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Abstract

Oral bacteria are highly associated with oral diseases, and periodontitis is a strongly 
prevalent disease, presenting a substantial economical burden. Furthermore, there is a 
strong association between periodontal bacteria and other diseases, such as cardiovas-
cular disease, rheumatoid arthritis, or diabetes, so it becomes clear that efficient peri-
odontal cure would be of good medical benefit to general health. Periodontally, Healthy 
loci show a low number of bacteria which are cultivable by individual sulcus, 102–103 
microorganisms with almost Gram-positive microbiota, including Streptococcus and 
Actinomyces species. In gingivitis, it is characterized by an increased bacterial number, 
104–105 microorganisms by periodontal sulcus, besides an increased diffusion of Gram 
negative bacteria (15–50%).The increased number of oral bacteria could be associated 
with the decreased role of the innate and adaptive immunity; so, this chapter will focus 
on the most prevalent bacteria associated with the oral disease on the one hand and the 
role of innate immunity and adaptive immunity (Interleukin 1 Beta Il-1β and Tumor 
necrosis factor-alpha TNF-α) in oral diseases on the other hand.

Keywords: anaerobic bacteria, oral bacteria, oral diseases, periodontitis, oral immunity

1. Introduction

Oral bacteria are highly associated with oral diseases; periodontitis is a strongly prevalent 

disease, presenting substantial economic problem [1]; and oral disease are associated with 

other diseases, such as cardiovascular, rheumatoid arthritis, or diabetes, so it becomes clear 

that good periodontal cure would be of excellent medical interest to general health [2]. 

Periodontally, healthy sites show a low number of bacteria which are cultivable by indi-
vidual sulcus, 102–103 microorganisms with almost Gram-positive microbiota, including 
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Streptococcus and Actinomyces species. In gingivitis, it is characterized by an increased bacte-

rial number, 104–105 microorganisms by periodontal sulcus besides an increased diffusion of 
Gram-negative bacteria (15–50%) [3]. The increased number of oral bacteria could be associ-

ated with the decreased role of the innate and adaptive immunity; so, this chapter will focus 

on the most prevalent bacteria associated with the oral disease on the one hand and the role 

of innate immunity and adaptive immunity (interleukin-1 beta (IL-1β) and tumor necrosis 
factor-alpha (TNF-α)) in oral diseases on the other hand.

2. Historical review on the classification and identification of oral 
bacteria

The initial date for the identification of oral bacteria belongs to 1680, when Antonie van 
Leeuwenhoek noticed, described, and isolated the microorganisms from his teeth plaque by 

using a primitive microscope. He drawn the noticed microbes and, when he established with 

the current knowledge, these drawings represented the most plentiful bacteria found within 

the oral cavity, including fusiform, spirochetes, and cocci bacteria [4].

Record research, a wide range of clinical studies on animals, engaged these oral bacteria with 

two common diseases, periodontitis, and dental caries. Even long before the visual observa-

tions of microorganisms, about 5000 BC, the Sumerians accused certain form of living (called 

as tooth worm) as a causative agent of caries on teeth [5]. Limited microbiological cultivation 

procedures and isolation techniques beginning of the nineteenth century forbid scientists to 

identify the exact causative agent of the disease. But this finding was partially done in 1925, 
by Clarke [6]. Unlike dental caries, another human oral disease is called periodontitis, and it 

is considered as the second most common disease worldwide. The early studies including 

oral bacteria in the pathogenesis of periodontitis were done on a hamster. Administration 
of penicillin inhibited-periodontitis in hamster gives a clear evidence of a bacterial agent [7]. 

Some studies isolated bacteria from dental caries, called Streptococcus mutans and described 

its ability to ferment many sugars and produce acids in glucose broth (pH of 4.3). However, 

he was not able to prove that S. mutans actually produces dental caries, but this finding was 
experimentally proven later in 1960 [8]. Whereas the infectious case of periodontitis appeared 

by demonstration of its transmissibility during infection from a person to another [9]. For a 

long time, periodontal disease researchers aimed to determine specific bacteria from a com-

plex microbial plaque that may be considered a sole causative agent of periodontitis. The big 

problem was the cultivation of oral bacteria in laboratory. Most of the oral bacteria are anaero-

bic that died by air and considered fastidious microbes. This was recognized by researchers at 

that time. Major progress in the anaerobic culture was done in 1960 by designation of anaero-

bic glove boxes (a primitive form of now widely used anaerobic chambers), and it was used 

for the first time by Socransky [10]. This invention improved anaerobic cultivation techniques 

and was combined with optimized complex culture media; it allowed the invention of a pure 

and a good culture of more than 300 oral bacteria types in the period of 40 years ago, includ-

ing clinical samples from supragingival and subgingival dental plaque taken from diseased 

and healthy subjects [11].
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The studies on healthy subjects who agreed to take toothbrushing for a prolonged period 

appeared direct association between assembly of dental plaque and the initiation of gin-

giva diseases, mild form of oral diseases [12, 13]. After 28 days without basic oral hygiene 
in periodontally healthy subjects, there was a rapid assembly of bacterial plaque on the sur-

face of teeth, and gingivitis was developed in all subjects within 10–21 days. These damages 

were reversible when toothbrushing was reintroduced. The researchers analyzed the smear 

of dental plaque specimen taken during the 28th day, and they found, at first, colonizing 
bacteria on the surface of the teeth, bacteria which belonged to the Gram-positive cocci and 

rods, Gram-negative cocci and rods, filaments, and fusobacteria, respectively, while finally 
spirochetes and spirilla were taken place in some times during colonizing. The outside of 

clinical gingivitis linked with the manifestation of the Gram-negative bacteria, and other 

studies on the microbial rotation in oral plaque formation confirmed these outcomes [14].  

Through the years’ progress, many other culture-based and molecular methods were given 

a huge information about the type of species included in periodontitis. A passionate dentist, 
W. D. Miller, studied hard for a long time in the of Robert Koch’s laboratory trying to discover 

the microorganisms which were responsible for teeth decay; he published his research in 

1980, with a book called Microorganisms of the Human Mouth; and in the same book, he sug-

gested a chemoparasitic theory. According to that theory, in a sensitive host, carbohydrates 

fermentable oral microorganisms convert carbohydrates into acid, then the acid demineral-

izes tooth structure specially enamel [15, 16].

The classification of periodontal pathogens was tried to figure out by many researchers. The 

most understanding classification divided the periodontal pathogens into color-coded clus-

ters published by Socransky and his team in 1998. This division resolves and identifies many 
problems and complexes of bacteria and clears their series of infection in the oral plaque 

and their role in periodontitis. Biofilm structure, which extends away from the tooth surface, 
was essential in this classification, and the bacteria responsible for dental plaque were classi-
fied into six clusters (red, orange, yellow, green, blue, and purple). Actinomyces odontolyticus 

and Veillonella parvula represented the “purple” form, while species of Streptococci including 

S.  sanguinis and S. oralis refer to the “yellow” form [17].

The first colonizers of the surface of the teeth with Actinomyces species are purple and yellow 

form of this classification. The next complex, designated with green, included Capnocytophaga 

spp., Campylobacter concisus, Eikenella corrodens, and Actinobacillus actinomycetemcomitans, 

the bacteria contributing to the primary changes in the host. The “bridging species” formed 

the orange cluster are as follows: Prevotella spp., Micromonas micros, Fusobacterium spp., 

Eubacterium spp., and Streptococcus constellatus. That cluster included the species capable of 

using and secreting nutrients in the biofilm, in addition to expressing cell surface molecules 
facilitating binding to early colonizers, and the individual of the red complex. Finally, P. gin-

givalis and T. denticola in addition to Tannerella forsythia refer to the red cluster, and these 

are considered the prevalent pathogens in periodontitis progression; however, there is a 

clear association between the prevalence, number of these bacteria, and periodontitis clinical 

parameters [17, 18]. These three bacteria (in particular P. gingivalis), besides individuals of the 

orange cluster also linked with periodontal lesions, have been heavily studied in vitro, aiming 

to the identification of their key virulence mechanisms [18].
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3. Most prevalent diseases caused by oral bacteria

Many major periopathogens can be seen in healthy individuals of all ages, indicating the 

coexistence of these bacteria as a normal flora in the host. These bacteria increase their num-

bers over time, and this change depends on the conditions of the internal or external envi-

ronment, and it induces chronic periodontal inflammation that can cause the teeth loss as 
an outcome destroying the alveolar bone [19]. The inflammation of the tissues around the 
tooth due to accumulation of dental plaque is considered the main characteristic of acute and 

chronic periodontitis. The current classification of oral disease included the following [20]:

• Gingivitis: Plaque triggers inflammation in the gingivae that are characterized by red, 
swollen tissues and bleeding while brushing or probing.

• Chronic periodontitis: The connective tissue attachment of the teeth and destruction of 
junctional epithelium are damaged. Periodontal pockets and alveolar bone destruction oc-

curred, and this state leads to chronic periodontitis.

• Aggressive periodontitis: It is a severe condition that represented the high proportion of 
younger cohort patients, the progression of disease is rapid, and the degree of destruction 

of the tissue (connective tissue) is high. The higher the level of the plaque, the higher the 

level of the disease.

• Necrotizing ulcerative gingivitis (NUG): Painful ulceration of the tips of the interdental 

papillae. Grey necrotic tissue is visible and there is an associated halitosis. The condition is 

termed necrotizing ulcerative periodontitis (NUP).

• Periodontal abscess: Inside the periodontal pocket is a different species of bacteria when 
the immune system responded to infection, and the periodontal abscess is form. Acute or 
chronic condition may occur, and in some time, the condition is asymptomatic.

• Perio-endo lesions: Lesions may be coalescing or independent, and the periodontal patho-

gen source originates either in the root canal system or in the periodontium.

• Gingival enlargement: The thickness occurs in response to irritation caused by plaque or 

calculus, and the other responses are repeated friction or trauma changes in hormone levels 

or in some time the effect of a drug.

The most common periodontopathogen correlated with aggressive forms of periodontitis is 

Aggregatibacter (previously Actinobacillus) actinomycetemcomitans. This small Gram-negative 

coccobacillus, capnophilic and non-motile have been determined as the most causative factor 

of aggressive periodontitis in young individuals and adults [21]. A. actinomycetemcomitans has 

been divided into six serotypes, and it has been postulated that some serotypes are correlated 

with periodontitis more frequently than periodontal health. Exemplifying this relationship, 

serotype C has appeared more repeatedly from healthy subjects and serotypes A and B more 
frequently in periodontitis [22]. But differences are pointed in A. actinomycetemcomitans sero-

type distribution when ethnicity and geographic location are taken into account; still, 3–8% of 
strains have remained nonserotypeable [23].
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Gram-negative obligate anaerobe asaccharolytic bacteria (Porphyromonas gingivalis, Treponema 

denticola, and Tannerella forsythia) have been extensively correlated with periodontitis [17]. 

P. gingivalis has been detected in correlation with periodontal damages and has an arsenal 

of virulent factors that can affectively stimulate the host responses [18]. T. forsythia was first 
described at the Forsyth Institute, and it became a recognized periodontopathogen because 

of its repeated detection from sites with periodontitis and its huge correlation with the for-

mation of pocket with deep size [24]. T. denticola is also frequently presented in periodontitis 

subgingivally sites, and their number is decreased after appropriate treatment [25]. Other bac-

teria that have been related with periodontitis include Prevotella intermedia, Prevotella nigres-

cens, Fusobacterium nucleatum, Selenomonas, Eubacteria, Eikenella corrodens, Campylobacter rectus, 

and Parvimonas micra [26].

Molecular microbiological studies have shown that many of the bacteria species are recog-

nized in correlation with periodontitis and expanded to include uncultivated and less-often-

identified phylotypes [27].

4. Mechanisms of destruction in periodontal tissues

Bacteria can cause damage directly and indirectly. Various mechanisms are described in the 

steps below. Cytotoxic cellular immune responses to self- and pro-inflammatory responses 
involving release of interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α), and interleu-

kin-6 (IL-6) could lead to tissue destruction [28].

• Crevicular epithelium is destroyed by Porphyromonas gingivalis, Treponema denticola, 
and Aggregatibacter actinomycetemcomitans.

• Leukotoxin is secreted by A. actinomycetemcomitans, and it is impaired with polymor-

phonuclear (PMN) function (chemotaxis, phagocytosis, and intracellular killing) and other 
leukocytes.

• P. gingivalis is dysregulated of cytokine networks by their R1 proteinase activity.

• Capnocytophaga spp. are degraded of immunoglobulins.

• P. gingivalis, P. intermedia, T. forsythia, and T. denticola increase the mucosal permeability 

and degradation of collagen by fibroblastic collagenase by volatile sulfur compounds from 
Gram-negative anaerobes in addition to disaggregation of proteoglycans by disrupting SH 

(sulphydryl) bonds or impaired host cell function.

• Destruction of periodontal tissues proteins by proteolytic enzymes (collagenases and tryp-

sin-like proteinases) to peptides and amino acids provides nutrients for Gram-negative 

bacteria. While the extracellular matrix is destroyed by other type of enzymes that called 

hydrolytic enzymes.

• The complement is activated when infection occurs by bacteria in response to LPS.

• Lipoteichoic acid from Gram-positive bacterial cell walls stimulates bone resorption.
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5. Immunopathological factor associated with periodontal pathogens

The pathogenesis of periodontal disease is categorized into four stages, based on histopatho-

logical examination of the development of periodontal inflammation due to plaque accumu-

lation. These stages are called (a) the initial, (b) the early, (c) the established, and (d) the 

advanced lesions [28, 29]. The description of stages in periodontal damage progression is 

listed below:

(a) Initial lesion

Without normal oral hygiene measures, within 2–4 days of plaque accumulation, the first 
inflammatory response is observed histologically. It is characterized by vasodilatation, loss of 
perivascular collagen, and active migration of monocytes and neutrophils into the periodon-

tal tissues and junctional epithelium mediated by endothelial leucocyte adhesion molecules 

(ELAM) and intercellular adhesion molecules (ICAM) that are observed. The exudation of 
serum proteins from the dilated capillaries leads to an increase in gingival crevicular fluid 
(GCF) flow.

(b) Early lesion

The early lesion presents after 4–7 days of plaque accumulation. This is clinically detectable 

as gingivitis, with more pronounced vascular changes and an increase in extravascular neu-

trophils. Histologically, the inflammatory infiltrate consists of numerous lymphocytes (pre-

dominantly T lymphocytes), immediately below the proliferating basal cells of the junctional 

epithelium. Destruction of the gingival connective tissue occurs through apoptosis of fibro-

blasts, and a reduction in the collagen fiber network of the marginal gingivae occurs via host- 
and pathogen-derived MMP.

(c) Established lesion

This is similar to the early lesion with a shift in the cell population in the inflammatory 
(2–3 weeks of plaque accumulation). Here, plasma cells are the main histological features in 

older patients, whereas in younger patients, the infiltrate continues to be dominated by lym-

phocytes. Clinically, inflammation will become more pronounced with an increase in swell-
ing, and the false pocket will form. T and B lymphocytes, antibodies, and complement are 

found in the inflamed marginal gingival and gingival sulcus.

(d) Advanced lesion

At this stage the inflammatory lesion expands into the periodontal ligament and alveolar 
bone. There is a destruction of a tissue linked to the teeth. The junctional epithelium migrates 

down the root surface to form a true periodontal pocket. MMP has the ability to destroy 
periodontal ligament and the surrounding alveolar bone through enhanced osteolytic activ-

ity. The direct cytotoxicity of bacterial products leads to direct tissue damage. Proteinases, 
collagenases, epitheliotoxin, cytolethal distending toxin, hemolysin, hydrogen sulfide, and 
ammonia are examples of bacterial products. Moreover, dysregulation of the factor derived 

from the host such as proteinases and proteinase inhibitors; MMPs and tissue inhibitors to 
metalloproteinases (TIMPs); pro-inflammatory cytokines such as IL-1α, IL-1β, TNF-α, and 
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others; prostaglandins; and the products of polymorphonuclear leukocytes leads to the dam-

age of the connective tissue attachment.

5.1. Innate immunity response to periodontal pathogens

The innate host response primarily involves the recognition of microbial components such 

as LPS by the immune cells of the host, and the result of activation produced inflammatory 
mediators. The Toll-like receptors (TLRs), which are synthesized by leukocytes and resident 

cells in the periodontal tissues, can activate the innate immunity response by binding to 

numerous bacterial components [30–31]. The developing biofilm consists of initially Gram-
positive cocci in health, changing to the increased numbers of motile Gram-negative anaer-

obes in gingivitis and periodontitis [17].

Endotoxin (LPS) of Gram-negative bacteria is considered a huge stimulator of TLR4. LPS from 
Gram-negative bacteria cell wall can be released through cell lysis. It becomes linked to the extra-

cellular acute-phase protein LPS-binding protein before binding to the cluster of differentiation 
14 (CD14). The outcome is transferred from LPS to the extracellular domain of the TLR4 receptor 
and subsequent TLR4 signaling [32]. Gram-negative bacteria also activate TLR2 through their cell 

membrane proteins, TLR5 through flagella, TLR9 through the determination of bacterial cytosine-
phosphate-guanine (CpG) DNA, and nucleotide-binding oligomerization domain-containing  
proteins 1 and 2 (NOD 1, NOD 2) through peptidoglycan derivatives [32, 33].

Periodontal pathogens have been reported to stimulate TLRs in vitro, such as LPS of P. gin-

givalis, and fimbriae is a potent TLR2 agonists [34–36]. A. actinomycetemcomitans and whole 

P. gingivalis will stimulate TLRs [37–40]. Moreover, many bacteria can initiate an immune 

response via TLR9, which also detects viable bacterial DNA [41]. It is therefore clear that the 

myriad of bacteria that are found in both health and increasing hardness of periodontitis will 

present a challenge to the response innate immunity. Following TLR activation, an intracel-

lular signaling cascade occurs which can result in stimulation of transcription factors, sub-

sequent inflammatory cytokine expression, leukocyte migration to the infection locus, and 
tissue damaging [42, 43]. The nucleotide-binding oligomerization domain (NOD) and the 

inflammation system have been submitted as possible accessory molecules in the induction of 
response of innate immunity against periodontopathogens [44–46]. The junctional epithelium 

is the front line between the oral normal flora and the host. It is well equipped to recognize 
invading pathogens, some studies showed that the present of mRNA encoding TLR2, TLR3, 
TLR4, TLR5, TLR6, and TLR9 in gingival epithelial cells is a clear indication of the existence 

of the infectious agent [47]. Within the gingival epithelium and between the connective tissue, 

Langerhans cells and tissue dendritic cells are also found. TLRs are produced by antigen-

presenting cells and appear on their surface including TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, 
TLR8, and TLR10. The response of adaptive immunity against bacterial products is monitored 
by these receptors [30, 33].

The alveolar bone is the supporting structure into which the periodontal ligament inserts that 

is ultimately destroyed by the inflammatory lesion of periodontitis. Osteoblasts and osteoclasts 
included in bone turnover also express TLR1, TLR4, TLR5, TLR6, and TLR9 [35] and TLR1, TLR2, 

TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, and TLR9, respectively [48]. It is therefore possible that 

TLR signaling within the bone can generate an inflammatory response to invading pathogens, 
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leading to pathological resorption of the bone through excessive or prolonged production of 

osteolytic host molecules, including IL-1, tumor necrosis factor-α (TNF-α), and prostaglandin E2 
(PGE2), which stimulate osteoblast inhibition and osteoclast activation and maturation through 
the receptor activator of nuclear factor kappa-B ligand/osteoprotegerin (RANKL/OPG). Many 
biological events in periodontal disease are obligatory regulated by cell–cell interactions, which 

may be grouped into two forms: cognate (adhesive) interaction, achieved by mutual recognition 

between membrane-bound cell surface molecules, and cytokine-mediated interactions [49].

Intercellular adhesion molecule-1 (ICAM- 1, CD54) and ITGB2 (integrin beta 2, CD18), which 
stabilize cell–cell interactions and facilitation of leukocyte migration across the endothelial 

barrier, are achieved by ICAM-1 (intercellular adhesion molecule-1, CD54) and ITGB2 (integ-

rin beta 2, CD18); therefore, they are called adhesion molecules [22].

5.1.1. Adaptive immunity cytokine (pro-inflammatory cytokines) response to periodontal 
pathogens

Cytokines are a large and diverse family of soluble mediators including interleukins. Cytokines 

play a major role in various biological activities such as differentiation, proliferation, regenera-

tion, development, repair inflammation, and homeostasis. Cytokine networks are an impor-

tant side of periodontal inflammation and subject to several excellent reviews [50].

The IL-1 family of cytokines (IL-1α and IL-1β) has different roles in immunity, tissue homeo-

stasis, tissue breakdown, and inflammation. Monocytes and macrophages are released TNF-α 
in huge amount in responses for infection. It induces the production of collagenase and is 

secreted by fibroblasts to make damages on the cartilage and bone, and it has been involved 
in the damage of the periodontal tissue in periodontitis [51].

5.1.2. Interleukin-1α and interleukin-1β (IL-1α/IL-1β) role in periodontal pathogens

IL-1 is a polypeptide, which has diverse activities and roles in immunity, inflammation, tis-

sue breakdown, and tissue homeostasis [52]. IL-1 is synthesized by various cell types, such 

as fibroblasts, lymphocytes, skin cells, macrophages, monocytes, vascular cells, and osteo-

cytes, following its activation. IL-1α and IL-1β belong to the IL-1 family of cytokines which 
have similar biological functions and bind to the same receptors found on many cell types. 

Fibroblast cells in periodontal ligament are triggered by IL-1 to stimulate them to release cellu-

lar mediators, prostaglandin E2 (PGE2), and matrix-degrading enzymes which destroyed the 
connective tissue and lead to attachment loss [53]. Some studies refer that IL-1 is involved in 

the pathogenesis of periodontitis and also associated with bone destruction. Together, IL-1α 
and IL-1β have appeared to stimulate bone resorption and bone inhibition in cooperation  
with TNF-α. IL-1β has appeared to be significantly more potent in mediating bone resorption 
compared with IL-1α and TNF-α. IL-1 can also stimulate elevated production of matrix metal-
loproteinases (MMPs), procollagenase, and plasminogen activator [54].

5.1.3. Tumor necrosis factor-alpha (TNF-α) role against periodontal pathogens

TNF-α is a pro-inflammatory cytokine released by activated monocytes and macrophages [55]. 

TNF-α functions include the upregulation of attachment molecules and chemokines which 
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are involved in the cell migration to inflamed and infected sites [56]. Collagenase secreted by 

fibroblasts, resorption of the cartilage and bone, and damaging of the periodontal tissue all 
are stimulated by cytokine production [57]. Both GCF and periodontitis tissues have shown 

high levels of TNF-α, and it has shown positive correlation to MMP and RANKL expression 
[58, 59]. Animal studies also demonstrated that TNF-α plays a key role in inflammation and 
periodontal tissue damaging including bone resorption and loss of connective tissue attach-

ment [58, 60]. Pro-inflammatory cytokines produced during infection (IL-1β and IL-6) are 
upregulated by TNF-α, this production linked with cell migration into the site of infection, 
and finally bone resorption occurred [55, 61]. New studies was done by Alwaeli and Abd [62, 

63] who tried to interpret the relation between concentration of TNF-α and IL-1β and poly-

morphism of their genes, and they found some of SNPs (single-nucleotide polymorphisms) 
that trigger the production of TNF-α and IL-1β, by increasing the activity of their genes so the 
high concentration level of TNF-α and IL-1β leads to additional damage in periodontal tissue, 
while the other SNPs decrease the production of TNF-α and IL-1β, for this reason the termed 
“SNP-genotype combination principal” for this phenomena by Alwaeli and Abd (62–63).

List of abbreviation

BC Before Christ

CD cluster of differentiation

CpG cytosine-phosphate-guanine

ELAM endothelial leukocyte adhesion molecules

GCF gingival crevicular fluid

ICAM intercellular adhesion molecules

IL-1β interleukin-1 beta

ITGB2 integrin beta 2

LPS lipopolysaccharide

MMP matrix metalloproteinases

NOD nucleotide-binding oligomerization domain

NUG necrotizing ulcerative gingivitis

NUP necrotizing ulcerative periodontitis

OPG osteoprotegerin

PGE2 prostaglandin E2

PMN polymorphonuclear

RANKL receptor activator nuclear factor kappa-B ligand
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SNP single-nucleotide polymorphism

TIMP tissue inhibitors to metalloproteinases

TLRs toll-like receptors

TNF-α tumor necrosis factor-alpha
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