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Abstract

Hypoxia-inducible factor (HIF) is the central master regulator of adaptation to decreased 
oxygen availability in both physiological and pathological conditions. In leukemia, HIF 
regulates tumor cell metabolic regulation, metastasis, and other tumor-adaptive survival. 
However, the regulatory role of HIF in different types of leukemia, including myeloid 
leukemia, has been unclear. In this chapter, the focus throughout is on the aspects of roles 
of HIF in the tumor mitochondria metabolic change that are relevant to the assessment 
and treatment of myeloid leukemia. The connection of HIF with metabolic modification 
and anaerobic metabolism, along with epigenetic modification, contribute to abnormal 
biological and clinical behavior of myeloid leukemia, including response to treatment. 
We have also explored the metabolic requirements of tumor cell proliferation in an 
attempt to understand why tumor cells escape hypoxia-induced cell growth inhibition. 
We believe that a better understanding of the mechanistic links between HIF-regulated 
cellular metabolism, growth control, and epigenetic modifications could be useful for the 
indication of pharmaceutical agents in myeloid leukemia.

Keywords: myeloid leukemia, HIF, epigenetic modification, metabolism, treatment of 
myeloid leukemia

1. Introduction

Myeloid leukemia is the most prevalent leukemia in adults, including acute myeloid leuke-

mia (AML) and chronic myeloid leukemia (CML). AML is an aggressive hematologic malig-

nancy that results in the disruption of normal self-renewal, differentiation, and hematopoietic 
stem and progenitor cell expansion leading to increased proliferation and accumulation of 

immature nonfunctioning myeloid progenitors. In turn, myeloid progenitors were blocked to 
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further differentiate into mature myeloid cell to play its role in the hematopoietic system. In 
comparison, in CML, hematopoietic stem cell is preferred to differentiate myeloid cells (leu-

kemia cells). CML is much milder due to these leukemia cells still partial functions to main-

tain homeostasis. However, the leukemia cells uncontrollably divide, build up in the bone 

marrow, and spill over into the blood. Over time, the cells settle in other parts of the body, 
especially in the spleen (causing splenomegaly), and it can also promote into a fast-growing 

AML. The American Cancer Society reports that incidence rates have increased over the past 

few decades, estimating that in 2015 about 20,830 new cases of AML and 14,620 new cases 

of CML were diagnosed, and 10,460 deaths from AML and 4650 deaths from CML would 

occur in the USA [1]. Currently, the majority of AML patients still have a poor prognosis, 

making the development of novel therapies a priority. Prognosis is influenced by a combina-

tion of cytogenetic and genetic characteristics of the disease, together with clinical features 

and the patient’s age. In the albeit heterogeneous genetic landscape of myeloid leukemia, 

many myeloid leukemia patients exhibit recurrent mutations in genes encoding epigenetic 

regulators [2]. It is thus becoming increasingly clear that epigenetic dysfunction plays a key 

role in leukemogenesis of AML and CML [3]. More importantly, the epigenetic regulators 

CREB-binding protein (CBP) and p300 histone acetyltransferases (HATs), as important HIF 

co-transcriptional factors, facilitate leukemogenesis and represent therapeutic targets in AML 

[4]. Here, we have focused on the effect of dysregulated epigenetic programs in the develop-

ment and maintenance of myeloid leukemia. In addition, we have discussed recent advances 

in therapies specifically targeting these key epigenetic mechanisms.

2. Hypoxia-inducible factor

Oxygen supply and consumption are tightly regulated and dynamically balanced in most 

normal tissues. However, supply and consumption of oxygen in tumor cells are usually 

decoupled due to the loss of physiological control and aberrant molecular signaling that pro-

vide malignant growth and survival advantages. Hypoxia appears in tumor cells when the 

metabolic demand for oxygen exceeds its extracellular availability. One of the main early cel-

lular events responded upon hypoxia is activation of hypoxia-inducible factor 1 and 2 (HIF-1 

and HIF-2), a critical heterodimeric transcription factor. HIF then in turn binds to hypoxia-

responsive elements (HREs), with the minimal core sequence 5’-CGTG-3’, and influences the 
expression of various genes involved in angiogenesis, metabolism, pH regulation, prolifera-

tion, metastasis, and a wide range of other signaling processes.

2.1. Structure of hypoxia-inducible factor and domain structure of α subunits

The structure of HIF was identified as a dimer protein composed of HIF-1β and HIF-1α subunits. 
HIF-1β, the aryl hydrocarbon receptor nuclear translocator (ARNT), and its highly homologous 
protein ARNT2 and ARNT3, is constitutively expressed. All the three HIF-β subunits have the 
potential in forming dimers with various HIF-α subunits [5]. In normoxic conditions, HIF-1α 
is expressed ubiquitously at low closely balanced levels in all organs and has six  different 
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splice variants [6]. HIF-2α is most abundantly expressed in the lung, followed by the heart, 
brain, liver, and various other organs. Despite their similarities in mediating transcriptional 

responses to hypoxia, HIF-1α and HIF-2α have distinct, nonredundant functions (reviewed in 
Semenza [2004] [7]). HIF-3α is the least-studied member of the family and has multiple splice 
variants [5]. The functional domains of HIF include DNA-binding region basic helix-loop-helix 
(bHLH), HIF dimerization-binding region PER-ARNT-SIM (PAS), oxygen tension modulated 
N-terminal transactivation domain (N-TAD), and C-terminal transactivation domain (C-TAD). 
HIF-α subunit also contains oxygen-dependent degradation domain (ODDD).

2.2. Oxygen-dependent hypoxia-inducible factor regulation

The regulation of HIF by the extent of oxygen pressure is dependent on the intermediator 

that affects HIF-α protein stability and/or its ability to bind cofactors essential for transcrip-

tional activity. In normoxia, HIF-α is strictly controlled by two types of oxygen sensors. First, 
2- oxoglutarate (2-OG)-dependent prolyl hydroxylase domain (PHD) proteins could hydroxyl-

ate two prolyl residues (Pro402 and/or Pro564) in the N-TAD of HIF-1α ODDD regions (Figure 1) 

[8, 9]. Currently, three functional 2-OG-dependent PHD have been identified—PHD1, PHD2, 
and PHD3,—and all three require oxygen, Fe2+, and 2-OG as cofactors. This modification 
of HIF-α promotes its destruction by the proteasomal system through interaction with von 
Hippel-Lindau (VHL) protein, a component of an E3 ubiquitin ligase complex [10]. A second 

Figure 1. HIF-1α regulation and HIF-1α dependent gene expression under hypoxia.
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oxygen sensor called factor-inhibiting HIF-1 (FIH-1) involves hydroxylation of an asparagine 

residue (Asn803) in the C-TAD of HIF-1α, which also utilizes oxygen as a substrate [11]. The 

hydroxyl modification of Asn803 blocks the binding of the cofactor proteins) CREB-binding 

protein (CBP) and p300 thus inhibit HIF transcriptional activity. In hypoxia, HIF-α is regulated 
through “bicephalous” transcriptional nature in an FIH-dependent or FIH-independent man-

ner [12]. In short, PHD has a lower affinity for oxygen than HIF and therefore is more rapidly 
inhibited. Consequently, genes require only the N-TAD to be induced. As oxygen decreases 
further, the inhibition of C-TAD is released and HIF-1α retains full transcription activity.

2.3. Metabolic-dependent HIF regulation

The metabolic intermediates are also the key regulators disrupting the hemostasis of HIF 

activates. As mentioned earlier, PHDs are 2-OG-dependent dioxygenases, catalyzing the con-

version of a prolyl residue, molecular oxygen, 2-OG to hydroxyprolyl, carbon dioxide, and 

succinate using ferrous iron as cofactor. In addition, succinate also intermediates in the tricar-

boxylic acid (TCA) cycle catalyzed by succinate dehydrogenase (SDH) to fumarate in mito-

chondria. SDH dysfunction in cells raises the levels of succinate, which accumulates and leaks 

out to cytosol [13]. The increased level of succinate also inhibits PHDs activity due to accumu-

lation succinate feedback, leading to the stabilization of HIF-α and activation of HIF complex. 
Similarly, deficiency of fumarate hydratase (FH) leads to accumulation of fumarate in the cyto-

sol. Due to chemical similarity of fumarate to succinate, FH-deficient cells could also inhibit 
PHDs [14]. Other metabolic changes, such as diseases related to iron homeostasis, also cross-

talk with HIF regulation. Hepcidin, a small polypeptide, plays a central role in regulating iron 

uptake. Iron demand in bone marrow increases when erythropoiesis is stimulated by hypoxia 

via increased erythropoietin (EPO) synthesis. Iron overload disease like hemochromatosis and 

iron decrease in anemia, feedback hepcidin production through VHL-HIF regulation [15].

3. HIF regulation in mitochondria metabolic change

HIF is the central master regulator of adaptation to decreased oxygen availability in both 

physiological and pathological conditions. It is evolutionary pressure to reestablish metabolic 

balance to allow normal tissue and/or even tumor to survive. Physiologically, in the wound-
healing area, damaged tissue leads to hypoxia and facilitates vascular growth. However, 

pathologically, in the solid tumor region, oxygen demand is in continuous increase due to the 

uncontrollable growth of the cancer cell. Hypoxia also represents the unifying feature of the 

microenvironment of solid tumors. The adaptive changes of tumor survival pattern referred 
to as “hypoxia tumor phenotype” are greatly noticed.

3.1. HIF regulation of metabolic change

HIF upregulation in tumors plays a central role in metabolic switch from aerobic metabo-

lism to anaerobic metabolism. In turn, all the enzymes (e.g., aldolase A and C, enolase 1, 

hexokinase 1 and 2, pyruvate kinase M (PKM), phosphofructokinase) and glucose trans-

porters (GLUT1, GLUT3) involved in glycolytic pathway are upregulated [16]. Moreover, 
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conversion of pyruvate to acetyl-CoA, TCA cycle, and mitochondrial biogenesis are inhib-

ited through downregulation of pyruvate dehydrogenase kinase (PDK) 1 and 3 [17, 18].  

Even though the glycolysis produces far less energy than TCA cycle per glucose mol-

ecule, it has a significant higher throughout. In addition, the accumulated by-products 

could be used as sources of carbon to produce nucleotides and lipids for proliferat-

ing cells [19]. The classic view of metabolism is that of a self-correction of homeostasis 

responding to microenvironment. In this model, for cancer to arise, tumor hypoxia selects 

cells depending on anaerobic metabolism [20]. Secondary mutations are needed to give 

cells the ability to transform the capability to alter existing cell metabolism in a way that 

supports cell growth. One example is that of mouse embryonic fibroblasts that reduce 

oxygen consumption when switching from 20% O
2
 to 1% O

2
, and continued low oxygen 

consumption when returning to 20% O
2
, suggesting HIF stable modified metabolic repro-

gramming [21].

The direct consequence of glycolysis is the production of lactic acid by hypoxic tumor cells 

leading to tumor acidosis. Intracellular acidosis poses a threat to cell survival. Readjusting 

intracellular pH (pHi) is a critical strategy to protect against apoptosis and cell death. HIF 

upregulated monocarboxylate transporter 4 (MCT4) and Na+/H+ exchanger (NHE1) facilitate 
exportation of H+ [22, 23]. Moreover, two transmembrane carbonic anhydrases (CAs) catalyze 

CO
2
 to be hydrated to HCO

3
− and H+, CA IX, and XII overexpressed in tumors also regulated 

by HIF. This reaction facilitates proton generation in the extracellular space, which contrib-

utes to acidification in tumor microenvironment, while preventing acidification of intercel-
lular milieu of cancer cell [24].

4. HIF regulation in epigenetic modification

Wadding first proposed the concept of epigenetics in 1915 and believed that the phenotypes 
generated from certain genotype within the scope of epigenetics. Meanwhile, he explained 

the expression of the genetic materials in the entire life process for the first time by using the 
concept of “Whole View” [25]. Holiday summarized with a more comprehensive explanation 

that “epigenetics refers to the changes of the gene expression manner with no difference and/
or change of heritage DNA sequence” [26]. Epigenetics is involved in individual development 

and the gene expression regulation in the biological process, however, it could also lead to 

human diseases when it is interfered [27].

4.1. Histone acetylation

Histone acetylation, a process closely related to transcriptional activation is one of major epi-

genetic modifications. Histone acetylation occurs in the lysine residue located at the end of the 
histone N-terminal. Histone acetylation induces relaxed and/or higher-order structure of chro-

matins through transcriptional regulation [28]. In addition, the acetylated histone produces 

a signal that binds to the protein, producing intrinsic activities or capped-chromatin remod-

eling complexes, thereby promoting the transcriptional induction. Histone acetylation is 

mainly controlled by the inhibitory activities of histone acetyltransferases (HATs) and histone 
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deacetylases (HDACs), and the substrates of HDAC include non-histone proteins, some tran-

scription factors, and cofactors [29]. As a consequence, histone deacetylases generally inhibit 

transcription. It is also interesting that they negatively regulate HIF-dependent transcriptions. 

Previous studies have shown that methylation of Reptin at lysine 67 in hypoxia condition 

by the methyltransferase G9a negatively regulates hypoxic responses [30]. Consequently, 

while in hypoxia condition, the chromatin remodeling factor HIF-1α Reptin binds to HDAC1, 
the target gene of HIF is involved in the supplementation of HDAC1, besides, HDAC4 and 

HDAC5 complement the expression of HIF target promoter in HIF-dependent transcription 

to become more active [31]. Moreover, histone deacetylase inhibitors could promote gene 

expression in the transcription of several HIF target promoters and induce inhibition of HIF-

dependent angiogenesis.

The mechanisms of the HDAC-dependent gene activation are still not well defined. However, 
it becomes increasingly apparent that the HIF C-TAD-p300/CBP interactions are necessary. 
There are evidences suggesting the targets of deacetylated p300/CBP and HIF. In this concept, 
HIF, P300 and HDAC4, HDAC5, or HDAC7 have been reported to form multi-polyprotein 

complexes [31, 32]. This also shows that HDAC4 and HDAC5 could promote the binding 

between HIF-1 and p300, thereby enhancing the expression of HIF target genes. However, 

the gene expressions regulated by epigenetic mechanisms that are involved in the hypoxia 

response are different. It is generally separated into following steps: (1) HIF recruit co- 
activator enhancing the expression of HIF. (2) The interaction between HIF-p300 and CBP by 

the inhibition of hypoxia to induce HIF-1 expression. (3) HDAC4 and HDAC5 can promote 

the interactions between HIF-1α and p300. (4) HDAC4 and HDAC5 promote the interaction 
between HIF-1α and p300. (5) SWI/SNF complexes alter the chromatin structures in some HIF 
target promoters and enhancers to benefit their expression [33].

Specifically, hypoxia promotes the changes in the status of the hypoxia-induced gene pro-

moter histone methylation: activation of hypoxia histone demethylase and inhibition of 
JMJD1A histone demethylase, which can cause H3K9me2 reduction and H3K4me2 increase, 

respectively, thus enhancing the gene expression [34, 35]. In addition, hypoxia could increase 

the expression of some HIF target promoters H3K27me3 and H3K4me3. Under hypoxia con-

ditions, the interactions of HIF1-α and Reptin are enhanced, leading to some HDAC1 supple-

mentation of the HIF target genes and negative regulation of transcription; the changes in 

the status of histone methylation and acetylation promote hypoxia-inhibited gene. Hypoxia 

could increase the levels of H3K9me2 and H3K4me3, and decrease the levels of H3K27me3 

and H3K9ac.

4.2. Histone methylation

Histone methylation, as another main epigenetic modification, is a stringent regulatory pro-

cess, which relies on the activities of histone methyltransferase and histone demethylase. 

Histone demethylase induces the dynamic equilibrium of the histone methylation during 

hypoxia. During hypoxia, histone demethylase can increase the expression of these enzymes, 

and the decreased enzyme activity can be regulated completely or partly by oxygen deficiency. 
Some histone lysine methylation can be specifically prevented under hypoxic  conditions. 
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 Hypoxia-induced histone methylation might be achieved by the partial inhibition of spheri-

cal JHDMS and the reduction of histone methylation of some hypoxia response promoters. 

Interestingly, Jumonji domain-containing protein 1A (JMJD1A) is the HIF target gene itself. 

Krieg and his colleagues suggested the regulation of feed-forward mechanism in which HIF 

might represent for the likely HIF-dependent gene expression of JMJD1A [36]. They suggested 

that JMJD1A maintained the apparent genetic pattern of the activities of the target promot-
ers, thereby minimizing the required energy-supported expression. JMJD1A indicates that 

more consideration should be given to the induction of differential genes and other JHDMS 
involved in the activation of hypoxia-responsive genes. Further research is required to deter-

mine whether this is true.

Although there is a detailed study of hypoxia-induced conditions on JHDM, this kind of 

enzyme in hypoxia requires one or more RNA interference-silencing experiment targeting 
studies of JHDMS or multiple biological effects of JHDMS response. In the apparent regula-

tion of hypoxia, histone modification and chromatin remodeling caused by relative enzymes 
also play a key role. Hypoxia-induced histone acetylation has become a highly suspected 

etiology of Alzheimer’s disease and attention deficit hyperactivity disorder (ADHD) [37].

Evidence suggests that the increase of H3K9me2 is partly due to hypoxia-induced G9A meth-

yltransferase. During hypoxia, H3K9me2 induces the increase of certain gene promoters as 

well. Further studies are required to assess the effects of hypoxia-induced epigenetic altera-

tions on the organisms. To activate the gene transcription, a series of specific HIF-targeted 
genes promoter region is commonly regulated through histone methylation, acetylation, or 

alteration of chromatin structures. On the other hand, hypoxia could stimulate the inhibition 

of induced transcription, possibly by supporting the changes of the whole chromatin. Thus, 

it seems that hypoxia plays a dual role in the studies of epigenetic mechanisms of the genes 

as well as in controlling the induction and transcriptional downregulation of the HIF target 

gene.

HIF will be activated when hypoxia occurs in vivo. As a consequence, transcription of more 

than 100 genes, such as vascular endothelial growth factor (VEGF) and erythropoietin (EPO), 

can be induced. However, the activation of HIF could be accompanied with significant decline 
in the activity in many other transcription factors. However, hypoxia-induced gene modula-

tion is not limited to HIF activation. In contrast, epigenetic modification can be involved in 
this process. The epigenetic mechanisms play dual roles in hypoxia, meaning that they not 

only upregulate the HIF-controlled target genes but also downregulate the general transcrip-

tion factors. However, the specific mechanisms remain to be further explored.

In conclusion, hypoxia could induce extensive histone modifications that are usually asso-

ciated with transcriptional repression or activation. Specifically, however, more research is 
needed to fully understand its biological functions and to identify the enzymes involved in 

signal transduction pathways. It provides holistic assessments regarding hypoxia on the epi-

genetic changes. Under hypoxia conditions, the following epigenetic changes were greatly 

noticed: (1) p300/CBP histone acetyltransferases interact with HIF and acetylate histones 
in HIF target promoters. HDAC4, HDAC5, or HDAC7 form a multi-protein complex with 

HIF-p300 increasing HIF transcriptional activity. HDAC4 and HDAC5 exert their effects by 
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 promoting association between HIF and p300. (2) SWI/SNF are complementary gene promot-
ers of HIF-1α, which is a requirement for the expression of HIF-1α mRNA. The regulation of 
SWI/SNF could also describe the profound effects of HIF-dependent responses on hypoxia. 
On the other hand, the SWI/SNF complex alters the chromatin structure in some HIF target 
promoters or enhancers, thereby favoring their expression. (3) Hypoxia activates JMJD1A 

which promote a decrease in H3K9me2. In the meantime, oxygen deprivation also inhibits 

JARID1A histones demethylases which provoke an increase in H3K4me2 levels at their target 

promoters, thus enhancing gene expression. In addition, hypoxia increases H3K4me3 and 

H3K27me3 levels in some HIF target promoters, and hypoxia-inductive H3K4me3 seems to 

depend on the inhibitory effects of histone demethylase [38]. The hypoxia-inducible gene 

promoter was also observed in EPO, HMOX1, and DAF [39, 40]. (4) The interaction between 

Reptin and HIF1-α is enhanced in hypoxia, leading to recruitment of HDAC1 to some HIF 
target genes, negatively regulating their transcription (Figure 2). However, more research is 

still needed to fully understand its biological functions and to identify the enzymes involved 

in signal transduction pathways. It provides holistic assessment regarding hypoxia on the 

epigenetic modifications.

Figure 2. HIF regulated epigenetic changes in response to hypoxia.
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5. HIF and epigenetic modification in myeloid leukemia

Metabolic flexibility relies on the rewiring of the existing metabolic pathways, which are 
closely controlled by “pathway switch proteins,” to efficient rerouting of metabolites selected 
by cellular needs. As discussed earlier, HIF controls many aspects of tumor in terms of loca-

tion, size, cell type, or local invasion. Other aspects, like state of differentiation and hierar-

chical nature, were also regulated by HIF. Most tumor-initiating mutations occur in stem 

cell or progenitor populations. The expansion of these mutant cells with a more differenti-
ated phenotype that usually characterizes individual cancers are responsible for the cause of 

pathogenesis. This was first described in 1997 for acute myeloid leukemia and subsequently 
extended to solid tumors, including melanoma, Glioblastoma (GBM), and pancreatic cancer 

[41, 42].

Limited oxygen access is the common feature in solid tumor due to inadequate tissue perfu-

sion, thus, cancer metabolism is heavily influenced by adaptation to highly hypoxic micro-

environment. In many cases, HIF is involved as a master regulator. Recently, an increasing 

number of other proteins, regulated by HIF, are found to influence energy metabolism. In 
addition, a series of mutations in these proteins—for example, SDH, FH, isocitrate dehydro-

genase (IDH), activation-induced cytosine deaminase (AID), or drive altered metabolism. 

These findings have supported the notion that HIF has a role to play in oncology, and affects 
diagnostic methods and drug discovery.

In hematological tumors, bone marrow and lymph nodes represent hypoxic environments. 

The quiescent hematopoietic stem cells (HSCs) in the bone marrow existing in the hypoxic 

niche utilization of predominantly glycolysis pathway are regulated by HIF-1α stabiliza-

tion [21]. Hypoxia modulates mitochondrial respiration in an HIF-1α-dependent manner. 
HIF promoter, the expression of pyruvate dehydrogenase kinase-1 (PDK1), in turn, inhib-

its pyruvate dehydrogenase (PDH) [43]. In addition, PKD1 activation is also important in 

inducing pluripotent stem cell, as evidenced by four Yamanaka factors (OCT4, SOX2, KLF4, 

and c-MYC) sufficient to upregulate PDK1, and initiates a Warburg-like metabolic rewiring 
which is closely linked with conversion of pluripotency [44]. On the other hand, metabolic 

reprograming initially triggered by HIF stabilizes HIF expression independently of oxygen to 

gain tumor survival advantage. As an example, imatinib-resistant cell expresses high levels of 

HIF-1αs and induces BCR-ABL upregulation [45]. Recent study further suggests that HIF is 

the potential cause to trigger gene translocation through limiting activation-induced cytosine 

deaminase (AID) expression [46, 47]. In the therapeutic point of view, the stem cell nature 

of cancer is also reflected in removing differentiation block therapy. For example, all-trans 
retinoic acid combined with cytotoxic drug was used in the clinical practice for the treatment 

of acute promyelocytic leukemia (APL) [48]. Other promoting differentiation agent aurora 
kinase A inhibitors were shown effective in acute megakaryocytic leukemia [49].

Other feature of leukemia cell is attenuated metabolic pathway in glycolysis even in aerobic 
conditions [50]. Leukemic cells, other than solid tumors, have the advantage to access oxygen; 

however, levels of HIF-1α, GLUT1, GLUT3, and CA4 are still significantly enhanced compared 
to normal blood cells. Clinical evidence shows that higher glycolytic rate in  leukemic cells 
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induces resistance to chemotherapeutics. Instead, inhibition of glycolysis using 2- deoxyglucose 

(2DG) promotes leukemic cell susceptibility to chemotherapeutic treatment, resulting in induc-

tion of leukemic cell death in normoxia [51].
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