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1. Introduction      

This chapter is concerned with the application of approximate dynamic programming 
techniques (ADP) to solve for the value function, and hence the optimal control policy, in 
discrete-time nonlinear optimal control problems having continuous state and action spaces. 
ADP is a reinforcement learning approach (Sutton & Barto, 1998) based on adaptive critics 
(Barto et al., 1983), (Widrow et al., 1973) to solve dynamic programming problems utilizing 
function approximation for the value function.  ADP techniques can be based on value 
iterations or policy iterations. In contrast with value iterations, policy iterations require an 
initial stabilizing control action, (Sutton & Barto, 1998).  (Howard, 1960) proved convergence 
of policy iteration for Markov Decision Processes with discrete state and action spaces.  
Lookup tables are used to store the value function iterations at each state.  (Watkins, 1989) 
developed Q-learning for discrete state and action MDPs, where a ‘Q function’ is stored for 
each state/action pair, and model dynamics are not needed to compute the control action.   
ADP was proposed by (Werbos, 1990,1991,1992) for discrete-time dynamical systems having 
continuous state and action spaces as a way to solve optimal control problems, (Lewis & 
Syrmos, 1995), forward in time. (Bertsekas & Tsitsiklis, 1996) provide a treatment of 
Neurodynamic programming, where neural networks (NN) are used to approximate the 
value function.  (Cao, 2002) presents a general theory for learning and optimization. 
 (Werbos, 1992) classified approximate dynamic programming approaches into four main 
schemes: Heuristic Dynamic Programming (HDP), Dual Heuristic Dynamic Programming 
(DHP), Action Dependent Heuristic Dynamic Programming (ADHDP), (a continuous-state-
space generalization of Q-learning (Watkins, 1989)), and Action Dependent Dual Heuristic 
Dynamic Programming (ADDHP). Neural networks are used to approximate the value 
function (the critic NN) and the control (the action NN), and backpropagation is used to 
tune the weights until convergence at each iteration of the ADP algorithm.  An overview of 
ADP is given in (Si et al., 2004) (e.g. (Ferrari & Stengel, 2004), and also (Prokhorov & 
Wunsch, 1997), who deployed new ADP schemes known as Globalized-DHP (GDHP) and 
ADGDHP.   
ADP for linear systems has received ample attention.  An off-line policy iteration scheme for 
discrete-time systems with known dynamics was given in (Hewer, 1971) to solve the 
discrete-time Riccati equation. In (Bradtke et al, 1994) implemented an (online) Q-learning 
policy iteration method for discrete-time linear quadratic regulator (LQR) optimal control O
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problems. A convergence proof was given. (Hagen, 1998) discussed, for the LQR case, the 
relation between the Q-learning method and model-based adaptive control with system 
identification. (Landelius, 1997) applied HDP, DHP, ADHDP and ADDHP value iteration 
techniques, called greedy policy iterations therein, to the discrete-time LQR problem and 
verified their convergence. It was shown that these iterations are in fact equivalent to 
iterative solution of an underlying algebraic Riccati equation, which is known to converge 
(Lancaster & Rodman, 1995).  (Lu & Balakrishnan, 2000) showed convergence of DHP for 
the LQR case. 
(Morimoto et al, 2003) developed differential dynamic programming, a Q-learning method, 
to solve optimal zero-sum game problems for nonlinear systems by taking the second-order 
approximation to the Q function. This effectively provides an exact Q-learning formulation 
for linear systems with minimax value functions.  In our previous work (Al-tamimi et al, 
2007), we studied ADP value iteration techniques to solve the zero-sum game problem for 
linear discrete-time dynamical systems using quadratic minimax cost.  HDP, DHP, ADHDP 
and ADDHP formulations were developed for zero-sum games, and convergence was 
proven by showing the equivalence of these ADP methods to iterative solution of an 
underlying Game Algebraic Riccati Equation, which is known to converge.  Applications 
were made to H-infinity control. 
For nonlinear systems with continuous state and action spaces, solution methods for the 
dynamic programming problem are more sparse. Policy iteration methods for optimal 
control for continuous-time systems with continuous state space and action spaces were 
given in (Abu-khalaf & Lewis, 2005) (Abu-Khalaf at el, 2004), but complete knowledge of the 
plant dynamics is required.  The discrete-time nonlinear optimal control solution relies on 
solving the discrete-time (DT) Hamilton-Jacobi-Bellman (HJB) equation (Lewis & Syrmos, 
1995), exact solution of which is generally impossible for nonlinear systems.  Solutions to the 
DT HJB equation with known dynamics and continuous state space and action space were 
given in (Huang, 1999), where the coefficients of the Taylor series expansion of the value 
function are systematically computed.  In (Chen & Jagannathan, 2005), the authors show 
that under certain conditions a second-order approximation of the discrete-time (DT) 
Hamilton-Jacobi-Bellman (HJB) equation can be considered; under those conditions 
discussed in that paper, the authors solve for the value function that satisfies the second 
order expansion of the DT HJB instead of solving for the original DT HJB. The authors apply 
a policy iteration scheme on this second order DT HJB and require an initially stable policy 
to start the iterations scheme. The authors also used a single (critic) neural network to 
approximate the value function of the second order DT HJB.  These are all off-line methods 
for solving the HJB equations that require full knowledge of the system dynamics. 
Convergence proofs for the on-line value-iteration based ADP techniques for nonlinear 
discrete-time systems are even more limited.  (Prokhorov & Wunsch, 1997) use NN to 
approximate both the value (e.g. a critic NN) and the control action.  Least mean squares is 
used to tune the critic NN weights and the action NN weights.  Stochastic approximation is 
used to show that, at each iteration of the ADP algorithm, the critic weights converge.  
Likewise, at each iteration the action NN weights converge, but overall convergence of the 
ADP algorithm to the optimal solution is not demonstrated.  A similar approach was used in 
(Si et al., 2004). 
In (He & Jagannathan, 2005), a generalized or asynchronous version of ADP (in the sense of 
(Sutton & Barto, 1998) was used whereby the updates of the critic NN and action NN are 
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interleaved, each NN being updated at each time step.  Tuning was performed online.  A 
Lyapunov approach was used to show that the method yields uniform ultimate bounded 
stability and that the weight estimation errors are bounded, though convergence to the exact 
optimal value and control was not shown.  The input coupling function must be positive 
definite. 
In this chapter, we provide a full, rigorous proof of convergence of the online value-iteration 
based HDP algorithm, to solve the DT HJB equation of the optimal control problem for 
general nonlinear discrete-time systems.  It is assumed that at each iteration, the value 
update and policy update equations can be exactly solved.  Note that this is true in the 
specific case of the LQR, where the action is linear and the value quadratic in the states.  For 
implementation, two NN are used- the critic NN to approximate the value and the action 
NN to approximate the control.  Full knowledge of the system dynamics is not needed to 
implement the HDP algorithm; in fact, the internal dynamics information is not needed.  As 
a value iteration based algorithm, of course, an initial stabilizing policy is not needed for 
HDP. 
The point is stressed that these results also hold for the special LQR case of linear systems 

x Ax Bu= +$  and quadratic utility.  In the general folklore of HDP for the LQR case, only a 

single NN is used, namely a critic NN, and the action is updated using a standard matrix 
equation derived from the stationarity condition (Lewis & Syrmos1995).  In the DT case, this 
equation requires the use of both the plant matrix A, e.g. the internal dynamics, and the 

control input coupling matrix B .  However, by using a second action NN, the knowledge of 

the A  matrix is not needed.  This important issue is clarified herein. 
Section two of the chapter starts by introducing the nonlinear discrete-time optimal control 
problem.  Section three demonstrates how to setup the HDP algorithm to solve for the 
nonlinear discrete-time optimal control problem.  In Section four, we prove the convergence 
of HDP value iterations to the solution of the DT HJB equation. In Section five, we introduce 
two neural network parametric structures to approximate the optimal value function and 
policy.  As is known, this provides a procedure for implementing the HDP algorithm. We 
also discuss in that section how we implement the algorithm without having to know the 
plant internal dynamics. Finally, Section six presents two examples that show the practical 
effectiveness of the ADP technique. The first example in fact is a LQR example which uses 
HDP with two NNs to solve the Riccati equation online without knowing the A matrix. The 
second example considers a nonlinear system and the results are compared to solutions 
based on State Dependent Riccati Equations (SDRE). 

2. The discrete-time HJB equation  

Consider an affine in input nonlinear dynamical-system of the form 

 1 ( ) ( ) ( )k k k kx f x g x u x+ = + .  (1) 

where nx ∈{ , ( ) nf x ∈{ , ( ) n mg x ×∈{  and the input mu ∈{ . Suppose the system is drift-free 

and, without loss of generality, that 0x =  is an equilibrium state, e.g. (0) 0f = , (0) 0g = .  

Assume that the system (1) is stabilizable on a prescribed compact set nΩ∈{ . 

Definition 1. Stabilizable system: A nonlinear dynamical system is defined to be stabilizable 

on a compact set nΩ∈{  if there exists a control input mu ∈{  such that, for all initial 

conditions 0x ∈Ω  the state 0kx →  as k →∞ . 
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It is desired to find the control action ( )ku x  which minimizes the infinite-horizon cost 

function given as 

 ( ) ( ) ( ) ( )T

k n n nn k
V x Q x u x Ru x

∞

=
= +∑  (2) 

for all xk, where ( ) 0Q x >  and 0 m mR ×> ∈{ .  The class of controllers needs to be stable and 

also guarantee that (2) is finite, i.e. the control must be admissible (Abu-Khalaf & Lewis, 
2005). 

Definition 2. Admissible Control: A control ( )ku x  is defined to be admissible with respect 

to (2) on Ω  if ( )ku x  is continuous on a compact set nΩ∈{ , (0) 0u = , u  stabilizes (1) on Ω , 

and 0 0,  ( )x V x∀ ∈Ω  is finite. 

Equation (2) can be written as 

 1

1

( )

( )

T T T T

k k k k k n n n nn k

T T

k k k k k

V x x Qx u Ru x Qx u Ru

x Qx u Ru V x

∞

= +

+

= + + +

= + +

∑
 (3) 

where we require the boundary condition ( 0) 0V x = =  so that ( )kV x  serves as a Lyapunov 

function.  From Bellman’s optimality principle (Lewis & Syrmos, 1995), it is known that for 

the infinite-horizon optimization case, the value function ( )kV x∗  is time-invariant and 

satisfies the discrete-time Hamilton-Jacobi-Bellman (HJB) equation 

 1( ) min( ( ))
k

T T

k k k k k k
u

V x x Qx u Ru V x∗ ∗
+= + +   (4) 

Note that the discrete-time HJB equation develops backward-in time.  

The optimal control u ∗  satisfies the first order necessary condition, given by the gradient of 

the right hand side of (4) with respect to u  as 

 1 1

1

( ) ( )
0

TT T

k k k k k k

k k k

x Qx u Ru x V x

u u x

∗
+ +

+

∂ + ∂ ∂
+ =

∂ ∂ ∂
  (5) 

and therefore 

 1 1

1

1 ( )
( ) ( )

2

T k
k k

k

V x
u x R g x

x

∗
∗ − +

+

∂
=

∂
  (6) 

Substituting (6) in (4), one may write the discrete-time HJB as 

 11 1
1

1 1

1 ( ) ( )
( ) ( ) ( ) ( )

4

T
T Tk k

k k k k k k

k k

V x V x
V x x Qx g x R g x V x

x x

∗ ∗
∗ − ∗+ +

+
+ +

∂ ∂
= + +

∂ ∂
  (7) 

where ( )kV x∗  is the value function corresponding to the optimal control policy ( )ku x∗ . 

This equation reduces to the Riccati equation in the linear quadratic regulator (LQR) case, 

which can be efficiently solved.  In the general nonlinear case, the HJB cannot be solved 

exactly. 

In the next sections we apply the HDP algorithm to solve for the value function V ∗  of the 

HJB equation (7) and present a convergence proof. 
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3. The HDP algorithm  

The HDP value iteration algorithm (Werbos, 1990) is a method to solve the DT HJB online.  
In this section, a proof of convergence of the HDP algorithm in the general nonlinear 
discrete-time setting is presented. 

3.1 The HDP algorithm 

In the HDP algorithm, one starts with an initial value, e.g. 0 ( ) 0V x =  and then solves for 0u  

as follows 

 0 1( ) arg min( ( ))T T

o k k k k
u

u x x Qx u Ru V x += + +   (8) 

Once the policy 0u  is determined, iteration on the value is performed by computing 

 
1 0 0 0 0

0 0 0 1

( ) ( ) ( ) ( ( ) ( ) ( ))

( ) ( ) ( )

T T

k k k k k k k k

T T

k k k k k

V x x Qx u x Ru x V f x g x u x

x Qx u x Ru x V x +

= + + +

= + +
  (9) 

The HDP value iteration scheme therefore is a form of incremental optimization that requires 

iterating between a sequence of action policies ( )iu x  determined by the greedy update 

 

1

1 1

1

( ) arg min( ( ))

arg min( ( ( ) ( ) ))

1 ( )
( )

2

T T

i k k k i k
u

T T

k k i k k
u

T i k
k

k

u x x Qx u Ru V x

x Qx u Ru V f x g x u

V x
R g x

x

+

− +

+

= + +

= + + +

∂
=

∂

  (10) 

and a sequence ( ) 0iV x ≥  where 

 
1 1( ) min( ( ))

( ) ( ) ( ( ) ( ) ( ))

T T

i k k k i k
u

T T

k k i k i k i k k i k

V x x Qx u Ru V x

x Qx u x Ru x V f x g x u x

+ += + +

= + + +
  (11) 

with initial condition 0( ) 0kV x = . 

Note that, as a value-iteration algorithm, HDP does not require an initial stabilizing gain.  
This is important as stabilizing gains are difficult to find for general nonlinear systems. 

Note that i  is the value iterations index, while k  is the time index. The HDP algorithm 

results in an incremental optimization that is implemented forward in time and online.  

Note that unlike the case for policy iterations in (Hewer, 1971), the sequence ( )i kV x  is not a 

sequence of cost functions and are therefore not Lyapunov functions for the corresponding 

policies ( )i ku x  which are in turn not necessarily stabilizing.  In Section four it is shown that 

( )i kV x  and ( )i ku x  converges to the value function of the optimal control problem and to 

the corresponding optimal control policy respectively. 

3.2 The special case of linear systems 

Note that for the special case of linear systems, it can be shown that the HDP algorithm is 
one way to solve the Discrete-Time Algebraic Riccati Equation (DARE) (Landelius, 1997)). 
Particularly, for the discrete-time linear system 
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 1k k kx Ax Bu+ = +   (12) 

the DT HJB equation (7) becomes the DARE 

 1( )T T T TP A PA Q A PB R B PB B PA−= + − +   (13) 

with ( ) T

k k kV x x Px∗ = . 

In the linear case, the policy update (10) is 

 1( ) ( )T T

i k i i ku x R B P B B P Ax−= − +   (14) 

Substituting this into (11), one sees that the HDP algorithm (10), (11) is equivalent to 

 
1

1

0

( )

0

T T T T

i i i i iP A P A Q A P B R B P B B P A

P

−
+ = + − +
=

  (15) 

It should be noted that the HDP algorithm (15) solves the DARE forward in time, whereas 
the dynamic programming recursion appearing in finite-horizon optimal control [21] 
develops backward in time 

 
1

1 1 1 1( )

0

T T T T

k k k k k

N

P A P A Q A P B R B P B B P A

P

−
+ + + += + − +

=
  (16) 

where N  represents the terminal time. Both equations (15) and (16) will produce the same 

sequence of iP  and kP  respectively. It has been shown in (Lewis & Syrmos, 1995) and 

(Lancaster, 1995) that this sequence converges to the solution of the DARE after enough 

iterations. 
It is very important to point out the difference between equations (14) and (15) resulting 
from HDP value iterations with 

 1( ) ( )

i

T T

i k i i k

K

u x R B P B B P A x−= − +'****(****)   (17) 

 1 1

0 0

( ) ( )

( , ) :  Initial stable control policy with corresponding Lyapunov function

T T

i i i i i iA BK P A BK P Q K RK

P u

+ ++ + − = − −
  (18) 

resulting from policy iterations, those in(Hewer, 1971). Unlike iP  in (15), the sequence iP  in 

(18) is a sequence of Lyapunov functions. Similarly the sequence of control policies in (17) is 

stabilizing unlike the sequence in (14). 

4. Convergence of the HDP algorithm 

In this section, we present a proof of convergence for nonlinear HDP.  That is, we prove 

convergence of the iteration (10) and (11) to the optimal value, i.e. iV V ∗→  and iu u ∗→  as 

i →∞ .  The linear quadratic case has been proven by (Lancaster, 1995) for the case of 

known system dynamics. 
Lemma 1.  Let iμ  be any arbitrary sequence of control policies and iΛ  be defined by 
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1

1( ) ( ) ( ( ) ( ) ( ))

k

T

i k k i i i k k i k

x

x Q x R f x g x xμ μ μ
+

+Λ = + + Λ +'****(****) .  (19) 

Let iu  and iV  be the sequences defined by (10) and (11). If 0 0( ) ( ) 0k kV x x= Λ = , then 

( ) ( )i k i kV x x≤ Λ  i∀ . 

Proof: Since ( )i ku x  minimizes the right hand side of equation (11) with respect to the control 

u , and since 0 0( ) ( ) 0k kV x x= Λ = , then by induction it follows that ( ) ( )i k i kV x x≤ Λ  i∀ . ■ 

Lemma 2.  Let the sequence iV  be defined as in (11). If the system is controllable, then: 

There exists an upper bound ( )kY x  such that 0 ( ) ( )i k kV x Y x≤ ≤  i∀ . 

If the optimal control problem (4) is solvable, there exists a least upper bound 

( ) ( )k kV x Y x∗ ≤  where ( )kV x∗  solves (7), and that : 0 ( ) ( ) ( )i k k ki V x V x Y x∗∀ ≤ ≤ ≤ . 

Proof: Let ( )kxη  be any stabilizing and admissible control policy, and Let 

0 0( ) ( ) 0k kV x Z x= =  where iZ  is updated as 

 1 1

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T

i k k k k i k

k k k k

Z x Q x x R x Z x

x f x g x x

η η
η

+ +

+

= + +
= +

.  (20) 

It follows that the difference 

 

1 1 1 1

1 2 2 2

2 3 3 3

1 0

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

.

.

.

( ) ( )

i k i k i k i k

i k i k

i k i k

k i k i

Z x Z x Z x Z x

Z x Z x

Z x Z x

Z x Z x

+ + − +

− + − +

− + − +

+ +

− = −
= −
= −

= −

 (21) 

Since 0 ( ) 0kZ x = , it then follows that 

 

1 1

1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ....... ( )

i k k i i k

k i k i i k

k i k i k i i k

k i k i k i k

Z x Z x Z x

Z x Z x Z x

Z x Z x Z x Z x

Z x Z x Z x Z x

+ +

+ + − −

+ + − + − −

+ + − + −

= +
= + +
= + + +
= + + + +

  (22) 

and equation (22) can be written as 

 

1 10

0

0

( ) ( )

( ( ) ( ) ( ))

( ( ) ( ) ( ))

i

i k k nn

i T

k n k n k nn

T

k n k n k nn

Z x Z x

Q x x R x

Q x x R x

η η

η η

+ +=

+ + +=

∞

+ + +=

=

= +

≤ +

∑
∑
∑

 (23) 

Since ( )kxη  is an admissible stabilizing controller, 0k nx + →  as n →∞  and 

1 10
: ( ) ( ) ( )i k k i ki
i Z x Z x Y x

∞

+ +=
∀ ≤ =∑  
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Using Lemma 1 with ( ) ( )i k kx xμ η=  and ( ) ( )i k i kx Z xΛ = , it follows that 

: ( ) ( ) ( )i k i k ki V x Z x Y x∀ ≤ ≤  

which proves part a). Moreover if ( ) ( )k kx u xη ∗= , then 

0 0

( )( )

( ( ) ( ) ( )) ( ( ) ( ) ( ))

kk

T T

k n k n k n k n k n k nn n

Y xV x

Q x u x Ru x Q x x R xη η
∗

∞ ∞∗ ∗
+ + + + + += =

+ ≤ +∑ ∑'*******(*******) '*******(*******)
 

and hence ( ) ( )k kV x Y x∗ ≤  which proves part b) and shows that : 0 ( ) ( ) ( )i k k ki V x V x Y x∗∀ ≤ ≤ ≤  

for any ( )kY x  determined by an admissible stabilizing policy ( )kxη . ■ 

Theorem 1.  Consider the sequence iV  and iu  defined by (11) and (10) respectively. If 

0( ) 0kV x = , then it follows that iV  is a non-decreasing sequence 

1: ( ) ( )i k i ki V x V x+∀ ≥  

and as i →∞  

iV V ∗→ , iu u ∗→  

that is the sequence iV  converges to the solution of the DT HJB (7). 

Proof: From Lemma 1, let iμ  be any arbitrary sequence of control policies and iΛ  be defined by 

1

1( ) ( ) ( ( ) ( ) ( ))

k

T

i k k i i i k k i k

x

x Q x R f x g x xμ μ μ
+

+Λ = + + Λ +'****(****)  

If 0 0( ) ( ) 0k kV x x= Λ = , it follows that ( ) ( )i k i kV x x≤ Λ  i∀ . Now assume that 

1( ) ( )i k i kx u xμ +=  such that 

 1

1 1 1

( ) ( ) ( ( ) ( ) ( ))

( ) ( ( ) ( ) ( ))

T

i k k i i i k k i k

T

k i i i k k i k

x Q x R f x g x x

Q x u Ru f x g x u x

μ μ μ+

+ + +

Λ = + + Λ +

= + + Λ +
  (24) 

and consider 

 1( ) ( ) ( ( ) ( ) ( ))T

i k k i i i k k i kV x Q x u Ru V f x g x u x+ = + + +   (25) 

It will next be proven by induction that if 0 0( ) ( ) 0k kV x x= Λ = , then 1( ) ( )i k i kx V x+Λ ≤ . 

Induction is initialized by letting 0 0( ) ( ) 0k kV x x= Λ =  and hence 

1 0

1 0

( ) ( ) ( )

0

( ) ( )

k k k

k k

V x x Q x

V x x

− Λ =

≥
≥ Λ

 

Now assume that 1( ) ( )i k i kV x x−≥ Λ , then subtracting (24) from (25) it follows that  

1 1 1 1( ) ( ) ( ) ( ) 0i k i k i k i kV x x V x x+ + − +− Λ = − Λ ≥  
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and this completes the proof that 1( ) ( )i k i kx V x+Λ ≤ . 

From 1( ) ( )i k i kx V x+Λ ≤  and ( ) ( )i k i kV x x≤ Λ , it then follows that 

1: ( ) ( )i k i ki V x V x+∀ ≤ . 

From part a) in Lemma 2 and the fact that iV  is a non-decreasing sequence, it follows that 

iV V ∞→  as i →∞ . From part b) of Lemma 2, it also follows that ( ) ( )k kV x V x∗
∞ ≤ . 

It now remains to show that in fact V ∞  is V ∗ . To see this, note that from (11) it follows that 

( ) ( ) ( ) ( ( ) ( ) ( ))T T

k k k k k k k kV x x Qx u x Ru x V f x g x u x∞ ∞ ∞ ∞ ∞= + + +  

and hence 

( ( ) ( ) ( )) ( ) ( ) ( )T T

k k k k k k k kV f x g x u x V x x Qx u x Ru x∞ ∞ ∞ ∞ ∞+ − = − −  

and therefore ( )kV x∞  is a Lyapunov function for a stabilizing and admissible policy 

( ) ( )k ku x xη∞ = . Using part b) of Lemma 2 it follows that ( ) ( ) ( )k k kV x Y x V x∗
∞ = ≥ . This 

implies that ( ) ( ) ( )k k kV x V x V x∗ ∗
∞≤ ≤  and hence ( ) ( )k kV x V x∗

∞ = , ( ) ( )k ku x u x∗
∞ = . ■ 

5. Neural network approximation for Value and Action 

We have just proven that the nonlinear HDP algorithm converges to the value function of 
the DT HJB equation that appears in the nonlinear discrete-time optimal control.   

It was assumed that the action and value update equations (10), (11) can be exactly solved at 

each iteration.  In fact, these equations are difficult to solve for general nonlinear systems.  

Therefore, for implementation purposes, one needs to approximate ,i iu V  at each iteration.  

This allows approximate solution of (10), (11). 
In this section, we review how to implement the HDP value iterations algorithm with two 
parametric structures such as neural networks (Werbos, 1990) and (Lewis & Jaganathan, 
1999). The important point is stressed that the use of two NN, a critic for value function 
approximation and an action NN for the control, allows the implementation of HDP in the 
LQR case without knowing the system internal dynamics matrix A. This point is not generally 
appreciated in the folklore of ADP. 

5.1 NN approximation for implementation of HDP algorithm for nonlinear systems 

It is well known that neural networks can be used to approximate smooth functions on 
prescribed compact sets (Hornik & Stinchcombe, 1990). Therefore, to solve (11) and (10), 

( )iV x is approximated at each step by a critic NN 

 
1

ˆ ( ) ( ) ( )
L

j T

i vi j Vi

j

V x w x W xφ
=

= =∑ φ  (26) 

and ( )iu x  by an action NN 

 
1

ˆ ( ) ( ) ( )
M

j T

i ui j ui

j

u x w x W xσ
=

= =∑ σ   (27) 
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where the activation functions are respectively 1( ), ( ) ( )j jx x Cφ σ ∈ Ω .  Since it is required 

that ( 0) 0iV x = =  and ( 0) 0iu x = = , we select activation functions with (0) 0, (0) 0j jφ σ= = .  

Moreover, since it is known that V ∗  is a Lyapunov function, and Lyapunov proofs are 
convenient if the Lyapunov function is symmetric and positive definite, it is convenient to 
also require that the activation functions for the critic NN be symmetric, i.e. ( ) ( )j jx xφ φ= − . 

The neural network weights in the critic NN (26) are j

viw . L  is the number of hidden-layer 

neurons. The vector [ ]1 2( ) ( ) ( ) ( )
T

Lx x x xφ φ φ≡ Aφ  is the vector activation function and 

1 2
T

L

Vi vi vi viW w w w⎡ ⎤≡ ⎣ ⎦A  is the weight vector at iteration i .  Similarly, the weights of the 

neural network in (27) are j

uiw . M  is the number of hidden-layer neurons. 

[ ]1 2( ) ( ) ( ) ( )
T

Lx x x xσ σ σ≡ Aσ  is the vector activation function, and 1 2
T

L

ui ui ui uiW w w w⎡ ⎤≡ ⎣ ⎦A  is 

the vector weight. 
According to (11), the critic weights are tuned at each iteration of HDP to minimize the 

residual error between 1
ˆ ( )i kV x+  and the target function defined in equation (28) in a least-

squares sense for a set of states kx  sampled from a compact set nΩ⊂ { . 

 1 1

1

ˆˆ ˆ( , , , ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

T T

k k Vi ui k k i k i k i k

T T T

k k i k i k Vi k

d x x W W x Qx u x Ru x V x

x Qx u x Ru x W x

+ +

+

= + +

= + + φ
  (28) 

The residual error (c.f. temporal difference error) becomes 

 ( )1 1( ) ( , , , ) ( )T

Vi k k k Vi ui LW x d x x W W e x+ +− =φ . (29) 

Note that the residual error in (29) is explicit, in fact linear, in the tuning parameters 1ViW + .  

Therefore, to find the least-squares solution, the method of weighted residuals may be used 

[11]. The weights 1ViW +  are determined by projecting the residual error onto 1( )L Vide x dW +  

and setting the result to zero x∀ ∈Ω  using the inner product, i.e. 

 
( )

, ( ) 0L
L

Vi +1

de x
e x

dW
= ,  (30) 

where f,g Tfg dx
Ω

= ∫  is a Lebesgue integral. One has 

 ( )1 10 ( ) ( ) ( , , , )T T

k k Vi k k Vi ui kx x W d x x W W dxφ φ + +
Ω

= −∫  (31) 

Therefore a unique solution for 1ViW +  exists and is computed as 

 

1

1 ( ) ( ) ( ) ( ( ), , )T T

Vi k k k k Vi uiW x x dx x d x W W dxφ φ φ φ
−

+
Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫  (32) 

To use this solution, it is required that the outer product integral be positive definite.  This is 
known as a persistence of excitation condition in system theory.  The next assumption is 
standard in selecting the NN activation functions as a basis set. 
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Assumption 1.  The selected activation functions { }( )
L

j xφ  are linearly independent on the 

compact set  nΩ⊂ { . 

Assumption 1 guarantees that excitation condition is satisfied and hence ( ) ( )Tk kx x dxφ φ
Ω
∫  is 

of full rank and invertible and a unique solution for (32) exists. 

The action NN weights are tuned to solve (10) at each iteration.  The use of ˆ ( , )i k uiu x W  from 

(27) allows the rewriting of equation (10) as  

 ( )1
ˆˆ ˆarg min ( , ) ( , ) ( )T T i

ui k k i k i k i k
w

W x Qx u x w Ru x w V x +
Ω

= + +   (33) 

where 1
ˆ( ) ( ) ( , )i

k k k i kx f x g x u x w+ = +  and the notation means minimization for a set of points 

kx  selected from the compact set nΩ∈{ . 

Note that the control weights uiW  appear in (33) in an implicit fashion, i.e. it is difficult to 

solve explicitly for the weights since the current control weights determine 1kx + . Therefore, 

one can use an LMS algorithm on a training set constructed from Ω . The weight update is 
therefore 

 

1

1

1

1

1

ˆˆ ˆ( ( , ) ( , ) ( )

( )
ˆ( ) 2 ( , ) ( )

ui m

T T

k k i k ui i k ui i km m
ui uim m

ui
W

T

T k
ui ui k i k ui k Vim m m

k

x Qx u x W R u x W V x
W W

W

x
W W x Ru x W g x W

x

α

φασ

+

+

+
+

+

∂ + +
= −

∂

⎛ ⎞∂
= − +⎜ ⎟

∂⎝ ⎠

 (34) 

where α  is a positive step size and m  is the iteration number for the LMS algorithm. By a 

stochastic approximation type argument, the weights ui uim
W W⇒  as m ⇒∞ , and satisfy 

(33). Note that one can use alternative tuning methods such as Newton’s method and 
Levenberg-Marquardt in order to solve (33). 
In Figure 1, the flow chart of the HDP iteration is shown. Note that because of the neural 

network used to approximate the control policy the internal dynamics, i.e. ( )kf x  is not 

needed.  That is, the internal dynamics can be unknown. 

Remark. Neither ( )f x  nor ( )g x  is needed to update the critic neural network weights 

using (32). Only the input coupling term ( )g x  is needed to update the action neural 

network weights using (34). Therefore the proposed algorithm works for system with 

partially unknown dynamics- no knowledge of the internal feedback structure ( )f x  is 

needed. 

5.2 HDP for Linear Systems Without Knowledge of Internal Dynamics 

The general practice in the HDP folklore for linear quadratic systems is to use a critic NN to 
approximate the value, and update the critic weights using a method such as the batch 
update (32), or a recursive update method such as LMS. In fact, the critic weights are 
nothing but the elements of the Riccati matrix and the activation functions are quadratic 
polynomials in terms of the states.  Then, the policy is updated using  
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Updating the value function

Start of the  HDP

Initialization

Solving the  minimizing problem

Finish

0 0V =

1
ˆ ˆ
i iV V ε+ <−

Yes

No1+→ ii

ˆ ˆ( , ) ( , )
arg min

ˆ ˆ( ( ) ( ) ( , ))

T T

k k k k

ui

i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟+⎝ ⎠

1

1 1
ˆ( ) ( ) ( ) ( ( ), )T

Vi k k k i k ViW x x dx x V x W dxφ φ φ φ
−

+ +
Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫

ˆ ( , ) ( )T

i k Vi Vi kV x W W xφ=

ˆ ( , ) ( )T

i k ui ui ku x W W xσ=

 

Fig. 1.  Flow chart shows the proposed algorithm 

 1( ) ( )T T

i k i i ku x R B P B B P Ax−= − +  (35) 

Note that this equation requires the full knowledge of both the internal dynamics matrix A  

and the control weighting matrix B . However, we have just seen (see remark above) that 

the knowledge of the A  matrix can be avoided by using, instead of the action update(35), a 
second NN for the action 

ˆ ( ) ( )T

i uiu x W x= σ  

In fact the action NN approximates the effects of A  and B  given in (35), and so effectively 

learns the A  matrix. 
That is, using two NN even in the LQR case avoids the need to know the internal dynamics 
A.  In fact, in the next section we give a LQR example, and only the input coupling matrix B 
is needed for the HDP algorithm. Nevertheless, the HDP converges to the correct LQR 
Riccati solution matrix P. 
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6. Simulation examples 

In this section, two examples are provided to demonstrate the solution of the DT HJB 

equation. The first example will be a linear quadratic regulator, which is a special case of the 

nonlinear system.  It is shown that using two NN allows one to compute the optimal value 

and control (i.e. the Riccati equation solution) online without knowing the system matrix A .  

The second example is for a DT nonlinear system. MATLAB is used in the simulations to 

implement some of the functions discussed in the chapter. 

6.1 Unstable multi-input linear system example 

In this example we show the power of the proposed method by using an unstable multi-

input linear system.  We also emphasize that the method does not require knowledge of the 

system A matrix, since two neural networks are used, one to provide the action. = This is in 

contrast to normal methods of HDP for linear quadratic control used in the literature, where 

the A  matrix is needed to update the control policy. 

Consider the linear system 

 1k k kx Ax Bu+ = + .  (36) 

 

It is known that the solution of the optimal control problem for the linear system is 

quadratic in the state and given as  

( ) T

k k kV x x Px∗ =  

 

where P  is the solution of the ARE. This example is taken from (Stevens & Lewis, 2003), a 

linearized model of the short-period dynamics of an advanced (CCV-type) fighter aircraft. 

The state vector is 

[ ]Te fx qα γ δ δ=  

 

where the state components are, respectively, angel of attack, pitch rate, flight-path, elevator 

deflection and flaperon deflection. The control input are the elevator and the flaperon and 

given as 

[ ]Tec fcu δ δ=  

 

The plant model is a discretized version of a continuous-time model given in (Bradtke & 

Ydestie, 1994)]  

1.0722    0.0954        0    -0.0541    -0.0153

    4.1534    1.1175          0    -0.8000    -0.1010

A=     0.1359    0.0071      1.0     0.0039     0.0097

         0         0                 0     0.1353         0

         0         0                 0        0          0.1353

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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-0.0453   -0.0175

-1.0042   -0.1131

B=  0.0075    0.0134

  0.8647         0

     0       0.8647

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Note that system is not stable and with two control inputs. The proposed algorithm does not 
require a stable initial control policy. The ARE solution for the given linear system is 

 

 55.8348    7.6670   16.0470   -4.6754  -0.7265

    7.6670    2.3168    1.4987   -0.8309   -0.1215

   16.0470    1.4987   25.3586   -0.6709    0.0464

   -4.6754   -0.8309   -0.6709    1.5394    0.0782

P =

   -0.7265   -0.1215    0.0464    0.0782    1.0240

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (37) 

and the optimal control  k ku Lx∗ = , where L  is 

 
-4.1136   -0.7170   -0.3847    0.5277   0.0707

-0.6315   -0.1003    0.1236    0.0653   0.0798
L

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  (38) 

For the LQR case the value is quadratic and the control is linear. Therefore, we select linear 
activation functions for the action NN and quadratic polynomial activations for the critic 
NN.  The control is approximated as follows  

 ˆ ( )T

i ui ku W xσ=   (39) 

where uW  is the weight vector, and the ( )kxσ  is the vector activation function and is given by 

1 2 3 4 5( )T x x x x x xσ ⎡ ⎤= ⎣ ⎦  

and the weights are 

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

T u u u u u

u

u u u u u

w w w w w
W

w w w w w

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The control weights should converge to 

1,1 1,2 1,3 1,4 1,5
11 12 13 14 15

2,1 2,2 2,3 2,4 2,5
21 22 23 24 25

u u u u u

u u u u u

L L L L Lw w w w w

L L L L Lw w w w w

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 

The approximation of the value function is given as  

ˆ ( , ) ( )T

i k Vi Vi kV x W W xφ=  

where VW  is the weight vector of the neural network given by 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T

V v v v v v v v v v v v v v v vW w w w w w w w w w w w w w w w⎡ ⎤= ⎣ ⎦  
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and ( )kxφ  is the vector activation function given by 

1 2

2 2 2 2 2

1 2 1 3 1 4 1 5 2 3 4 2 2 5 3 3 4 3 5 4 4 5 5

( )T x

x x x x x x x x x x x x x x x x x x x x x x x x x

φ =

⎡ ⎤⎣ ⎦
 

In the simulation the weights of the value function are related to the P  matrix given in (37) 
as follows 

1 2 3 4 5
11 12 13 14 15

2 6 7 8 9
21 22 23 24 25

3 7 10 11 12
31 32 33 34 35

4 8 11 13
41 42 43 44 45

51 52 53 54 55

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0

v v v v v

v v v v v

v v v v v

v v v v

P P P P P w w w w w

P P P P P w w w w w

P P P P P w w w w w

P P P P P w w w w

P P P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

14

5 9 12 14 15

.5

0.5 0.5 0.5 0.5

v

v v v v v

w

w w w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The value function weights converge to 

[55.5411   15.2789   31.3032   -9.3255   -1.4536    2.3142    2.9234   -1.6594   -0.2430

 

   24.8262   -1.3076    0.0920    1.5388    0.1564    1.0240]

T

VW =

. 

The control weights converge to 

4.1068    0.7164    0.3756   -0.5274   -0.0707

 0.6330    0.1005   -0.1216   -0.0653   -0.0798
uW

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Note that the value function weights converge to the solution of the ARE (37), also the 
control weights converge to the optimal policy (38) as expected. 

6.2 Nonlinear system example 

Consider the following affine in input nonlinear system 

 1 ( ) ( )k k k kx f x g x u+ = +   (40) 

where 

2

3

00.2 (1)exp( (2))
( )      ( )

.2.3 (2)

k k

k k

k

x x
f x g x

x

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

 

The approximation of the value function is given as 

1 1 1
ˆ ( , ) ( )T

i k Vi Vi kV x W W xφ+ + +=  

The vector activation function is selected as 

2 2 4 3

1 1 2 2 1 1 2

2 2 3 4 6 5 4 2

1 2 1 2 2 1 1 2 1 2

3 3 2 4 5 6

1 2 1 2 1 2 2

( ) [

]

x x x x x x x x

x x x x x x x x x x

x x x x x x x

φ =
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and the weight vector is 

1 2 3 4 15.....T

V v v v v vW w w w w w⎡ ⎤= ⎣ ⎦ . 

 

The control is approximated by 

ˆ ( )T

i ui ku W xσ=  

 

where the vector activation function is 

3 2 2

1 2 1 1 2 1 2

3 5 4 3 2 2 3

2 1 1 2 1 2 1 2

4 5

1 2 2

( ) [

  ]

T x x x x x x x x

x x x x x x x x

x x x

σ =

 

 

and the weights are 

1 2 3 4 12.....T

u u u u u uW w w w w w⎡ ⎤= ⎣ ⎦ . 

 

The control NN activation functions are selected as the derivatives of the critic activation 

functions, since the gradient of the critic activation functions appears in (34). The critic 

activations are selected as polynomials to satisfy ˆ ( 0) 0iV x = =  at each step.  Note that then 

automatically one has ˆ ( 0) 0iu x = =  as required for admissibility.  We decided on 6th order 

polynomials for VFA after a few simulations, where it came clear that 4th order polynomials 

are not good enough, yet going to 8th order does not improve the results. 

The result of the algorithm is compared to the discrete-time State Dependent Riccati 

Equation (SDRE) proposed in (Cloutier, 1997). 

The training sets is 1 [ 2,2]x ∈ − , 2 [ 1,1]x ∈ − . The value function weights converged to the 

following 

[1.0382   0  1.0826   .0028  -0  -.053  0 -.2792   

-.0004  0  -.0013  0   .1549  0  .3034]

T

VW =
 

 

and the control weights converged to  

=[ 0  -.0004  0   0   0  .0651  0   0   0  -.0003  0  -.0046]T

uW  

 

The result of the nonlinear optimal controller derived in this chapter is compared to the 

SDRE approach. Figure 2 and Figure 3 show the states trajectories for the system for both 

methods. 

In Figure 4, the cost function of the SDRE solution and the cost function of the proposed 

algorithm in this chapter are compared. It is clear from the simulation that the cost function 

for the control policy derived from the HDP method is lower than that of the SDRE method. 

In Figure 5, the control signals for both methods are shown. 
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Fig. 2.  The state trajectory for both methods 
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Fig. 3.  The state trajectory for both methods 
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Fig. 4.  The cost function for both methods 
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Fig. 5.  The control signal input for both methods 

7. Conclusion 

We have proven convergence of the HDP algorithm to the value function solution of 
Hamilton-Jacobi-Bellman equation for nonlinear dynamical systems, assuming exact 
solution of value update and the action update at each iteration. 
Neural networks are used as parametric structures to approximate at each iteration the 
value (i.e. critic NN), and the control action.  It is stressed that the use of the second neural 
network to approximate the control policy, the internal dynamics, i.e. ( )kf x , is not needed 

to implement HDP. This holds as well for the special LQR case, where use of two NN avoids 
the need to know the system internal dynamics matrix A.  This is not generally appreciated 
in the folkloric literature of ADP for the LQR.  In the simulation examples, it is shown that 
the linear system critic network converges to the solution of the ARE, and the actor network 
converges to the optimal policy, without knowing the system matrix A. In the nonlinear 
example, it is shown that the optimal controller derived from the HDP based value iteration 
method outperforms suboptimal control methods like those found through the SDRE 
method. 
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