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Abstract

A theoretical investigation of the effects of the parabolic, shifted parabolic, hill-like, and
cup-like parabolic confining electric potentials on photoionization cross section (PCS) in a
spherical quantum dot is presented. Each of the parabolic potentials is superimposed on
an infinite spherical square quantum well (ISSQW) potential. The parabolic potential
blueshifts the peaks of the PCS, while the shifted parabolic potential causes a redshift. As
the so-called strength of cup-like parabolic potential is increased, the peak of the PCS
becomes redshifted for the s! p transition, but blueshifted for the p! d, d! f (and so

forth) transitions. On the contrary, an increase in the strength of the hill-like parabolic
potential blueshifts peaks of the PCS for s! p transitions, while it redshifts those of

transitions between higher states.

Keywords: photoionization cross section, confining electric potential, spherical quantum
dot, hydrogenic impurity

1. Introduction

Recent advances in nanofabrication technology have made it possible to fabricate

nanostructures of different sizes and geometries [1–3]. Nanostructures have a wide range of

applications including in nanomedicine [4, 5], optoelectronics [6, 7], energy physics [8–12], and

gas sensing [13]. Now, even with utmost care and employing the most advanced techniques, it

is not possible to fabricate nanostructures which are free of impurities. It may be advanta-

geous, however, to introduce impurities into a nanostructure at the fabrication stage. The

presence of such deliberately introduced impurities can lead to improved performance of

nanodevices, for example, enhancement of electrical conductivity of semiconducting materials

[14]. The impurity may actually be positively charged, in which case an electron may become

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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bound to it, thus forming an electron-hole pair. Photoionization is one of the useful probes for

the particular nature of electron-impurity interactions in low-dimensional systems. In the

process of photoionization, upon absorbing sufficiently enough energy from the irradiating

electromagnetic field, the electron can break free from the impurity. In a sense, photoionization

is the classical analog of the binding energy problem. Certainly, the subtlety in photoionization

effects is in the variety of conditions in low-dimensional systems. These conditions include

quantization of the electron’s energy levels as well as the optical properties of the specimen.

In this regard, photoionization studies on nanostructures could offer insight into the electron-

impurity interaction in a wide variety of conditions. These photoionization effects have fueled

significant interest in the processes of photoionization in low-dimensional systems. The effects

of geometry and hydrostatic pressure on photoionization cross section (PCS) have been

reported in concentric double quantum rings [15]. The effect of applied electric field on

photoionization cross section has also been probed in cone-like quantum dots [16]. The role

that impurity position plays in modifying the PCS in a core/shell/shell quantum nanolayer [17]

and a purely spherical quantum has been investigated [18]. Overall, it has been found that

photoionization transitions are independent of the photon polarization for a centered impurity,

while the transitions are dependent on the photon polarization when the impurity is off-

centered. Influences of intense laser field and hydrostatic on PCS in pyramid-shaped quantum

dots have also been reported [19]. There also have been studies of PCS in spherical core/shell

zinc blende quantum structures under hydrostatic pressure and electric field [20].

In this chapter, the effect of geometry of confining electric potential on centered donor-related

PCS in spherical quantum dots is investigated. The electric potentials considered are the

parabolic, shifted parabolic, cup-like, and the hill-like potentials, all of which have a parabolic

dependence on the radial distance of the spherical quantum dot. To start with, the Schrödinger

equation is solved for the electron’s eigenfunctions and energy eigenvalues within the effective

mass approximation. It is emphasized that the treatment of photoionization process given here

is limited only to isotropic media.

2. Theory

The basic problem of photoionization involves an electron deemed to be bound to a donor

charge or indeed a center of positive charge embedded in a semiconductor specimen. An

electron, upon absorbing sufficiently enough energy from the irradiating electromagnetic field,

can be “liberated” from the electrostatic field of the positive charge. Now, in low-dimensional

systems, the energy of an electron is quantized into different energy levels. The process of

photoionization can thus involve intermediate transitions wherein an electron in some initial

state ∣ii absorbs a photon of energy ħω and thereby makes a transition to a final state ∣f i. It is

worth noting that in photoionization calculations, the initial states of the electron are described

by wave functions taking into account the presence of the impurity. The final states, however,

are described by the wave functions in the absence of the impurity. This notion of taking the

initial and final quantum states of the electron, in a sense, is a simulation of calculations of the
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binding energies in classical mechanics. The energies of the corresponding initial and final

states are Ei and Ef , respectively. The system investigated here is a spherical quantum dot

(SQD) of refractive index n and relative dielectric constant ε, which may be a GaAs material

embedded in a Ga1-xAlxAs matrix, with a donor impurity embedded at its center. Now, one of

the physical quantities that are useful in the description of this binding energy-like problem is

called photoionization cross section. This quantity may be regarded as the probability that a

bound electron can be liberated by some appropriate radiation per unit time per unit area,

given by [15–20]

σlm ¼ σoħω
X

f

f j r
!
ji

D E�

�

�

�

�

�

2

δ Ef � Ei � ħω
� �

(1)

where f j r
!
ji

D E
�

�

�

�

�

� is the interaction integral coupling initial states to final states, αFS is the fine

structure constant and r
!

is the electron position vector. Finally, the amplitude of the PCS is

given by σo ¼ 4π2αFSnE
2
in= 3E2

avε
� �

in which Ein is the effective incident electric field and Eav the

average electric field inside the quantum dot. Evaluation of the matrix elements for an SQD

leads to the selection rules Δl ¼ �1 [21], that is, the allowed transitions are only those for

which the l values of the final and initial states will be unity. In the investigations carried out

here, the evaluations of the PCS are for transitions only between two electron’s energy

subbands. For purposes of computation, therefore, the Dirac delta function in Eq. (1) is

replaced by its Lorentzian equivalent given by

δ Ef � Ei � ħω
� �

¼
ħΓ

Ef � Ei � ħω
� �2

þ ħΓð Þ2
, (2)

where this is the so-called Lorentzian linewidth.

Now, in view of spherical symmetry, the solutions of the Schrödinger wave equation are

sought in the general form Ψ lm r;θ;φð Þ ¼ ClmYlm θ;φð Þχ rð Þ, where Clm the normalization con-

stant, Ylm θ;φð Þ the spherical harmonics of orbital momentum and magnetic quantum numbers

l and m, respectively. The radial part of the total wave function, χ rð Þ, is found to be the

following linear second-order differential equation

1

r2
d

dr
r2
dχ rð Þ

dr

� �

þ
2μ

ħ
2

Elm þ
kee

2

εr
� V rð Þ

� �

�
l lþ 1ð Þ

r2

	 


χ rð Þ ¼ 0 (3)

where μ is the effective mass of electron (of charge -e) and ke is the Coulomb constant.

2.1. The electron’s wave functions

The specific forms of the solutions of the differential equation described above depend on the

particular electric confining potential considered. Here, the different radially dependent forms

of the so-called intrinsic electric confinement potential of the spherical quantum dot, in turn,

taken into account in solving Eq. (3) are (shown in Figure 1) (1) simple parabolic, (2) shifted
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parabolic, (3) bi-parabolic (cup-like), and (4) inverse bi-parabolic (hill-like), each superimposed

on an infinite spherical square quantum well (ISSQW).

2.1.1. Parabolic potential

When the parabolic potential (PP), which has the form

V rð Þ ¼
1

2
μω2

0r
2, r < Rð Þ (4)

and infinity elsewhere, is inserted into the Schrödinger equation (Eq. (2)) in the presence of the

donor impurity, then the second-order differential equation is solvable in terms of the Heun

biconfluent function [22, 23].

χ rð Þ ¼ C1lme
g1 rð ÞrlHeunB 2lþ 1;α; β;γ; g2 rð Þ

� �

þ C2lme
g1 rð Þr- lþ1ð ÞHeunB - 2lþ 1ð Þ;α; β;γ; g2 rð Þ

� �

(5)

with

α ¼ 0, β ¼ �
2Elm

ħω0
,γ ¼

4kee
2

εħ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�
μ

ħω0

r

(6)

and the arguments

Figure 1. The spatial variation of the confining electric potentials across the SQD: simple parabolic potential (PP), shifted

parabolic potential (SPP), cup-like potential (CPP), and the hill-like potential (HPP).
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g1 rð Þ ¼
μω0

2ħ
r2, and g2 rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2g1 rð Þ
q

: (7)

Eq. (5) is the complete solution of the differential equation given earlier; however, the second

solution diverges at the origin and so C2lm must be taken as zero. The application of the

standard boundary condition of continuity of the wave function at the walls (r ¼ R) of the

SQD leads to the following electron’s energy eigenvalue equation:

HeunB 2lþ 1;α; βE;γ; g2 Rð Þ
� �

¼ 0: (8)

The electron’s energy spectrum is derived from numerically solving Eq. (8) for its roots βE
according to

Elm ¼ �
βE
2
ħω0: (9)

2.1.2. Shifted parabolic potential

This potential is convex: maximum at the center and decreases parabolically to assume a

minimum value (here taken as zero) at the radius

V rð Þ ¼
1

2
μω2

o r� Rð Þ2, r < Rð Þ (10)

and infinity elsewhere. The solution to the radial component of the Schrödinger equation

(Eq. (3)) corresponding to this potential is also in terms of the Heun biconfluent function

(Eq. (5)) but with [23]

α ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
μω0R

2

ħ

s

, β ¼ �
2Elm

ħω0
,γ ¼

4kee
2

εħ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�
μ

ħω0

r

(11)

and the arguments

g1 rð Þ ¼
μω0

2ħ
r� 2Rð Þr and g2 rð Þ ¼ �i

ffiffiffiffiffiffiffiffiffi

μω0

ħ

r

r (12)

The energy spectrum is given by the usual boundary conditions at the walls of the SQD as

Elm ¼ �
βE
2
ħω0 (13)

where βE is the value of β that satisfies the condition given in Eq. (8).

2.1.3. The bi-parabolic (cup-like) potential

The solution to the Schrödinger equation for the bi-parabolic potential
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V rð Þ ¼
1

2
μω2

0 r� R=2ð Þ2, (14)

and infinity elsewhere, in the presence of the impurity, is in terms of the Heun biconfluent

function (Eq. (5)) [24] with

α ¼ iR

ffiffiffiffiffiffiffiffiffi

μω0

ħ

r

, β ¼ �
2Elm

ħω0
,γ ¼ �

4ikee
2

εħ

ffiffiffiffiffiffiffiffi

μ

ħω0

r

(15)

and the arguments

g1 rð Þ ¼
μω0

2ħ
r � Rð Þr, and g2 rð Þ ¼ �i

ffiffiffiffiffiffiffiffiffi

μω0

ħ

r

r: (16)

Requiring that the electron wave function should vanish at the walls of the SQD avails the

energy spectrum for an electron in an SQD with an intrinsic bi-parabolic potential as

Elm ¼ �
βE
2
ħω0 (17)

where βE is the value of β that satisfies the condition stipulated in Eq. (8).

2.1.4. The inverse lateral bi-parabolic (hill-like) potential

The hill-like potential has a concave parabolic increase in the radial distance from the center to

reach maximum at a radial distance half the radius r ¼ R=2ð Þ, after which a concave parabolic

decrease brings it to a minimum at the walls of the SQD r ¼ Rð Þ

V rð Þ ¼
1

2
μω2

o Rr� r2
� �

, r < Rð Þ (18)

and infinity elsewhere. The radial component of the Schrödinger equation for this potential in

the presence of the impurity is also solvable in terms of the Heun biconfluent function (Eq. (5))

but with [24]

α ¼ R

ffiffiffiffiffiffiffiffiffi

μω0

iħ

r

, β ¼
μω2

0R
2 � 8Elm

� �

4iħω0
,γ ¼ �

4ikee
2

εħ

ffiffiffiffiffiffiffiffiffiffi

-μ

iħω0

r

(19)

and the arguments

g1 rð Þ ¼
μω0

2iħ
R-rð Þr and g2 rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

-iμω0

ħ

r

r: (20)

Application of the boundary conditions at the walls of the SQD avails the energy spectrum as

Elm ¼
1

8
μω2

0R
2 �

iβE
2

ħω0 (21)

with βE being the value of β that satisfies the condition set in Eq. (8).
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3. Results and discussions

The parameters used in these calculations are relevant to GaAs quantum dots: effective elec-
tronic mass μ ¼ 0:067me, me being the free electron mass and ε ¼ 12:5. The impurity linewidth
has been taken such that ħΓ ¼ 0:1 meV [18, 19]. The spatial variation of the confining electric
potentials across the SQD is illustrated in Figure 1, where κ ¼ 2= μω2

0R
2� �� 


. Figure 2 displays
the effects of these potential geometries on the ground-state radial electron wave functions
across an SQD of radius R = 250 Å in the absence of the hydrogenic impurity. The parabolic
potential shifts the electron wave functions toward the center of the SQD, while the shifted
parabolic potential (SPP) shifts the electron wave functions toward the walls of the SQD. As
stated earlier, the cup-like is zero at r ¼ 0:5R but maximum at both the center and at the walls
of the SQD. Thus, this potential tends to “concentrate” the electron’s wave functions of the
excited states to regions near r ¼ 0:5R but diminish the ground-state wave functions near
regions where it is maximum. By contrast, the hill-like potential is maximum at r ¼ 0:5R and
thus has the opposite effect on the respective electron’s wave functions.

Figure 3 depicts the variation of the first-order s ! pð Þ and second-order p ! dð Þ transition
energies as functions of the strengths of the potentials, viz: the parabolic potential (PP), shifted
parabolic potential (SPP), the cup-like potential (CPP), and the hill-like potential (HPP). These
are the differences in the energies of states between which an electron is allowed to make
transitions within the dipole approximation during photoionization. Now, in the absence of
the impurity, the first-order transition energies ΔEsp are always lower than those of second-
order transition ΔEpd, that is, for all values of nano-dot radius. In the presence of the impurity,
however, there is some characteristic radius R0 at which the first-order and the second-order

Figure 2. The effect of the different potentials on the ground-state radial electron wave function for an SQD of radius
R = 250 Å. The potentials, parabolic (PP), shifted parabolic (SPP), cup-like (CPP), and the hill-like (HPP) all have strength
ħω0 ¼ 10 meV. The dashed curve represents ground-state electron wave function in an ISSQW (ħω0 ¼ 0 meV).
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transition energies coincide. For the system investigated here, this radius is in the neighbor-
hood of R0 = 171 Å. For SQDs with radii less (greater) than R0, the second-order transition
energies are more (less) than the first-order transition energies. The parabolic potential and
hill-like potentials reduce the value of this radius as they intensify. On the contrary, increasing
the strengths of the shifted parabolic potential and the cup-like potentials increases R0, sending
it to infinity as it intensifies further. In this case, ΔEsp and ΔEpd would never coincide and
ΔEpd > ΔEsp. The parabolic potential widens the gap between the energies of the initial and
final states, regardless of the order of transition. The increase is more pronounced in transitions
involving the lower states than in transitions involving the higher states. The shifted parabolic
potential decreases transition energies also regardless of the order of transition, and with the
reduction being more pronounced for transitions involving the lower states than in those
involving the higher states. However, the situation is not so straightforward with the cup-like
and the hill-like potentials. The cup-like potential decreases transition energies of only transi-
tions involving the ground (s) state and enhances transition energies involving higher states.
The hill-like potential increases only the transition energies involving the ground state but
decreases transition energies involving higher states.

Figure 4 shows the sum of the s ! p and p ! d normalized photoionization cross sections for
an SQD of radius R = 250 Å, where the dashed curve is for an ISSQW (ħω0 ¼ 0 meV) while the
solid curve corresponds to the parabolic potential of strength ħω0 ¼ 5 meV superimposed on
the ISSQW. Here, as in subsequent figures, the radius of the SQD is greater than R0, thus the
s ! p peak occurs at larger beam energies than the second-order peak. Increasing the strength

Figure 3. The dependence of the first- s ! pð Þ and second p ! dð Þ-order transition energies on the strengths of the
different potentials, viz.: the parabolic potential (PP), shifted parabolic potential (SPP), the cup-like potential (CPP), and
the hill-like potential (HPP), for an SQD of radius R = 250 Å.
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of the parabolic potential blueshifts the peaks of the PCS, simultaneously moving them apart.
This can be beneficial in cases where transitions between different states (e.g., the s ! p and
the p ! d transitions) need to be isolated and distinct, for research or practical purposes.

Figure 4. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves) and for an SQD with the parabolic potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW (solid plots),
for a radius R = 250 Å.

Figure 5. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves) and for an SQD with the shifted parabolic potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW, for a
radius R = 250 Å.
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Figure 5 depicts the summed normalized PCS for the s ! p and p ! d transitions in an SQD of
radius R = 250 Å. The dashed curve is associated with the ISSQW (ħω0 ¼ 0 meV) while the
solid plot corresponds to PCS for an SQD with a shifted parabolic potential of the so-called
strength such that ħω0 ¼ 5 meV. Overall, the shifted parabolic potential redshifts the resonance
peaks of the PCSs. It is interesting to note, however, that the first-order resonance peak
redshifted to a much greater extent than that of the second order. These results suggest that
the shifted parabolic potential can be utilized to manipulate the first-order and second-order
transitions according to their corresponding photon energy of excitation [23].

Figure 6 illustrates the normalized s ! p and p ! d PCSs as functions of the photon energy for
an SQD of radius R = 250 Å. The dashed curve is for the purely ISSQW (ħω0 ¼ 0 meV) while
the solid plot is for the cup-like potential of strength ħω0 ¼ 5 meV superimposed on the
ISSQW. As can be clearly seen from the figure, the cup-like potential redshifts peaks of the
s ! p PCS while it blueshifts the peaks of the p ! d PCS. This potential also blueshifts peaks of
PCS of transitions involving higher states (d ! f , f ! g and so forth).

Figure 7 depicts the variation of the normalized s ! p and p ! d PCSs with the photon energy
for an SQD of radius R = 250 Å. Here also, the dashed curve represents the purely ISSQW
(ħω0 ¼ 0 meV) while the solid plot is for the hill-like potential of strength ħω0 ¼ 5 meV
superimposed on the ISSQW. Increasing the strength of the hill-like potential blueshifts the
peaks of the s ! p PCS while it redshifts those of the p ! d PCS. Although not shown here, the
hill-like potential also redshifts peaks of the PCS associated with transitions from higher states
(d ! f , f ! g and so forth).

Figure 6. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves) and for an SQD with the cup-like potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW, for a radius
R = 250 Å.
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4. Conclusions

The electron’s wave functions in a spherical quantum dot with a centered donor impurity have
been obtained, and these were utilized to evaluate the effects of the geometry of confining
electric potentials on PCS in an SQD. The parabolic potential enhances photoionization transi-
tion energies independent of the initial or the final state, while the shifted parabolic potential
decreases the transition energies, also independent of the order of transition. As a result, the
parabolic potential blueshifts the peaks of the PCS, while the shifted parabolic potential
redshifts the peaks, for all transitions. The cup-like and the hill-like potentials exhibit a selec-
tive enhancement or a reduction of transition energies. The hill-like parabolic potential
enhances the transition energies involving the ground state but dwindles those involving
higher states. A consequence of this effect is that the hill-like parabolic potential blueshifts
peaks of s ! p PCS but redshifts those involving higher states. The situation is the other way
around in the case of the cup-like parabolic potential. The results presented here also suggest
that nano-patterning techniques may offer yet another method of tuning the process of photo-
ionization to resonance, through tailored electric potentials.
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