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1. Introduction    

Level 1 data fusion is defined as object assessment (Hall & Linus, 2001). This process of 

estimation and prediction of an entity can be decomposed into a functional series of 

subprocesses as defined by the well known Bowman model (Steinberg, et al, 1999) that is 

depicted in Figure 1. While data fusion can apply to a host of applications, this chapter looks 

at the problem from a target tracking point of view. 
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Generation
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Fig. 1.  Fusion Architecture Based upon the Bowman Model. 

In tracking, the object, a potential target, can be considered to have two descriptive state 
vector elements: kinematics (e.g., position, velocity, etc.) and classification. These state 
vectors are generated based upon the information provided by a host of sensors over time.  
When a single target is present, this problem is straightforward.  When multiple targets exist 
in the region of interest, however, the association subcomponent of Figure 1 becomes the 
key element of the process. Data association, sometimes referred to correlation, is the 
process of determining the correct target object to relate to each measurement.  In Figure 2, 
multiple sensors along with a number of targets appear in the region interest. The reported 
kinematic measurements from all the sensors are shown in Figure 3.  The association step of 
the fusion process determines which measurements are from the same target. This process is 
repeated each time a sensor reports measurements to the fusion system. In addition to issues 
with the number of targets and sensors reporting, each sensor has a degree of uncertainty 
associated with it. Instead of each measurement being expressed as a crisp point or even a 
line of bearing, uncertainty in the measurement creates a region of varying shape and size 
that depends on the type of sensor measurement and the sensor’s accuracy is created. These 
regions, usually described as probability density functions, then interact with probability 
density functions that describe the target’s kinematic track information. O
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To generate the associations between targets and measurements and between measurements 
of different sensors, association scoring routines have been developed. Since the 
measurements are described as random variables, as are the fused target tracks, the 
association algorithms are often based on a probabilistic measure. Most often, the 
association is based on the joint probability of the distance between the measurement and 
predicted location of the target based on the last known position and its velocity 
information: 

 ( ) ( ),
b d

a c
F z f x y dxdy= ∫ ∫z xy

 (1) 

 

 

Fig. 2.  Multiple sensor platforms in a region with multiple targets 

 

 

Fig. 3. Resulting reported kinematic measurements from platforms 
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where the bounds for the calculating the probability are based an estimate of the error in the 
target location prediction.   Often, the track state estimate is computed using a Kalman filter 
(Blackman, 1986), (Blackman & Popoli, 1999), (Barshalom & Li, 1993).  This implies that the 
measurements and the track states are Gaussian random vectors. When this assumption is 
used, a simplified distance measure, referred to has the Mahalanobis distance (Blackman & 
Popoli, 1999),  

  ( ) ( )2 1

1 2 2 1 2( ) ( ) ( )T Tχ −= − + −h x z HPH R h x z  (2) 

is used.  The values R and P denote the measurement error covariance and the state error 
covariance, respectively. This weighted distance is computed in the measurement space.  
The coordinate transformation from the track state-space to the measurement space is 
through the output-coupling function 

 ( )1 1=z h x  (3) 

and its associated Jacobian 

 

1 2

T

nx x x

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

h h h
H " . (4) 

The distance is a unitless value and is a chi-squared random variable. As such, the 

Mahalanobis distance is sometimes referred to as the chi-squared metric. For some 

applications in tracking, the chi-squared metric is normalized between 0 and 1 as either a 

non-metric 

 
( ) ( )1

1 2 2 1 2( ) ( ) ( )T T

e
−− − + −h x z HPH R h x z

, (5)   

where 1 indicates perfect association and 0 indicates no association, or as a normalized 

metric 

 
( ) ( )1

1 2 2 1 2( ) ( ) ( )
1

T T

e
−− − + −− h x z HPH R h x z

, (6)   

where the reverse is true. 

Often, the probability association score of Eq. (1) can be considered computationally 

complex for real time calculations. One reason for this is that the density function can also 

be dependent on the reported mean value of the target location, i.e., near field effects. Also, 

each target track’s density function is recalculated for each update with a new measurement.  

Eq. (1) does clearly allow for modeling of the sensor anomalies and blockages that can occur.  

The boundary could be quite complex.  Piece-wise linear approximations can be used to 

reduce this complexity. On the other hand, the chi-squared metric (Eq. (2)), which is a 

standard association routine, is straightforward in its computation. The target tracks 

provided the Kalman filter already have the associate state error covariance. A sensor model 

provides the conversion. One drawback with this method is that the uncertainty of the 

measurement is assumed to be Gaussian. Some implementations use a Gaussian sum 

approach (Alspach & Sorenson, 1972) to approximate non-Gaussian distributions. This 
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requires multiple iterations of the scoring routine followed by a weighting computation.  A 

new Gaussian sum must be computed if blockage occurs on the sensor. A problem that 

underlies both the probability association approach and the chi-squared metric approach is 

that the implementations often do not incorporate the underlying probability that is 

necessary for the algorithms to provide accurate results.  Often, the equations are employed 

without regard to an understanding of the probability distributions or, in the case of 

blockages and anomalies, the redistributions of the probability.   

Another technique for the data association problem is to use basic fuzzy logic to provide the 
scoring mechanism. Fuzzy logic can utilize a linguistic/rule-based interpretation and 
implementation of the problem. The technique that will be described in the succeeding 
sections of this chapter is based on two interpretation of the widely-used chi-squared metric: 
a mathematical interpretation and a graphical interpretation.  Its foundations for the basic 
Gaussian measurement to Gaussian track problem are then expanded to the problems 
where one of the two elements of the association pair is Gaussian and the other is of uniform 
distribution.  This is followed by the case where both track and measurement are uniformly 
distributed. The applications of both hard constraints or boundary conditions and soft 
constraints are developed.   

2. Basic fuzzy logic 

Fuzzy logic is simply the mapping from an input measurement space to an output 
measurement using linguistic variables. It gives us the ability to model imprecisions by 
incorporating qualitative components into a quantitative analysis. Fuzzification is the 
process of mapping a numerical value into linguistic variables and associated degrees of 
membership. Defuzzification in contrast is the process of taking a consequence fuzzy 
membership function and creating a crisp value.  
To develop fuzzy logic for the correlation of data, two sets of fuzzy membership functions, 

antecedent and conclusion (consequent), are required.  A membership function is a function 

that maps the elements of the set to a value from 0 to 1. The value to which the set is 

mapped is called the degree of membership. Each membership function for a fuzzy set 

relates to some knowledge base for that fuzzy set. For example, if the fuzzy set were 

temperature, the membership functions of hot, warm, and cold might be used. The range of 

temperatures would then be mapped into degrees of membership for each membership 

function. Figure 4 details these sets of membership functions. In Figure 4, the temperature 76 

degrees has a degree of membership of 0.1 for cold, 0.6 for warm, and 0 for hot. 

Figure 4 also demonstrates that all of the membership functions need not be the same shape 
or symmetric, although those characteristics are usually desirable to simplify the 
implementation. Another issue is the difference between inclusion of boundary points 
between the antecedent membership functions and the conclusion fuzzy sets. In antecedent 
sets, the extreme membership functions extend to infinity, as seen in Figure 5. Even if 
bounds exist on the antecedent fuzzy set, the extension will not have an adverse effect on 
the result. The conclusion function bounds are more important, however.  As seen in Figure 
6, the output bounds are exceeded.  One of the most useful properties of fuzzy sets is that 
crisp values can be given a fuzzy representation. A crisp value in an antecedent fuzzy set 
can be represented as a simple discrete unit impulse. For the consequence membership 
functions, the crisp value is represented as the Dirac delta function. 
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Fig. 4. Resulting reported kinematic measurements from platforms 

 

 

Fig. 5. Resulting reported kinematic measurements from platforms 

 

 

Fig. 6. Resulting reported kinematic measurements from platforms 

If the function was defuzzified using the center of gravity method of Eq. (7), the bounds 

could not be achieved unless the center of the area of the extreme membership functions 

existed at the bounds. The position of the extreme bounds is determined by the 

defuzzification algorithm chosen.  In the center of gravity technique, 

 ( )
i i

i

i

i

center area

output t
area

⋅
=
∑
∑

 (7) 

where centeri is the center point of the ith membership function and areai is the area of the ith 

membership function.   
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3.  Basic fuzzy data association 

There are a number of approaches to using fuzzy logic in the data association step for 

kinematic fusion.  The approach developed here uses the chi-squared metric of Eq. (5) as the 

foundation.  When this is done, the resulting association measure will be similar to the 

standard scoring algorithm when both the measurement and the track are Gaussian 

distributions.  To create a fuzzy interpretation of the chi-squared metric, two interpretations 

of the association score are used: a mathematical interpretation and a graphical 

interpretation.  

First, the chi-squared metric is considered a measure of the distance between two 

measurements: an estimated or predicted measurement and a reported measurement.  

The distance is weighted by the associated error covariances for each of these 

measurements.  The covariance in the fuzzy logic association is used to scale the residuals 

or individual components of the Euclidian distance when they are mapped into the 

antecedent membership functions.  This scaling relative to the context can be considered 

similar to the considerations of distances of golf as opposed to astronomy.  The term close 

means in golf can mean a few inches while in astronomy it is considered in light years.  

Thus, the first fuzzy membership functions are developed based on the weighted 

residuals.  

As seen in Figure 7, the parameters used to map the residual to the antecedent membership 

functions do not have fixed values. These parameters that define these membership 

functions are created using a fuzzy logic interpretation of the error covariance matrices and 

their related error ellipses. An error ellipse is an ellipse centered at the position mean of a 

measurement.  The semi-major and semi-minor axes of the error ellipse are defined by the 

square root of the eigenvalues of the position covariance components of the error covariance 

matrices.  The ellipse is oriented based on the eigenvectors.  Using just the eigenvalues as 

the semi-axes creates a 1-sigma error ellipse.  For this association approach, a 1.5-sigma error 

ellipse is used.  An interpretation for the measurement covariance and an interpretation for 

the track covariance are both used to create and develop the parameter set, as seen in Figure 

8.  The parameter set is a weighted combination of the existing parameter set.  This 

“layered” fuzzy approach is shown in Figure 9.  By layering the fuzzy logic, two potential 

inputs to the association scoring inference engine are eliminated. 

The second interpretation of the chi-squared metric is based graphically on the overlap of n-

sigma ellipse of the track state and the measurement, as seen in an example in Figure 10.  A 

percentage of overlap of the area of the measurement to the track covariance ellipse as well 

as the percentage of overlap area of the track to measurement covariance ellipse is 

calculated. The antecedent membership functions are shown in Figure 11. The two area 

measures along with the combined residual score form the three fuzzified inputs to the 

inference engine. A sample inference engine component for a residual of medium and the 

two overlap values is shown in Table 1.   

In summary the five potential inputs have been reduced to three fuzzy inputs: the weighted 

residual, the percentage of measurement covariance overlap with the track covariance, and 

the percentage of the track covariance overlap with the measurement covariance.  This is 

mapped through inference engines (Table 1) to an association score that is valued between 0 

and 1 by defuzzifying the consequent resulting from Figure 12.    
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Fig. 7. Residual antecedent membership functions.  

 

Fig. 8. Measurement and track covariances are used to determine a weighted parameter set 
through a fuzzy inference engine. 

 

Fig. 9. A layered fuzzy system uses fuzzy logic to adjust the antecedent membership functions 
for another input.  This reduces significantly the number of rules in the inference engines. 
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Fig. 10.  Error ellipses approximate measurement and track Gaussian distributions.  Here, 
two measurements (solid lines) overlap two tracks (dashed lines). 

 

 

Fig. 11. Antecedent sets used to compute the association score for percentage of overlap of 
both track error ellipse and measurement error ellipse. 
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Very 
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Table 1. Element of Inference Engine to Map to Association Score Consequence Functions 
for a Uniform Measurement to Gaussian Track 
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Fig. 12. Association score consequence membership functions.  

3.1 Algorithm outline 

The computation of the fuzzy data association score is performed using the following 
algorithm: 
Step 1. Compute the semi-major and semi-minor axes and the rotation of the error ellipse 

defined by the covariance matrices of the tracks and the measurements. The values 
are a result of the eigenvalues and the orthonormal eigenvectors.  This will define a 
1-sigma error ellipse. 

Step 2. Compute the points of the octagons approximation of the n-sigma error ellipse for 
the measurements and the tracks.   

Step 3. For each track-measurement pair define the overlapping region of the error octagon 
approximations as set forth in the following steps: 

Step 3a Determine the intersection points of each a measurement octagon with a track 
               octagon. This is done by computing the intersections of the lines that define the line 
               segments of the octagons sides.  

 

Fig. 13. Ellipses are approximated by octagons and the convex hull of their intersection is 
defined. 
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Step 3b Determine the vertices that may lie inside the other octagon such, as shown in 
               Figure 13. This is done by determining taking each vertex separately of the 
               measurement octagon placing it the track octagon and calculating if it creates a new  
               convex hull.  If a new convex hull is created then that vertex does not lie within the 
               other octagon. The procedure is repeated by using the track vertices with the  
               measurement octagon. 
Step 4. Using the triangle area calculation of Heron’s formula 

( )( )( )area s s a s b s c= − − − , 

where a, b, and c are the vertices of the triangle and 

1
2
( ),s a b c= + +  

compute the area of the two octagons and the overlapping region as seen in Figure 14. 

 

Fig. 14.  The area of overlap between the two octagons is computed by dividing the polygon 
into triangles and applying Heron’s formula. 

Step 5. Compute the percentage of overlap for each covariance matrix. 
Step 6. Using the layered fuzzy approach, which depends on the size of the covariances, 

define the degree of membership of the residual size. The covariances are used to 
generate the antecedent membership function parameters from an a priori set of 
parameters:   

( )
( )

1 1 1 1

2 2 2 2

, , ,

, , ,

a b c

a b c

=

=

P

P

…

…
#  

using a fuzzy logic approach. 
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Step 7. Employing the residual antecedent function from Step 7 define the degree of 
membership of the residual. 

Step 8. Employing the antecedent membership functions, define the degree of memberships 
for the percentage of overlap for each of the octagons (track and measurement). 

Step 9. Employ the inference engines with the three inputs, residual and two percentages 
of overlap, and the consequence membership functions to compute the score. 

The functional flow of the algorithm is shown in Figure 15. 
 

 

Fig. 15.  To reduce inference engine complexity, a layering of fuzzy logic provides the 
functional approach to chi-squared metric emulation.   

4. Fuzzy data association with uniform measurements 

One of the benefits of the fuzzy association approach is that it is not necessary that for either 
the measurements or the track to have a Gaussian distribution. With some minor 
modifications to the algorithm, the case of a uniform distribution, as happens with bearings-
only measurements, can be associated without using a Gaussian approximation. 

4.1 Fuzzy association for a Gaussian track and a uniform measurement 

The generation of the association score when the measurement is uniform can be performed 
in a manner quite similar to the algorithm outlined in Section 3.1.  First, the semi-major and 
semi-minor axes and the rotation of the error ellipse defined by the covariance matrix of the 
track are computed in order to generate the 1-sigma error ellipse. The desired n-sigma error 
ellipse for the track is approximated by an octagon, while, for now, the uniform distribution 
is a rectangle. Use of more complex polygons can prove more accurate approximations to 
the uncertainty region. For each track-measurement pair, an overlapping region of the error 
octagon approximation and the uniform distribution is calculated. A pseudo-residual is 
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computed, based on the average distance from the Gaussian mean to the uniform 
distribution, as in Figure 16. The covariance size of the track generates the parameters for 
the distance antecedent membership function. Antecedent membership functions such as 
those in Figure 17 define the degree of membership values for the percentage of overlap for 
the track’s octagon and the measurement distribution. These fuzzy values fire the inference 
engines using the three inputs – the residual and two percentages of overlap.  Table 2 shows 
an inference engine when the residual value is fuzzified to close. 
 

 

Fig. 16. Association of a Gaussian to a uniform distribution is dependent on both overlap 
and a modified residual. 

 

Fig. 17.  Antecedent membership functions describe the percentage of overlap. 
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Table 2. Element of Inference Engine to Map to Association Score Consequence Functions 
for a Uniform Measurement to Gaussian Track 
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The resulting membership functions are defuzzified to generate the association score. The 
consequence membership functions used are similar to those depicted in Figure 18. 
 

 
Fig. 18.  Consequence membership functions used to develop the association score. 

4.2 Fuzzy association for a uniformly distributed track and a uniformly distributed 
measurement 

For the two uniform distributions case, the association problem degenerates into a simple 
problem of determining the area of overlap. First, the area of overlap for both the 
measurement and the track is computed. The percentage of overlap for each is then 
calculated. Fuzzification, using the antecedent membership functions similar to that of 
Figure 17, defines the degree of membership for the percentage of overlap for the track 
distribution and the measurement distribution. A single inference engine, such as shown in 
Table 3, maps the inputs to the consequence membership functions. The consequence 
membership functions shown in Figure 18 would also be suitable for this case. Defuzzifying 
the resulting membership function computes the resulting association score. 
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Table 3. Inference Engine to Map to Association Score Consequence Functions for a Uniform 
Measurement to a Uniform Track 

5.  Fuzzy data association in the presence of constraints 

The fuzzy association routine can be augmented to accommodate a variable scale target 
location region. As seen in Figure 19, information such as bathymetric data could influence 
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the location possibilities of a submarine or a ship (National Geophysical Data Center, 2007).  
Deep draft ships and submarines often avoid shallows that could endanger the vessel and or 
mission. Thus, various depths would weight the effectiveness of uncertainty differently 
based on the locations. So in Figure 20, the uncertainty ellipses of a track or measurement 
would be less pronounced near the shores and over the seamounts where operations would 
be less likely.  Such measurements would better fit with littoral-active vessels. The channels 
would be much likely operations for the vessels in question. The incorporation of this new 
information is incorporated by creating a weighting to the component of the area of overlap 
in the fuzzy association routine. The weighting is generated using a fuzzy scoring technique. 
The added information improves the performance of the association routine based in a 
global sense. 
 

 
Fig. 19. Bathymetric data influences feasible track space of a vessel. 

5.1 Fuzzy association with hard constraints 

If sensor blockage or target prohibition is present, the covariance ellipses can be modified 
accordingly to incorporate the constraint. Figure ww+4a details the reduction of the error 
ellipse area based on senor blockage of the sensor and prohibited terrain for the target. The 
new area considered for overlap is shown in Figure 20b. These are considered hard 
constraints in that the regions are removed. The remaining feasible regions can be mapped 
similar to the redistribution of the Dempster-Schafer concept (Dempster, 1967) or by a 
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simple reduction in area. The steps of the algorithm  remain the same if area is removed due 
to sensor blockage or terrain prohibitions. Only the percentages of overlap change. 
 

        

Fig. 20. Uncertainty error ellipses are affected by sensor blockage. a) Gaussian ellipses and 
blockage indicated; b) resulting alteration of ellipse.  

5.2 Incorporation of soft constraints for fuzzy association – the penalty method 

In Figure 21, shading is used to indicate four distinct regions where the target can operate 
with the measurement and the track uncertainty ellipses overlaying these. These regions 
might be used to reflect operational conditions, such as indicating the depth that a 
submarine can operate in the specific regions. Since stealth is the submarines primary 
 

 

 

Fig. 21.  Measurement and track ellipses span distinct regions of operation. 
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defense, operations in the shallows, where visual spotting becomes more likely, are less 
probable. So the different regions of overlap indicate that the area of overlap used by the 
fuzzy association algorithm should be reduced in a systematic way. The penalty method 
approach is based on the concept of discrete regions of target possibility or sensor capability.  
The approach proposed is to use a weighting scheme that maps the operational parameters 
into the environmental reports to create a weight.  Since much of the information is heuristic 
in nature, the use of a fuzzy logic mapping for this weighting is proposed.  
Figure 22 presents a chi-squared emulation with the added component of the penalty 
function.  As shown, the weighting adapts the area of overlap using a fuzzy logic system.  
The complexity of the component varies significantly depending on the knowledge of the 
target type, the environment, and the sensor system.   
As discussed in (Stimson, 1998) and (Hall & Linus, 2001), the sensor systems are often well 
understood with the physical capabilities well defined. The operational environment is 
somewhat less understood but often known to a good degree so that the mission can be 
successful.  Finally, while the target capabilities may be well known, the actual classification 
of the target to use such data is not often available.  A library of information can be used to 
generate membership functions a priori for each component of knowledge. The level of 
uncertainty associated with the knowledge component will be combined into the final score 
that will drive the adaptation weighting.  This is shown in Figure 23.   
The implementation of this penalty based routine is created by implementing the following 
algorithm: 
Step 1. Compute the semi-major and semi-minor axes and the rotation of the error ellipse 

defined by the covariance matrices of the tracks and the measurements. This is 
performed by generating the eigenvalues and eignevectors of the covariance 
matrices.  This will define a 1-sigma error ellipse. 

Step 2. Approximate the n-sigma error ellipses for both the measurement and the track by 
octagons.  Compute the vertices of the octagons.  

Step 3. For each track-measurement pair, define the overlapping region of the error by 
using at least an octagon approximation to each area as set forth in the following 
steps:  

Step 3a Determine the intersection points of each measurement octagon with a track 
               octagon by computing the intersections of the lines that define the line segments of  
               the sides of the octagon. 
Step 3b  Determine the vertices that may lie inside the other octagon by taking each vertex of 
               the measurement octagon separately and calculating if it creates a new convex hull  
               with the track octagon.   

If a new convex hull is created, then that vertex does not lie within the other 
octagon. The procedure is repeated by using each of the track vertices with the 
measurement octagon. 

Step 3c Approximate the constraint boundary condition as exemplified in Figure 5 with a 
              piece-wise linear approximation. 
Step 3d Define the multiple irregular polygons for each operational region using the vertices  
              defined in Step 3c and 3d. 
Step 4. Using the triangle area calculation of Heron’s formula 

area = s(s − a)(s − b)(s − c)
, 
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where a, b, and c are the vertices of the triangle and 

s = 1

2
(a + b + c),

 

the area of the two octagons and the overlapping region is then computed by 
summing the areas of the triangles. 

 

 

Fig. 22.  Penalty function augments determination of overlap. 

 

 

Fig. 23.  Level of uncertainty combines into final score. 
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Step 5. Compute the percentage of overlap for each covariance matrix using penalty 
method approach: 

Step 5a Using layered fuzzy logic as in Figure 7, the information from the different 
                constraint components and their uncertainties create a component weight which 
                then is fed as input to the fuzzy systems to create the area restriction weight for  
                each region defined in Step 3d. 
Step 5b   Compute the weighted area  

area = w
i
area

i
i=1

# of  regions

∑
 

and incorporate that into percentage of overlap: 

( ) 100areapercent
eig

⎛ ⎞
= ⋅⎜ ⎟
⎝ ⎠∏ R

 

Step 6. Using the layered fuzzy approach shown in Figure kk+1, which depends on the size 
of the covariances, define the degree of membership of the residual size.  
Antecedent membership functions provide the fuzzification of the error 
covariances. The inference engine then maps input to the consequence membership 
functions.  Each parameter defines a set of parameters for each of the membership 
functions which provide the parameters that describe the antecedent membership 
functions for the residual.  

Step 7. Employing the antecedent membership functions for overlap, the degree of 
memberships for the percentage of overlap for each of the octagons (track and 
measurement) is defined. 

Step 8. Employing the inference engines with the three inputs, residual and two 
percentages of overlap as described above. 

Step 9. Defuzzify the resulting membership function to generate the association score.  The 
consequence membership functions are used to compute the score. 

6. Association example with constraints  

To demonstrate the implementation of the association concept an example with constraints 
is shown. The implementation of this complex example is shown for the three cases: no 
constraint, a hard constraint, and soft constraints. 
The typical passive fixed-sonar array provides a superb example for the use of the soft-
constraint fuzzy association routine. Depending on the deployment of the line array and its 
final settling point on the sea bottom, the capabilities of sonar for different bearing angles 
varies. In Figure 24, a simulated example of an array’s direct blast zone is shown. Because of 
line distortions as the result of nonlinear deployment and sea-bottom features which block 
sound propagation to some or all of the receivers, the acoustic capabilities change. The 
darker regions indicate less reception capabilities for the array. A fixed line array also has 
the problem that sign of the angle of the acoustic source from the sonar cannot always be 
determined. Thus, a mirror image of the true measurement is also generated. 
Figure 25 shows a three target example for the sonar array defined in Figure 24 with the 
boundaries of the capability regions are overlaid. The measurement is a bearings-only 

www.intechopen.com



Target Data Association Using a Fuzzy-Logic Based Approach 

 

53 

measurement with ambiguity.  The associated uncertainty is defined by the solid ellipses.  
The track uncertainties are defined by the dashed lines. The uncertainty ellipses and track 
locations are defined in Table 4 for the three targets. The center of the direct blast 
convergence zone is considered to be origin of the region. As an ambiguous line of bearing, 
the measurement is approximated by a single Gaussian with its uncertainty ellipse defined 
in Table 5.  
Figure 26 defines the antecedent membership functions based on the capabilities.  Figure 27 

defines the consequence membership functions to generate weighting functions for the areas 

of overlap. 
 

 

Fig. 24. Array has varying levels of reception (with darker regions indicating poorer 
reception) over direct blast zone. 
 

 

Fig. 25. Example with three targets in array region with varying levels of reception. 

 

Track 
no. 

x-coord 
(NM) 

y-coord 
(NM) 

Semi-major 
axis (NM) 

Semi-minor 
axis (NM) 

Angle 
(deg) 

1 7.69 9.85 5.77 1.45 90 

2 1.23 15.38 3.85 3.85 0 

3 -5.69 -10.62 4.81 2.89 0 

Table 4. Target track locations and uncertainties 
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Meas. 
no. 

x-coord 
(NM) 

y-coord 
(NM) 

Semi-
major axis 

(NM) 

Semi-
minor axis 

(NM) 

Angle 
(deg) 

1 6.31 10.92 12.5 3.85 60 

2 -6.31 -10.92 12.5 3.85 240 

Table 5. Measurement locations with an ambiguous detection 

 

 

Fig. 26. Antecedent membership functions for possibility of a target in a region 

 

 

Fig. 27. Consequence membership functions for the weighting based on soft constraints. 

The inference engine is defined as 

 
Track 

Existence
Impossible

Not 
Likey 

Unusual Usual 

 None Some Partial Full 
 
For the hard constraint case, the inference engine is defined as 
 

Track 
Existence

Impossible
Not 

Likely 
Unusual Usual 

 None None Full Full 
 
The results for the soft-constraint or penalty method approach for association are compared 

in Table 6. They are compared against those of the normalized chi-squared technique, the 

standard fuzzy association method, and the hard-constraint or barrier method. 
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 Chi-Squared 
Fuzzy 

Association 

Fuzzy Assoc. 
with 

Constraints 

Fuzzy 
Assoc. with 

Penalty 

Target 1 0.767 0.637 0.637 0.58 

Target 2 0.024 0.083 0 0.008 

Target 3 0.9252 0.841 0 0 

Table 6. Association scores based on the normalized chi-squared and the three fuzzy 
association techniques 

The results for this example case clearly indicate that use of constraints provides improved 

association scoring as the non-possible solutions are eliminated. The soft-constraint 

approach has the advantage over the use of hard-constraints in that improbable solutions 

still appear but with a lower score.  This is of use in multi-hypothesis tracking systems and 

N-dimensional-assignment based systems. 
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