes are contained in transposons that can 
be readily acquired or deleted. Some isolates may lack plasmids and will not be typeable by 

this method [44, 45].

4.8. Chromosomal DNA analysis

4.8.1. Ribotyping

Methods designed to recognize restriction fragment length polymorphisms (RFLP) using 
a variety of gene probes, including rRNA genes (ribotyping) and insertion sequences. The 

probes generally used are either labeled with radioisotopes or are biotinylated. In this tech-

nique, the choice of restriction enzyme used to cleave the genomic DNA, as well as the probes, 

is crucial. Restriction enzyme EcoR1 has been found to be comparatively more useful than 

other enzymes in producing a good number of bands [47].
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The southern blot hybridization of MRSA fragments after RFLP may contain genes specific for 
staphylococcus in the form of a probe, including the mec, transposon Tn554, agr, aph(2″)-aac(6′)  
(gene resistance to aminoglycoside).

4.8.2. Pulsed-field gel electrophoresis (PFGE)

PFGE is a technique based on digestion of purified chromosomal DNA with restriction enzyme 
SmaI, generating large fragments of DNA that are separated in agarose molds and detection 

of fragments by PFGE. Migration of large DNA fragments (10–800 kbp) through the electro-

phoresis gel is realized by use of an electrical field which changes direction over graded time 
intervals, so minimizing the overlapping of fragments [47, 48]. The obtained PFGE patterns are 
evaluated with the Dice coefficient and unweighted pair-group matching analysis (UPGMA) 
settings, according to the criteria described by Tenover et al. [49]. For the application of these 

criteria, it will be required that the digestion with the enzyme generates a minimum of 10 bands.

In the USA, a national PFGE-based typing system for S. aureus, designated as pulsed-field types 
USA100 through USA1200 that has been an important tool to facilitate the exchange of PFGE strain 

typing data and epidemiologic information among reference laboratories has been established [50].

4.8.3. Polymerase chain reaction (PCR)-based typing methods

To facilitate the process of the analysis of S. aureus isolates, polymerase chain reaction (PCR)-

based typing methods have been developed for their simplicity and the obtaining of fast 

results. With this technique, it is possible to generate DNA profiles that can be analyzed by 
gel electrophoresis or DNA sequence analysis [51].

4.8.4. PCR-restriction fragment length polymorphisms (PCR-RFLP)

This typing technique involves the amplification of a defined fragment of DNA and subse-

quent digestion of the amplified product with a restriction enzyme. Variations in the number 
and sizes of the fragments detected are referred to as restriction fragment length polymor-

phism (PCR-RFLP). These fragments are separated on agarose gel electrophoresis and strains 
can be characterized by their restriction profiles [5].

PCR-RFLP of genes coding for two species-specific proteins, coagulase (coa) and staphylococ-

cal protein A (spa), have been used to discriminate MRSA strains [8, 52].

4.9. DNA sequence analysis-based typing methods

DNA sequence analysis is an objective genotyping method as the genetic code is highly por-

table, easily stored and can be analyzed in a relational database [5, 8].

4.9.1. Multilocus sequence typing (MLST)

MLST is a well-established method to study bacterial populations exhibiting sufficient nucle-

otide diversity in a small number of genomic loci [53].
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Due to the specific characteristics of S. aureus, it is very suitable to follow clonal evolution 

of MRSA and MSSA, monitoring genetic changes over long periods of time and in different 
geographical areas, which has allowed to have a global epidemiological view of the bacte-

rium [54].

The method is based on nucleotide sequences analysis of 0.5-kb fragments from seven house-

keeping genes of S. aureus: arcc, aroe, glpF, gmk, pta, tpi and yqil. They code the following 

enzymes, respectively: carbamate kinase, shikimate dehydrogenase, glycerol kinase, guanyl-

ate kinase, phosphate acetyltransferase, triosephosphate isomerase and acetyl-coenzyme A 

acetyltransferase [55]. Since mutations accumulate slowly in housekeeping genes, the MLST 
scheme is used to delineate clusters of closely related strains.

The sequencing of each gene allows obtaining the allelic profile or sequence type (ST) profile, 
which are given by the alleles of the seven genes.

The Iberian clone is the most frequent with a MLST profile 3-3-1-12-4-4-16, and belongs to 
ST247 (www.mlst.net).

The analysis of the MRSA structure is based on the determination of the ST and the SCCmec 

type and is grouped into clonal complexes (cc). Isolates of S. aureus are assigned to the same 

clonal complex when 5 of 7 genes have identical sequences. This analysis is carried out 

using the ‘eBURST’, a computer program (based on repeated sequences), developed at the 
University of Bath in the UK that detail how MRSA spread [56]. Databases containing MLST 
and associated data from hundreds or thousands of isolates can be accessed via the internet 

(http://www.mlst.net/ and http://pubmlst.org/) [57].

MLST has provided numerous insights into the epidemiology and population genetics of 
bacteria and is an excellent tool for investigating the clonal evolution of MRSA. However, 

MLST is not suitable to characterize the differences in strains within an outbreak as its power 
to resolve small evolutionary differences is too low. In addition, the costs of sequencing cur-

rently limit their routine uses for most epidemiological studies [53–55].

4.9.2. Single-locus sequence typing

Single-locus sequence typing (SLST) is used to compare sequence variation of a single target 
gene. The genes selected are usually of short sequence repeat (SSR) regions that are suffi-

ciently polymorphic to provide useful resolution. The technique is simple, rapid and highly 

reproducible [5, 8].

4.9.3. Typing coagulase (coa)

The coagulase gene amplification discriminatory power relies on the heterogeneity of the 
region containing the 81 bp tandem repeats at the 3′coding region of the coagulase gene which 
differs both in the number of tandem repeats and the location of AluI and HaeIII restriction 

sites among different isolates [52]. Variations in the sequence of genes coding for coagulase 

(coa) showed a good correlation with PFGE typing.
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4.9.4. Spa typing

The spa gene contains three distinct regions: Fc, X and C [52]. Spa typing is a single-locus typ-

ing based on sequencing of short sequence repeat (ssr) regions of the polymorphic X region of 

the protein A gene (spa) of S. aureus [60]. The polymorphic X region consists of up to 12 units 

each with a length of 24-bp variable-number tandem repeat (VNTR) within the 3′ coding 
region. The composition of the repeating fragments is presented in letters, in that a group of 
fragments in a certain isolate comprises the “spa repeat” code. The repeating fragments are 

also marked by a number, in view of their large number and for easier data processing.

Isolates are assigned to particular spa types using the spa typing website (http://www.spas-

erver.ridom.de). Several studies have demonstrated that spa typing is highly discriminatory, 

and useful in both local and global epidemiological studies [58].

In addition to its use as a marker, the number of repeats in the region X of spa has been 

related to the dissemination potential of MRSA, with higher numbers of repeats associated 

with higher epidemic capability; it detects genetic microvariations and may be used in phylo-

genetic studies, where genetic macrovariations are key [58].

4.9.5. SCCmec typing

The first SCCmec element was identified in Japanese S. aureus strain and shortly after two addi-

tional SCCmec were determined; these three SCCmec elements were classified as types I–III [23, 

61]. Subsequently, two other SCCmec were described: SCCmecIV [59] and SCCmecV [60].

Currently, 11 SCCmec types are known: SCCmecVI, SCCmecVII, SCCmecVIII, SCCmecIX, 

SCCmecX, SCCmecXI [61–63].

Variation in these SCCmec types has made the basis for differentiation among MRSA strains, 
and each SCCmec type encodes for resistance to different antibiotics. SCCmec types I (34.3 kb), 

IV (20.9–24.3 kb) and V (28 kb) encode exclusively for resistance to β-lactam antibiotics [63]. 

SCCmec types II (53.0 kb) and III (66.9 kb) determine multiresistance, as these cassettes contain 
drug resistance genes on integrated plasmids: pUB110, pI258, pT18 and a transposon Tn554 

that confers additional resistance to kanamycin, tobramycin, bleomycin, heavy metals, tetra-

cycline, lincosamide and streptogramin [23, 62].

The mec complex also contains the insertion element IS431mec, which has been frequently 

associated with genes encoding resistance to various antibiotics and mercury; in some isola-

tions is also the IS1272 [24]. When regulatory genes mecRI (on SCCmec types I, IV and V) or 

mecRI and mecI (on SCCmec types II and III) are intact and fully functional, they appear to 

confer greater repression on the expression of PBP2a [21, 22, 64, 65].

It has been reported that the SCCmec is not restricted to the mobility of the mecA gene; he has 

additional elements, called non-mec, that contribute to the survival and pathogenic poten-

tial of S. aureus. Among the non-mechanical elements are sequences coding for resistance 

to heavy metals such as mercury (SCCmer) or fusidic acid (SCC MSSA 476, Staphylococcal 

cassette chromosome methicillin-susceptible S. aureus) sequences for biosynthesis capsular 

(SCCcap1), for the protection of DNA by modification-restriction systems (SCC CI) and for 
the catabolism of arginine (ACME, arginine catabolic mobile element) [23, 24].
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J regions from different SCCmec elements are unique to particular types of ccr-mec gene com-

plex combinations and variations of these regions within the same ccr-mec gene complex  

combination are specific for SCCmec subtypes [66, 67]. In the case of SCCmecVII and SCCmecIX, 

ccr gene complex positioned between J3 and J2 regions and the mec gene complex between J2 

and J1 regions is presented [61].

In addition to the SCCmec types, several variants of SCCmec have been described. Depending 

on the structural diversity of mecI-mecR1 region, six major classes, A–E, of mec complexes 

have been distinguished [67]: Class A, which contains intact mec gene complex; Class B, where 

mecR1 is truncated by insertion sequence IS1272; Class C1, where mecR1 is truncated by inser-

tion sequence IS431 having the same direction as the IS431 downstream of mecA; Class C2, 

where mecR1 is truncated by insertion sequence IS431 having the reverse direction to the 

IS431 downstream of mecA; Class D, where mecR1 is partly deleted but there is no IS element 

downstream of ΔmecR1 and has been observed in S. caprae only. The sixth complex obtained 

of genome sequence of the bovine S. aureus isolate LGA251 assigned as class E [68].

In relation to the genes of the ccr complex are designated ccrA1 and ccrB1 (in SCCmec type 

I), ccrA2 and ccrB2 (in SCCmec types II and IV), ccrA3 and ccrB3 (in SCCmec type III), ccrA4 

and ccrB4 (in SCCmec type IV of MRSA strain HDE288) and ccrC (in SCCmec type V) [61, 66].

The method of Oliveira and de Lencastre is the most used and cited, which uses the multiplex 
PCR method for SCCmec types I–IV, to detect six gene loci and the mecA gene in the SCCmec 

complex [91]. Zhang et al. used a multiplex PCR for the characterization of SCCmec types I–V 

and differentiate between subtypes of SCCmec IV (a–d) [69].

Classification scheme of Chongtrakool et al. for the nomenclature of SCCmec is based on the 

ccr genes (indicated by a number) and the mec complex (indicated by an upper-case letter). 
Application of this nomenclature results in SCCmec type 1A (type I), type 2A (type II), type 

3A (type III), type 2B (type IV) and type 5C (type V). Differences in the J1 region and the J2–J3 
regions are then designated with numbers, for example, SCCmec type 2B.2.1 (type IVb). The ccr 

genes and the J regions are numbered in chronological order according to their discovery [70].

A combination of two approaches like SCCmec typing along with MLST is recommended for 
reliable typing for multicentre surveillance, inter-hospital and international transmission and 

evolution of MRSA strains [71].

Studies have found that healthcare associated MRSA (HA-MRSA) strains contain mainly 

SCCmec type I, type II and type III, while community-associated MRSA (CA-MRSA) strains 

contain type IV and type V cassettes, although several variants have also been reported [72].

4.9.6. Toxin gene profile typing

Studies have shown that MRSA strains possess more toxin genes as compared to MSSA 

strains. The pathogenicity of S. aureus is determined by a variety of bacterial cell wall surface 

components and exoproteins including toxic shock syndrome toxin (TSST-1), enterotoxins, 

exfoliative toxins and Panton Valentine leukocidin (PVL) [73].

The PVL genes are predominantly associated with S. aureus strains that cause community-

acquired infections, including skin and soft-tissue abscesses, necrotizing pneumonia and 
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invasive osteomielitis [74]. These genes are carried on bacteriophages and are easily trans-

ferred between lineages. Thus toxin gene profile of the strains can be used as an important 
epidemiological marker for typing of MRSA strains [75]. MRSA strains isolated from different 
geographical areas have shown to possess distinct toxin gene profiles. Studies on toxin gene 
profile of MRSA have reported that most of the CA-MRSA possess genes for PVL toxins and 
may have evolved from the established CA-MSSA (community-acquired methicillin sensi-

tive S. aureus) strains [76]. Of the various methods available, multiplex PCR technique is rec-

ommended for detection of toxins in MRSA. It is rapid, reproducible relatively inexpensive, 

easier to interpret and provides a high degree of discrimination. The technique is useful for 

studying the chromosomal diversity and evolutionary history of MRSA strains [75].

Today, a greater discrimination such as provided with whole-genome sequencing (WGS) and 

single-nucleotide polymorphism (SNP) analysis would be useful. High-resolution phyloge-

netic and phylogeographic (phylodynamic) analyses based on genome-wide SNP data are a 

powerful tool to infer the origin and test spatiotemporal hypotheses of MRSA spread [77, 78].

The evolutionary rate of MRSA genome-wide SNPs estimated by Gray et al. demonstrates 

that bacterial genomes can indeed contain sufficient evolutionary information to elucidate 
the temporal and spatial dynamics of transmission. In the case of HA-MRSA ST239 strain, 

phylogeographic analyses statistically supported the role of human movement in the global 

dissemination of this strain [79].

5. Genetic structure of the population of S. aureus

The molecular typing techniques have been used in combination to elucidate and study the 

population structure of S. aureus [80–82].

Accordingly, combinations of DNA band-based techniques with DNA sequence-based tech-

niques are frequently used to differentiate between MRSA strains at the local and the interna-

tional levels [8, 55, 56].

These techniques confirmed the notion that S. aureus is a polymorphic species with a clonal 

population structure [55, 56, 82] that does not undergo extensive recombination, diversifies 
largely by nucleotide mutations and shows a high degree of linkage disequilibrium (nonran-

dom associations between genetic loci).

Molecular evolution of MRSA has been favored by horizontal gene transfer [56] and clonal 

dissemination of certain strains [83–85].

Although S. aureus is considered to be an opportunistic pathogen, it is possible that certain 

clones are more prone to cause invasive disease than are others, due to the presence of viru-

lence factors that increase their chance of gaining access to normally sterile sites [86, 87].

MLST group strains into sequence types (STs) has been used in conjunction with PCR analysis 
of SCCmec element to define the clonal type of MRSA strains (CCs) [55, 58]. Enright et al. [84] 

using both methods found five clonal complexes found among the population from Southern 
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Europe, the USA and South America, and defined as groups of isolates from more than one 
country with the same ST and SCCmec type, belonged to one of five clonal complexes, namely 
the Iberian (ST 247-MRSA-IA), Brazilian (ST239-MRSA-IIIA), Hungarian (ST239-MRSA-III), 

New York/Japan (ST5-MRSA-II) and Pediatric (ST5-MRSA-IV) clones.

It was shown that, different SCCmec types have been acquired by S. aureus strains with differ-

ent genetic backgrounds, and this suggests that SCCmec was introduced several times into 

different S. aureus genetic lineages. ST8-MSSA in CC8 was shown to be the ancestor of the 

first MRSA strain isolated, that is, ST250-MRSA-I, with ST250 differing from ST8 by a point 
mutation in the yqiL gene. ST8-MSSA is a common cause of epidemic MSSA disease, and has 
acquired SCCmec types I, II and IV [88].

Another clone that is related closely to ST250 is ST247-MRSA-I, that is, the Iberian clone. 

These STs differ from each other by a single point mutation at the gmk locus. ST247-MRSA-I 

is one of the major MRSA clones isolated currently in European hospitals [84], and major 

ST within CC8 is ST239-MRSAIII, which corresponds to the Brazilian clone [86]. This clone 

has evolved by the transfer, through homologous recombination, of a 557-kb fragment of the 

chromosome of ST30 into ST8-MRSA-III.

Furthermore, MLST analyses showed that some of the first vancomycin-intermediate S. aureus 

isolates have emerged from ST5-MRSAII, a pandemic MRSA clone known as the NewYork/

Japan clone [87, 88]. It has also been shown that multiple lineages of S. aureus harbor different 
SCCmec types among hospitalized patients in Australia [89].

Enright et al. in their study found that MRSA has emerged at least 20 times following acqui-

sition of SCCmec, and that the acquisition of SCCmec by MSSA was fourfold more common 

than the replacement of one SCCmec with another. Interestingly, SCCmec type IV was found 

in twice as many MRSA clones as other SCCmec types, suggesting that most clones arise by 

acquisition of SCCmec type IV by S. aureus [90]. This is probably a result of the smaller size of 

SCCmec type IV compared with other SCCmec types, which may facilitate transfer of the cas-

sette among staphylococcal species [98]. Furthermore, it has been shown that MRSA strains 

that belong to the major CCs (1, 5, 8, 22, 30, 45) are easier to transform with mecA-expressing 

plasmids tan are strains belonging to minor CCs. This indicates that the genetic background 

of S. aureus may be important for the stability of SCCmec [4, 91].

The population structure of MSSA is genetically more diverse than that of MRSA, and that 

MRSA originated from a limited number of epidemic MSSA lineages through transfer of the 

SCCmec [92, 93]. It was shown that CC5, 22, 30 and 45 were all derived from epidemic MSSA 

lineages that have acquired SCCmec, since they differed from each other, and from ST8, at 
six or seven loci [90]. This suggests that some MSSA genetic backgrounds may not provide a 

stable genetic environment for SCCmec integration.

6. Epidemiology of methicillin-resistant S. aureus

MRSA first appeared among hospital isolates of UK in 1961 [94] corresponded to SCCmec 

I and it was a typical representative of the archaic clone that rapidly spread in European  
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countries [4]. These strains, described as epidemic MRSA (EMRSA or HA-MRSA) spread 

gradually throughout most hospitals all over the world [83, 84, 90]. In the 1970s, MRSA iso-

lates appeared in the USA, Australia and Japan.

In 1982, MRSA SCCmec type II was discovered in Japan, and the new York/Japan clone, to which 

it belongs, also spread, after which the isolation of the MRSA strain SCCmec type III followed, in 

New Zealand [4, 84, 88]. In Asian countries, two epidemic clones, the Brazilian clone (sequence 

type 239 [ST239]-MRSA-IIIA) and the New York/Japan clone (ST5-MRSA-II) have been found 

to be prevalent and to possess unique geographic distributions [95]. In central Europe, a close 

relative of the well-described ST5 MRSA clone, namely ST225, as prevalent in health care setting 
[54, 90]. This spread from Europe to the USA [54]. In Africa the presence of the following clones: 

sequence type (ST) 5-MRSA-I, ST239-MRSA-III, ST612-MRSA-IV, ST36-MRSA-II and ST22-

MRSA-IV have been reported [97, 98]. ST239 is also common in mainland Asia, South America 

and parts of Eastern Europe [54]. In the genomes of 63 globally distributed ST239 isolates, SNPs 

with highly similar sequences between strains from Portugal and South America, which is sug-

gestive of the historical and modern links between these two regions were identified [91].

The particularity of the population structure of MRSA isolations in Latin America was the 
predominance of only two clones, the Brazilian clone (CC8-ST239-SCCmecIII) in the strains 

from Brazil, Argentina, Chile and Uruguay and the Chilean/Cordovan clone [99, 100].

HA-MRSA is mainly multi-resistant, and the choice of antibiotics for treating infections caused by 

hospital-acquired MRSA is limited to vancomycin and linezolid and mainly causes serious infec-

tions in patients who are predisposed in some way: those with a weak immune system, after long-

term hospitalization, long-term use of antibiotics, a progressive underlying illness, etc. infection by 

MRSA strains in hospital conditions is usually preceded by colonization of differing duration [88].

In the 1990s, a new type of MRSA appeared in the USA causing infections in the community 

among healthy and younger people who had no history of hospital admission or medical 

treatment in the previous year was reported in Western Australia [70]. These types of MRSA 

strains were described as CA-MRSA [85, 93].

HA-MRSA strains are genetically distinct to CA-MRSA [101]. Particularly, CA-MRSA strains 

are usually sensitive to antibiotics other than β-lactams and contain staphylococcal and carry 
a smaller version of the genetic region responsible for methicillin resistance (SCCmec IV or 

SCCmec V), and often produce the Panton-Valentine leukocidin (PVL) [74, 75].

CA-MRSA strains in the USA are most commonly in a genetic cluster designated as PFGE 

type USA300, MLST type ST8 or spa type t008 [93]. The clonal complexes determined in 

the SARM-AC strains correspond to CC1 (ST1-SARM-IV) circulating in Asia, Europe and 

USA, the CC30 (ST30-SARM-IV), CC8 (ST239-SARM-III/IV) detected in Australia, Europe 

and South America and the USA300 (ST8-SARMI-IV) with a wide geographic distribution 

which includes countries in Europe and Latin America and in the USA. Also the ST59 in Asia 
and the USA and the ST80 in Asia, Europe and the Middle East [84, 95, 96, 100]. A vari-

ant of clone CC30 (EMRSA-16/ST36-MRSA-II) that is prevalent in the UK and the clone CC5  

(ST125-SARM-IV) circulating specifically in Spain exists [50]. Throughout Europe, the 

CA-MRSA strain is CC80:ST80-IV is the most predominant [83, 84].
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The information gathered from MLST indicates that MRSA has evolved multiple times, lead-

ing to the circulation and predominance of particular clonal complexes and sequence types 

[55]. In the case of SCCmec type IV, CA-MRSA is an element smaller than the other elements, 

appears more genetically mobile and does not, at present, carrying additional antimicrobial 

resistance genes is presented [70]. It also appears to occur in a more diverse range of MSSA 

genetic backgrounds, suggesting that it has been heterologously transferred more readily 

from other staphylococcal species [54, 101, 102].

Oosthuysen et al. found a high PVL prevalence, especially among MSSA clones [98]. The MSSA 

population identified and studied could act as a potential reservoir for CA-MRSA clones upon 
the acquisition of SCCmec elements, leading to the rise of PVL-positive CA-MRSA clones [75, 98].

With the studies of molecular typing in S. aureus, they have managed to establish the struc-

tural differences between the bacteria isolates and the dynamics of dissemination and the 
characteristics of the isolates in an outbreak.

Molecular epidemiology studies in MRSA show the predominance of number small clones 

around the world, that is, they have a capacity for dissemination pandemic, probably favored 

by cross infections with strains closely related between hospitals from faraway places.
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