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Abstract

Tests based on regression spline are developed in this chapter for testing nonparametric
functions in nonparametric, partial linear and varying-coefficient models, respectively.
These models are more flexible than linear regression model. However, one important
problem is if it is really necessary to use such complex models which contain nonpara-
metric functions. For this purpose, p-values for testing the linearity and constancy of the
nonparametric functions are established based on regression spline and fiducial method.
In the application of spline-based method, the determination of knots is difficult but plays
an important role in inferring regression curve. In order to infer the nonparametric regres-
sion at different smoothing levels (scales) and locations, multi-scale smoothing methods
based on regression spline are developed to test the structures of the regression curve and
compare multiple regression curves. It could sidestep the determination of knots; mean-
while, it could give a more reliable result in using the spline-based method.

Keywords: fiducial method, multi-scale smoothing method, nonparametric regression
model, partial linear regression model, regression spline, varying-coefficient regression
model

1. Introduction

It is well known that the model which contains nonparametric functions, such as partial linear

model and varying-coefficient model, plays an important role in applications due to its flexible

structure. However, in practice, investigators often want to know whether it is really necessary

to fit the data with such more complex models rather than a simpler model. This amounts to

testing the linearity of nonparametric functions in a regression model. In this chapter, we first

consider the following three frequently used regression models.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Nonparametric regression model:

y ¼ f xð Þ þ ε: (1)

Partial linear regression model:

y ¼ Z0bþ f xð Þ þ ε: (2)

Varying-coefficient model:

y ¼ z1f 1 x1ð Þ þ…þ zpf p xp
� �

þ ε: (3)

In models (1)–(3), y is the response variable, Z ¼ z1;⋯; zp
� �

is a p-dimensional regressor, x and

x1,⋯, xp are covariant taking values in a finite interval, ε is the error, b is a parameter vector,

and f(x) and f j xj
� �

, j ¼ 1, 2,…, p are unknown smooth functions. Usually we suppose that z; xð Þ

and ε are independent and ε˜F ∙=σð Þ, where F is a known cumulate distribution function (cdf)

with mean 0 and variance 1; σ is unknown. Without loss of generality, we can suppose that x

and x1,⋯, xp take values in [0, 1]. We try to test the linearity of f xð Þ in models (1) and (2) and

the constancy of f j xj
� �

in model (3) for some j∈ 1; 2;⋯; pð Þ.

The hypothesis testing in nonparametric regression model was considered in many papers.

Härdle and Mammen [1] developed the visible difference between a parametric and a non-

parametric curve estimates. Based on smoothing techniques, many tests were constructed for

testing the linearity in regression model; see Hart [2], Cox et al. [3], and Cox and Koh [4] for a

review. Recently, Fan et al. [5] studied a generalized likelihood ratio statistic, which behaves

well in large sample case. Tests based on penalized criterion were developed by Eubank and

Hart [6] and Baraud [7].

The linearity of partial linear regressionmodel (2)was studied byBianco andBoente [8], Liang et al.

[9], and Fan and Huang [10]. There are also many other papers concerning such testing problems

(see [11–16], among others). The constancy of the functional coefficient f j xj
� �

in varying-coefficient

model (3)was studied inFanandZhang [17],Cai et al. [18], Fan andHuang [19],YouandZhou [20],

and Tang and Cheng [21]. Local polynomials and smoothing spline methods to estimate the

coefficients inmodel (3) can be seen inHoover et al. [22],Wu et al. [23], and so on.

The critical values of most of the previous tests were obtained by Wilks theorem or bootstrap

method. So such tests only behave well in the case of relatively large sample size. This chapter

would give some testing procedures based on regression spline and the fiducial method [24] in

Section 2. It has a good performance even when the sample size is small.

In using the regression spline, the key problem is the determination of knots used in spline

interpolation. As we know that, for smoothing methods such as kernel-based method and

smoothing spline, the smoothness is controlled by smoothing parameters. For the well-known

kernel estimate, the bandwidth that is extremely big or small might leads to over-smoothing or

under-smoothing, respectively. In order to avoid the selection of an optimal smoothing param-

eter, multi-scale smoothing method was introduced by Chaudhuri and Marron [25, 26] based
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on kernel estimation for exploring structures in data. This multi-scale method is known as
significant zero crossings of derivatives (SiZer) methodology. The basic idea of SiZer is to infer
a nonparametric model by using a wide range of smoothing parameter (bandwidth) values
rather than only using one “optimal” value in some sense.

There have been many versions of SiZer for various applications, such as the local likelihood
version of SiZer in Li and Marron [27], the robust version of SiZer in Hannig and Lee [28], and
the quantile version of SiZer in Park et al. [29]. In addition, Marron and deUñaÁlvarez [30]
applied SiZer to estimate length biased, censored density, and hazard functions; Kim and
Marron [31] utilized SiZer for jump detection and Park and Kang [32] applied SiZer to
compare regression curves. The smoothing spline version of SiZer was proposed by Marron
and Zhang [33]. It used the tuning parameter (penalty parameter) that controls the size of
penalty as the smoothing parameter is.

Comparing with bandwidth for kernel-based method and tuning parameter for smoothing
spline, it is more difficult to determine the number of knots and their positions. For this reason
a multi-scale smoothing method based on regression spline is proposed in Section 3 to test the
structures of nonparametric regression model. The proposed multi-scale method does not
involve the determination of the “best” number of knots and can be extended easily to a more
general case.

2. Tests for nonparametric function based on regression spline

In this section, the linearity of function f xð Þ in model (1) is tested based on regression spline
and fiducial method. Then, the proposed test procedure for model (1) is extended to test the
linearity of model (2) and the constancy of function coefficient in model (3), respectively.

2.1. Test the linearity of nonparametric regression model

Without loss of generality, we suppose that x in model (1) takes values in [0, 1] and the set of
knots is T = {0 ¼ t1 < t2,⋯, < tm ¼ 1g. In order to estimate model (1), nonparametric function f

(x) is fitted by kth order splines with knots T. This means that

f xð Þ ≈
X

mþk�1

j¼1

βjgj xð Þ, (4)

where βj is coefficient and gj xð Þ, j ¼ 1, 2,⋯, mþ k� 1, is basis function for order k splines,

over the knots t1, t2,⋯, tm:

With n-independent observations Y ¼ y1; y2;⋯; yn
� �

∈ℝ
n, the basis matrix Gn� mþk�1ð Þ is

defined by G ¼ gj xið Þ
n o

, xi is the designed point, i ¼ 1, 2,⋯, n; j ¼ 1, 2,⋯, mþ k� 1: Hence,

model (1) can be approximated as Y ≈Gβþ ε. The least squares estimator of coefficients is
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bβ ¼ GTG
� ��1

GT Y, (5)

and the estimator of f xið Þ can be expressed as

bY ¼ bf x1ð Þ;bf x2ð Þ;⋯;

bf xnð Þ
n oT

¼ G GTG
� ��1

GT Y: (6)

For testing the linearity of model (1), linear spline is used to approximate f xð Þ. It means that

basis function gj xð Þ is a linear function:

g1 xð Þ ¼
�x� t2

t2 � t1ð Þl2 tð Þ
,

gk�1 xð Þ ¼
x� tk�2

tk�1 � tk�2ð Þlk�1 tð Þ
�

x� tk
tk � tk�1ð Þlk tð Þ

, 3 ≤ k ≤m, (7)

gm xð Þ ¼
x� tm�1

tm � tm�1ð Þlm tð Þ
:

In this case, the approximated function in (4) is a linear interpolation with k =1. The true value

is βj ¼ f tj
� �

, j ¼ 1, 2,⋯, m. The linearity of function f xð Þ can be written as

H0 :

β2 � β1
t2 � t1

¼
β3 � β2
t3 � t2

¼ ⋯ ¼
βm � βm�1

tm � tm�1
:

Null hypothesis H0 can be expressed in matrix as L0β ¼ 0,

where

L0 ¼

h2 � h1 � h2 h1 0⋯ 0 0 0

⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋯ hm�1 � hm�1 � hm�2 hm�2

2

664

3

775,

where hj ¼ tjþ1 � tj, j ¼ 1, 2,⋯, m� 2. Null hypothesis H0 is equivalent to the following one:

H∗

0 : L0β ¼ 0: (8)

The p-value for testing hypothesis H∗

0 will be derived by the fiducial method in the following

context. Assume that matrix G has full rank, and let ε˜σN 0; 1ð Þ. In model Y ¼ Gβþ ε, the

sufficient statistic of β; σ2
� �

is bβ; S2
� �

, where bβ is defined in (5) and

S2 ¼ Y0 I � PGð ÞY, PG ¼ G G0Gð Þ
�1
G0

:

By Dawid and Stone [34], the sufficient statistic can be represented as a functional model:
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bβ ¼ βþ σ G0Gð Þ
�1

2E1, S ¼ σE2, E ¼ E1, E2ð Þ � Q, (9)

where Q is the probability measure of E ¼ E1ð , E2Þ and E1 � N 0; Imð Þ and, independently,

E2
2 � χ2 n�mð Þ: From linear regression model, the fiducial model of β can be obtained:

bβ ¼ βþ
S

E2
G0Gð Þ

�1
2E1, E ¼ E1, E2ð Þ � Q: (10)

Given bβ; S2
� �

, the distribution of the right side in fiducial model is the fiducial distribution of

β. That is, the fiducial distribution of β is the conditional distribution of R E;bβ; S2
� �

when

bβ; S2
� �

is given, where

R E;bβ; S2
� �

¼ bβ �
S

E2
G0Gð Þ

�1
2E1: (11)

For testing hypothesis H∗

0, the p-value is defined as

p bβ; S2
� �

¼ Q L0 R E; bβ; S2
� �

� EQR E; bβ; S2
� �h i���

���
2

Σ

≥ L0EQR E; bβ; S2
� ����

���
2

Σ

� �
, (12)

where Q(�) and EQ express the probability for an event and the expectation of a random

variable under Q, respectively, and Σ is the conditional covariance matrix of L0EQR E;bβ; S2
� �

given bβ, S2 and vk k2
Σ
¼ v0Σ�1v for a vector v:

According to the definition of generalized pivotal quantity in [35], R E;bβ; S2
� �

is a generalized

pivotal quantity and also a fiducial pivotal quantity about β. Naturally, L0R E;bβ; S2
� �

is the

fiducial pivotal quantity about L0β. With the definition of Q in Eq. (10), we have that

p bβ; S2
� �

¼ 1� Fm�2,n�m

n�mð Þbβ 0L L0 G0Gð Þ
�1
L

� ��1
L0bβ

m� 2ð ÞS2

0

B@

1

CA, (13)

where Fm�2,n�m is the cdf of F-distribution with degrees of freedom m� 2 and n�m.

Under model (1) and the hypothesis that f xð Þ is a linear function, null hypothesis H∗

0 given in (8)

is true. Suppose that the error is normally distributed, then the p-value given in Eq. (12) distrib-

utes as uniform distribution on interval (0, 1). On the other hand, under somemild condition, the

test procedure based on p bβ; S2
� �

is consistent. Which means that p bβ; S2
� �

tends to be zero in

probability 1 if H∗

0 is false. The corresponding theoretical proof of the large sample properties

and finite sample properties of p bβ; S2
� �

is the same as the proof given in Li et al. [36].
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In applications, we need to check some hypotheses as follows:

H01 : f xð Þ ¼ C , β1 ¼ β2 ¼ ⋯ ¼ βm,

H02 : f xð Þ ¼ Cx ,
β2 � β1
t2 � t1

¼
β3 � β2
t3 � t2

¼ ⋯ ¼
βm � βm�1

tm � tm�1
, and, β1 ¼ 0:

The p-values for testing H01 and H02 can be obtained by replacing L in (12) by L01 and L02,

respectively, where L02 ¼ e1; Lð Þ, e1 ¼ 1; 0; 0;⋯; 0ð Þ0 and

L01 ¼

h2 � h1 0⋯ 0 0

⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 ⋯ hm � hm�1

2

6

4

3

7

5
: (14)

2.2. Test the linearity of partial linear model

To test the linearity of model (2), p-value can be established analogously. With n-independent

observations Y ¼ y1; y2;⋯; yn
� �

∈ℝ
n, model (2) can be represented as.

yi ¼ Z0
ibþ f xið Þ þ εi, i ¼ 1, 2,⋯, n,

where Z0
i ¼ zi1;⋯; zip

� �0
, b ¼ b1;⋯; bp

� �0
, xi, i ¼ 1, 2,⋯, n are fixed designed points. With the

approximation of f xð Þ given in (4), model (2) can be approximated by Y ≈Xθþ ε, where

X ¼ ℤ;Gð Þn� pþmþ1ð Þ; ℤ ¼ (zij); i ¼ 1, 2,⋯, n; j ¼ 1, 2,⋯, p; G is the same as above; and

θ ¼ b0; ; β0
� �0

. Then p-value for testing the linearity of model (2) can be defined by replacing G

in (12) by X, β by θ, and L by L03, respectively, L03 ¼ 0 m�2ð Þ�p; L
0

� �0
.

The large sample and finite sample properties of the testing procedure for model (2) are the

same as the test procedure for model (1).

2.3. Test the constancy of functional coefficient in varying-coefficient model

For model (3), investigators often want to knowwhether the coefficients are really varying; this

means to test the constancy of the coefficient functions, that is, testing hypothesis:

H31 : f j xð Þ ¼ Cj for j ¼ 1, 2,⋯, p and some constant Cj, (15)

H32 : f j0 xð Þ ¼ Cj0 for some j ¼ j0 and some constant Cj0: (16)

With the set of knotsT = {0¼ t1 < t2,⋯, < tm ¼ 1g, coefficient f j xð Þ can also be approximated by

f j xð Þ ¼
X

m

k¼1

βjsgj xð Þ, j ¼ 1, 2,⋯, p,

where the true value of βjs ¼ f j tkð Þ. Basic functions gj, j ¼ 1, 2,⋯, mþ 1 were defined in (7). The

varying-coefficient model (3) is approximately represented as
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Y ¼ Xβþ ε, (17)

where X ¼ F1;⋯; Fp
� �

is n�mp matrix and Fj ¼ zjif k xið Þ
� �

, k ¼ 1, 2,⋯, m, i ¼ 1, 2,⋯, n,

j ¼ 1, 2,⋯, p. β ¼ β01;⋯; βp
0

� �0
is mp-dimensional parametric vector, βj ¼ f j t1ð Þ;⋯; f p tmð Þ

� �0
.

It is worth noting that under null hypothesis H31 defined in (15), regression model (3) is

equivalent to model (17). However, this equivalence does not hold under null hypothesis H32

defined in (16). Null hypotheses H31 and H32 can be expressed in matrix as the following two,

respectively:

H∗

31 : L01β ¼ 0, (18)

H∗

32 : L02β ¼ 0, (19)

where L01 is p m� 1ð Þ �mp matrix.

L01 ¼

L01
0

⋯ 0

⋮ ⋱ ⋮

0 ⋯ L01
0

0

BBB@

1

CCCA, L01 ¼

1 � 1 0⋯ 0 0

⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 ⋯ 1 � 1

2

6664

3

7775,

L02 ¼ 0 m�1ð Þ� mj0�mð Þ; L
0
; 0 m�1ð Þ� mp�mj0ð Þ

� �

m�1ð Þ�mp
:

In the same way as the p-value in (13) is defined, p-value to test hypotheses H∗

31 and H∗

32 can be

defined as below if the error ε distributes as normal distribution:

p31
bβ; S2

� �
¼ 1� Fp m�1ð Þ,n�mp

n�mpð Þbβ 0L1 L01 X0Xð Þ
�1
L1

� ��1
L01
bβ

p m� 1ð ÞS2

0

B@

1

CA, (20)

p32
bβ; S2

� �
¼ 1� Fm�1,n�mp

n�mpð Þbβ 0L2 L02 X0Xð Þ
�1
L2

� ��1
L02
bβ

m� 1ð ÞS2

0

B@

1

CA: (21)

According to the above discussion, it can be seen that p31
bβ; S2

� �
is uniformly distributed over

(0, 1) under hypothesis H∗

31. However, under null hypothesis H∗

32, varying-coefficient model (2)

is not linear. Hence, there is a difference between the distribution function of p32
bβ; S2

� �
under

H∗

32 and uniform distribution. This difference has an accurate expression, which can be seen in

Li et al. [37] (Theorem 3). On the other hand, p31
bβ; S2

� �
and p32

bβ; S2
� �

both tend to be zero in

probability if null hypotheses are false when sample size tends to be infinity under some mild

conditions. The corresponding proof was provided also in Li et al. [37].
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3. Multi-scale method based on regression spline

For regression spline, the number of knots controls the smoothness of the estimator. The

determination of knots is important and plays a large influence on the inference results.

The GCV method is usually used to choose an optimal number of knots. While, but after the

number of knots is given, the determination of the optimal positions of knots is difficult. Shi

and Li [38] chose knots by placing an additional new knot to reduce the value of GCV, until

it could not be reduced by placing any additional knots. Hence, once a knot was selected, it

cannot be removed from the knot set. Mao and Zhao [39] determined the locations of knots

conditioned on the number of knots m first and chose m later by GCV criterion. In fact, the

locations of knots can be considered as parameters which can be estimated from data. This is

the free-knot spline; see DiMatteo et al. [40] and Sonderegger and Hannig [41]. However, the

estimation of the optimal locations is computationally intractable, and replicate knots might

appear in the estimated knot vectors [42].

On the other hand, many statisticians think that the statistical inference based on one smooth-

ing level is not reliable although it is the optimal one. Therefore, multi-scale method is devel-

oped to estimate and test nonparametric regression curves. Chaudhuri and Marron [25, 26]

proposed a multi-scale method to explore the significant structures (local minima and maxima

or global trend) in data, which is known as SiZer. Significant zero crossings of derivatives

(SiZer) is a powerful visualization technique for exploratory data analysis. It applies a large

range of smoothing parameter values to do statistical inference simultaneously and use a 2D

colored map (SiZer map) to summarize all of the results inferred at different smoothing levels

(scales) and locations.

In this section, a regression spline version of SiZer is proposed for exploring structures of curve

and comparing multiple regression curves, respectively. The proposed SiZer employs the

number of knots as smoothing parameter (scales). For the sake of simplicity, linear spline is

employed first to construct SiZer, which is denoted as SiZerLS. In addition, another version of

SiZer—SiZerSS—is introduced, which is proposed in Marron and Zhang [33]. In SiZerSS,

smoothing spline is used to infer the monotonicity of f xð Þ, and the tuning parameter (penalty

parameter) that controls the size of penalty is chosen to be as the smoothing parameter. Finally,

SiZer-RS, a version of SiZer based on higher-order spline interpolation, is constructed to

compare multiple regression curves at different scales and locations simultaneously.

In order to understand SiZerLS clearly, we first present an example in which SiZerLS are

simulated. This example is modified from Hannig and Lee [28] with the same regression

function:

f xð Þ ¼ 5þ 4:2 1þ
x� 0:3j j

0:03

� �
� 4þ 5:1 1þ

x–0:7j j

0:01

� �
� 4:

The observations generated from model (1) with 200 equally spaced design points from (0, 1)

and σ � N 0; 0:5ð Þ are plotted in Figure 1. Estimator bf m xð Þ denotes the linear spline smoother

obtained from (6) using m equally spaced knots chosen from (0, 1). The curves of bf m xð Þ with
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different values of m are plotted in Figure 1 too. The simulated SiZerLS map and SiZerSS map

are shown in Figure 2, respectively.

In Figure 2, BYP SiZerLS is SiZerLS map based on multiple testing procedures, BYP, where

BYP denotes the multiple testing procedure proposed in Benjamini and Yekutieli [43]. SiZerSS

is the smoothing spline version of SiZer. The two SiZers are simulated under the same range of

scales and nominal level 0.05. There are four colors in SiZer maps: red indicates that the

Figure 1. 200 observations and the estimated curves based on different knot sets.

Figure 2. BYP SiZerLS and SiZerSS for detecting peaks of data.

Model Testing Based on Regression Spline
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estimated regression curve is significantly decreasing; blue indicates that the estimated regres-

sion curve is significantly increasing; purple indicates that the curve is neither significantly

increasing nor decreasing; gray shows that there are no sufficient data for conducting reason-

able statistical inference. Figure 1 preliminarily shows that SiZer maps can locate peaks well.

The theoretical foundation of SiZerLS and SiZerSS will be discussed in more detail at a later

stage.

3.1. Construction of SiZerLS map for exploring features of regression curve

The proposed SiZerLS map will be constructed on the basis of the p-values with multiple

testing adjustment. The p-value for testing the monotonicity of the smoothed curve is defined

first based on linear spline approximation and fiducial method in the same way as p-values in

Section 2. Consequently, multiple testing adjustment is discussed detailedly to control the row-

wise false discovery rate (FDR) of SiZerLS.

In the view of SiZer, all of the useful information is included in the smoothed curve, which is

defined below. Suppose we have observations xi; yi
	 
n

i¼1
from regression model (1). By linear

spline estimation, estimator bf m xð Þ can be obtained:

bf m xð Þ ¼ g xð Þ0 GTG
� ��1

GT Y, (22)

where g xð Þ¼ g1 xð Þ; g2 xð Þ;⋯; gm xð Þ
� �0

; gj xð Þ, j ¼ 1,⋯, m are the basis functions defined in (7) on

the basis of m knots; and G is the matrix defined in Section 2. The smoothed curve at smooth-

ing level m is denoted as.

fm xð Þ ¼ E bf m xð Þ
� �

¼ g xð Þ0 GTG
� ��1

GT f ,

where f¼ f x1ð Þ; f x2ð Þ;⋯; f xnð Þf g0. SiZer focuses on fm xð Þ: Its monotonicity is determined totally

by GTG
� ��1

GT f. Hence, it is enough to test the following m� 1 pairs of null hypotheses:

HIk ¼ fm tkð Þ ¼ e0k G0Gð Þ
�1
G0f ≤ e0kþ1 G0Gð Þ

�1
G0f ¼ fm tkþ1ð ÞðandÞ

HDk ¼ fm tkð Þ ¼ e0k G0Gð Þ
�1
G0f ≥ e0kþ1 G0Gð Þ

�1
G0f ¼ fm tkþ1ð Þ, k ¼ 1, 2,⋯, m� 1, (23)

where ek is anm-dimensional column vector having 1 in the kth entry and zero elsewhere. Let b

denote G0Gð Þ
�1
G0f . Then, HIk and HDk can be written as

H∗
Ik ¼ Lkb ≤ 0, k ¼ 1, 2,⋯, m� 1; H∗

Dk ¼ Lkb ≥ 0, k ¼ 1, 2,⋯, m� 1, (24)

where Lk ≜ e0k � e0kþ1

�
). The p-values to test hypotheses in (24) under linear model Y ¼ Gbþ ε

can be defined using pivotal quantity about b. This pivotal quantity is R E;bβ; S2
� �

, which is

defined in (11). The p-value for testing H∗
Ik is the fiducial probability that null hypothesis holds:
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P∗
Ik

bβ; S
� �

¼ P LkR E;bβ; S
� �

≤ 0
n o

¼ P Lkbβ � S

E2
G0Gð Þ�

1
2E1 ≤ 0

� �

¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p
Lk G0Gð Þ�1

G0E1

Lk G0Gð Þ�1
L0k

� �1
2
E2

≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p bβ

S Lk G0Gð Þ�1
L0k

� �1
2

8
><

>:

9
>=

>;
, (25)

where the subscript Ik of P∗
Ik represents the interval (tk, tkþ1) in which we test monotonicity and

m represents the number of knots used in linear interpolation. In addition, p-value P∗
Dk

bβ; S
� �

for testing H∗
Dk satisfies equation P∗

Ik
bβ; S

� �
þ P∗

Dk
bβ; S

� �
¼ 1.

It is worth noting that p-value P∗
Ik

bβ; S
� �

is uniformly distributed on (0,1) if all of the hypotheses

HIk, HDk, k ¼ 1, 2,⋯, m� 1 are true (regression function is a constant). In applications, p-value

P∗
Ik

bβ; S
� �

for testing HIk can be approximated as below when n ! ∞: This approximation is

reasonable (see Theorem 1 in [44]):

PIk,m
bβ; S

� �
≜ 1� Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p
Lkbβ

S Lk G0Gð Þ�1
Lk

� �1=2

0

B@

1

CA: (26)

The proposed SiZerLS map will be constructed on the basis of the above p-values with

multiple testing adjustment. In fact, SiZer is a visual method for exploratory data analysis,

and it focuses on exploring features that really exist in data instead of testing whether some

assumed features are statistically significant in a strict way. FDR is the expected proportion of

the false positives among all discoveries, and FDR can be either permissive or conservative

according to the number of hypotheses. Considering that different numbers of hypotheses

need to be tested for SiZerLS with respect to various smoothing parameters, the multiple

testing adjustment to control FDR would be better if used to improve the exploratory property

of SiZer. Hence, the well-known multiple testing procedure which was proposed in Benjamini

and Yekutieli [43] (denoted as BYP) is applied to control the row-wise FDR of SiZerLS. The

BYP was proved to control FDR under α for any dependent test statistics.

3.1.1. Benjamin-Yekutieli procedure to control FDR (BYP)

Suppose that we have obtained p-values PIk,m
bβ; S

� �
for testing hypotheses HIk in (23),

k ¼ 1, 2,⋯, m� 1:

1. Order p-values P∗
Ik,m and get the ordered p-values PI 1ð Þ,m, PI 2ð Þ,m,⋯, PI m�1ð Þ,m.

2. For a given p-value α, find the largest i for k ¼ 1, 2,⋯, m� 1 for which PI ið Þ,m ≤
kα

m�1ð Þ
Pm�1

j¼1
1
j

and reject all HI kð Þ,m for k ¼ 1, 2,⋯, m� 1.

Model Testing Based on Regression Spline
http://dx.doi.org/10.5772/intechopen.74858

93



The detailed steps to construct SiZerLS with BYP adjustment are given below:

Step 1. Construct 2D grid map. Without loss of generality, we assume that designed points

xi, i ¼ 1, 2,⋯, n are chosen from [0, 1]. Then the 2D map is a rectangular area [0, 1;

log10 1=mmax;ð Þ, log10 1=mminð Þ�; see BYP SiZerLS displayed in Figure 2. The value of m is

determined by the following rule: m ¼ round 1=10l
� �

, where function round (∙) is the nearest

integer function and l takes equally spaced values from interval log10 1=mminð Þ;
�

log10 1=mmaxð Þ�.

For a given m, abscissa x takes values at the corresponding knots Tm ¼ t1; t2;⋯; tmf g. On the

basis of different values of m and Tm, the 2D map is divided into many pixels.

Step 2. Calculate p-values for each pixel. Each pixel in the 2D map constructed in step 1 is

determined by two adjacent knots and a determined m. For pixel tk; tkþ1;m ¼ m0ð Þ, we calculate

p-value PIk,m0
and PDk,m0

for testing hypotheses H∗
Ik,m0

and H∗
Dk,m0

, respectively, with m0 knots.

Step 3. Multiple testing adjustment. For a given value m ¼ m0, carry out multiple testing

procedure BYP using p-values PIk,m0
(PDk,m0

), k ¼ 1, 2,⋯, m0, obtained from step 2 to test the

fowling family of hypotheses simultaneously:

H∗
I1,m0

;H∗
I2,m0

;⋯;H∗
Im0�1,m0

n o

H∗
D1,m0

;H∗
D2,m0

;⋯;H∗
Dm0�1,m0

� �

:

Step 4. Color pixels. According to the multiple testing results at smoothing level m0 if H∗
Ik is

rejected andH∗
Dk is accepted, pixel tk; tkþ1;m ¼ m0ð Þ is colored red to indicate significant decreas-

ing. On the contrary, if H∗
Ik, ,m0

is accepted and H∗
Dk,m0

rejected, pixel tk; tkþ1;m ¼ m0ð Þ is colored

blue to show significant increasing; purple is used for no significant trend in other cases.

In SiZer map, gray indicates that no sufficient data can be used to test the monotonicity of

regression function at point x with m knots. Such sufficiency is quantified as effective sample

size (ESS). Noting that the number of nonzero elements in the kth column of G has a demon-

strable effect on the inference in interval tk; tkþ1ð Þ, and it is determined directly by how many

observations are included in tk; tkþ1ð Þ, we define ESS tk;mð Þ as.

ESS t1;mð Þ;ESS t2;mð Þ;⋯;ESS tm;mð Þð Þ0 ≜G0G 1; 1;⋯; 1ð Þ0:

In SiZerLS map, pixel tk; tkþ1;m ¼ m0ð Þ would be colored gray if.

min ESS tk;m0ð Þ;ESS tkþ1;m0ð Þð Þ < 5:

In order to avoid selecting knots, m equally spaced knots or equal x-quantiles are used in

interpolation. The smoothing level of regression spline estimate is controlled by m together

with the positions of knots. The level of smoothness should be reduced to detect some

local fine feature; however, the total number of knots should be limited to avoid excessive

under-smoothing in a wide range. In applications of SiZerLS, the range of scales is

recommended to include the coarsest smoothing level, m ¼ 2, and the finest smoothing level,

avg
x∈Tmmax

ESS x;mmaxð Þ < 5.
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3.2. Construction of SiZerSS map for exploring features of regression curve

SiZerSS given in Marron and Zhang [33] employed smoothing spline to construct SiZer map

for nonparametric model (1). Given xi; yi
	 
n

i¼1
and a smoothing parameter λ, the smoothing

spline estimator is the function bf λ that minimizes the regularization criterion over function f :

Xn

i¼1

ωi yi � f xið Þ
� �2

þ λ

ð
f
0 0

xð Þ
h i2

dx: (27)

By simple calculation, we can get the estimator vector:

bfλ¼ bf λ x1ð Þ;bf λ x2ð Þ;⋯;bf λ xnð Þ
� �

¼ W þ λKð Þ�1WY ¼ AλY, (28)

where weight matrix W ¼ diag ω1;ω2;⋯;ωnð Þ and the hat matrix Aλ ¼ W þ λKð Þ�1W .

In order to construct SiZerSS, the derivative of f at any point x needs to be estimated along

with its variance. Let si ¼ xiþ1 � xi and n� n� 1ð Þ matrix Q ¼ qij

n o
, i ¼ 1, 2,⋯, n,

j ¼ 2,⋯, n� 1, where qj�1, j ¼ s�1
j�1, qjj ¼ �s�1

j�1 � s�1
j , qjþ1, j ¼ s�1

j , and qi, j ¼ 0 for i� jj j ≥ 2: Let

γ1;γ2;⋯;γn

� �
¼ f

0 0

x1ð Þ; f
0 0

x2ð Þ⋯; f
0 0

xnð Þ
� �

. By the definition of natural cubic spline, f } x1ð Þ ¼

f } xnð Þ ¼ 0. Let γ ¼ γ2;⋯;γn�1

� �0
. According to Theorem 2.1 of Green and Silverman [45], the

vectors f and γ specify a natural cubic spline f if and only if Q0f ¼ Rγ,

where R is a (n� 2Þ � n� 2ð Þ symmetric matrix with elements rij, i ¼ 2,⋯, n� 1,

j ¼ 2,⋯, n� 1, which is given by rii ¼
1
3 si�1 þ sið Þ, ri, iþ1 ¼ riþ1, i ¼

1
6 si and rij ¼ 0 for i� jj j ≥ 2.

The estimator bγ can be obtained from equation Rþ λQ0Qð Þγ ¼ Q0Y. Then estimator bf xð Þ and

bf
0
xð Þ can be written as a linear combination of bf and bγ. Let hi xð Þ ¼ x� xi, i ¼ 1, 2,⋯, n: When

x < x1:

bf λ xð Þ ¼ bf λ x1ð Þ þ h1 xð Þ
bf λ x2ð Þ �bf λ x1ð Þ

s1
�
s1
6
bγ
2

( )

,bf
0
xð Þ ¼

bf λ x2ð Þ �bf λ x1ð Þ

s1
�
s1
6
bγ2:

When xi ≤ x ≤ xiþ1, let δi xð Þ ¼ 1þ hi xð Þ
si

� �
bγ iþ1 þ 1� hiþ1 xð Þ

hi

� �
bγ i for i ¼ 1, 2,⋯, n,

bf λ xð Þ ¼
hi xð Þbf λ xiþ1ð Þ � hiþ1 xð Þbf λ xið Þ

si
þ
hi xð Þhiþ1 xð Þδi xð Þ

6
,

bf
0

λ xð Þ ¼
bf λ xiþ1ð Þ �bf λ xið Þ

si
þ
hi xð Þhiþ1 xð Þ bγ iþ1 � bγ ið Þ

6si
þ
hi xð Þ þ hiþ1 xð Þ

6
δi xð Þ:

(When) x > xn

Model Testing Based on Regression Spline
http://dx.doi.org/10.5772/intechopen.74858

95



bf λ xð Þ ¼ bf λ xnð Þ þ
hn xð Þ

6

bf λ xnð Þ �bf λ xn�1ð Þ

sn�1
þ sn�1bγn�1

( )
,

bf
0

λ xð Þ ¼
1

6

bf λ xnð Þ �bf λ xn�1ð Þ

sn�1
þ sn�1bγn�1

( )
:

The variance of bf
0

λ xð Þ can be calculated easily if the estimator of σ2, the variance of the error in

model (1), is obtained. σ2can be estimated by the sum of squared residuals
P

yi �
bf
λ
xið Þ

� �2
. If

σ2 is a function of x, σ2 xð Þ can be estimated by yi �
bf
λ
xð Þ

� �2
. The confidence interval of f λ

0 xð Þ

are of the form:

bf
0

λ xð Þ � q:cSD bf λ
0
xð Þ

� �
, (29)

where q is based on the nominal level. For details, see Section 3 of Chaudhuri and Marron [25].

SiZerSS can be constructed as SiZerLS. For different values of x, if interval (29) contains zero,

pixel x;λð Þ is colored purple; if confidence interval is on the right side of zero, blue is used to

indicate increasing; otherwise, red is used to imply decreasing. Gray is used to indicate that

there is no sufficient data to do reliable inference. The sufficiency can be found in Chaudhuri

and Marron [25].

The simulated SiZerLS and SiZerSS maps are displayed in Figure 2, where the red and blue

regions locate the bumps of regression curve accurately. This simulation illustrates the good

behavior of SiZerLS and SiZerSS in exploring features in data.

3.3. Construction of SiZer-RS map for comparing multiple regression curves

The comparison of two or more populations is a common problem and is of great practical

interest in statistics. In this subsection, comparison of multiple regression curves in a general

regression setting is developed based on regression spline. Suppose we have n ¼
Pk

i¼1

ni inde-

pendent observations from the following k regression models:

yij ¼ f i xij
� �

þ σi xij
� �

εij, i ¼ 1, 2,⋯, k, j ¼ 1, 2,⋯, ni, (30)

where xij s are covariates, the errors εij � N 0; 1ð Þ s are independent and identically distributed

errors, f i �ð Þ is the regression function, and σ2i �ð Þ is the conditional variance function of the ith

population. We are concerned about whether the k populations in model (30) are equal; if not,

what is the difference? To this end, a multi-scale method, SiZer-RS, based on regression spline

is proposed to compare f i �ð Þ across multiple scales and locations.

As described in Park and Kang [32], the choice of smoothing parameter is also important for

comparing regression curves. They developed SiZer for the comparison of regression curves
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based on local linear smoother. SiZer map for comparing regression curves is a 2D color map,

which consists of a large number of pixels. Each pixel is indexed by a scale (smoothing

parameter) and a location; the color of a pixel indicates the result for testing the equality of

two or more multiple regression curves at the corresponding location and scale. SiZer provides

us with more information about the locations of the differences among the regression curves if

they do exist. Park et al. [46] developed an ANOVA-type test statistic and conducted it in scale

space for testing the equality of more than two regression curves.

The works mentioned above are kernel-based method. Besides it, regression spline is an

important smoothing device and is used widely in applications. For a given smoothing param-

eter m (the number of knots used in regression spline), the p-value for testing the equality of k

regression curves at point x is established. Consequently, SiZer-RS is constructed in the same

way as SiZerLS for comparing multiple retrogression curves based on higher-order spline

interpolation.

For a given smoothing parameter m (the number of knots used in regression spline), the

smoothed curve is defined as f i,m xð Þ ¼ Eðbf i,m (x)), where bf i,m xð Þ is the regression spline estima-

tor. SiZer-RS for comparing multiple regression curves is based on the testing results for

testing null hypothesis:

Hm,x : f 1,m xð Þ ¼ f 2,m xð Þ ¼ ⋯ ¼ f k,m xð Þ, (31)

at point x with smoothing parameter m. Without loss of generality, we still suppose

that the explanatory variable x takes value from [0, 1]. On the basis of a knot set

Tm ¼ 0 ¼ t1 < t2;⋯; < tm ¼ 1f g, we have the approximation:

f i xð Þ ≈
Xmþq�1

s¼1

βi, sgm, s xð Þ≜Nm xð Þ0βmi , (32)

where βmi ¼ βi,1; βi,2;⋯; βi,mþp�1

� �0
: The estimator of f i xð Þ at smoothing level m can be

obtained bf i,m xð Þ ¼ Nm xð Þ0bβm
i , in which, Nm xð Þ ¼ gm, s xð Þ; s ¼ 1; 2;⋯;mþ q� 1

n o
: If q ¼ 3,

Nm xð Þ0 is defined below:

Nl
m xð Þ ¼ tl � tl�4ð Þ tl�4; tl�3; tl�2; tl�1; tl½ � t� xð Þ3þ, l ¼ 2, 3,⋯, mþ 3,

where tl ¼ tmin max l;1ð Þ;mð Þ for l ¼ �2, � 1,⋯, mþ 3:

t� xð Þ3þ ¼
t� xð Þ3, t > x

0, t ≤ x

:

8
<

:

For a function g �ð Þ, tl�4; tl�3; tl�2; tl�1; tl½ �g �ð Þ denotes the fourth-order divided difference of

g �ð Þ, that is:
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t1; t2½ �g ¼ g0 tð Þ, if t1 ¼ t2 ¼ t

t1; t2½ �g ¼
g t2ð Þ � g t1ð Þ

t2 � t1
otherwise,

t1; t2;⋯; tk½ �g ¼ g k�1ð Þ tð Þ, if t1 ¼ ⋯ ¼ tk

t1; t2;⋯; tk½ �g ¼
t2; t3;⋯; tk½ �g� t1; t2;⋯; tk�1½ �g

tk � t1
, otherwise:

8
>>>>>>>>>>><

>>>>>>>>>>>:

Then model (31) can be approximately written as the following linear regression model:

Yi ¼ Gm
i β

m
i þ ΣiEi, (33)

where

Yi ¼ yi1; yi2;⋯; yini

� �0
, Gm

i ¼ Nl
m xið Þ

� �
ni� mþ2ð Þ

, Σi ¼ diag σi xij
� �	 


, Ei ¼ εi1; εi2;⋯; εini
� �0

:

At first, we suppose Σi is known and then replace it by its available estimator.

From regression model (33), we can get the estimator bβm
i ¼ Gm0

i Σ
�1
i Gm

i

� ��1
Gm

i 0Σ
�1
i Yi: Let b

m
i

denote the expectation of bβm
i :

bmi ¼ E bβ
m

i

� �
¼ Gm

i 0Σ
�1
i Gm

i

� ��1
Gm

i 0Σ
�1
i fi,

where fi ¼ f i xi1ð Þ;⋯; f i xini
� �� �0

. Therefore, the smoothed curve

f i,m xð Þ ¼ E bf i,m xð Þ
� �

¼ E Nm xð Þ0 Gm0
i Σ

�1
i Gm

i

� ��1
Gm0

i Σ
�1
i Yi

h i
¼ Nm xð Þ0bmi : (34)

Denote b
m ¼ bm0

1 ; bm0
2 ;⋯; bm0

k

� �0
, and correspondingly, denote its estimator as bβ

m
¼ βm0

1 ; βm0
2 ;⋯

�

βm0
k Þ0. Hypothesis Hm,x can be presented as

Hm,x : Lm xð Þbm ¼ 0k�1, (35)

where

Lm xð Þ ¼

Nm xð Þ Nm xð Þ Nm xð Þ Nm xð Þ

�Nm xð Þ 0 0 ⋯ 0

0 �Nm xð Þ 0 0

⋯ ⋯ ⋯ ⋯

0 0 0 ⋯ 0

0 0 0 �Nm xð Þ

2

6666666664

3

7777777775

is a k� 1ð Þ � k mþ q� 1ð Þ matrix.
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The p-value for testing hypothesis Hm,x in (35) can be defined as

pm,x
bβ
m

i ;
bΣm

� �
¼ P Tm xð Þ0Lm xð Þ0 Lm xð ÞbΣmLm xð Þ0

h i�1
Lm xð ÞTm xð Þ

�

≥ bβm0
i Lm xð Þ0 Lm xð ÞbΣmLm xð Þ0

h i�1
Lm xð Þbβm

i g, (36)

where Tm xð Þ≜ Gm0
i
bΣ
�1

i,mG
m
i

� ��1

Gm0
i
bΣ
�1

2

i,m
Ei

( )0

, i ¼ 1, 2,⋯, k; bΣi,m ¼ diag bσ i xij
� �

; j ¼ 1; 2;⋯; ni
	 


is an estimator of the variance matrix of the ith regression model and

bΣm ¼ diag Gm0
i
bΣ
�1

i,mG
m
i

� ��1

; i ¼ 1; 2;⋯; k

� �

is an estimator of the variance matrix of Tm xð Þ given bβm
i , bσm2

i , i ¼ 1, 2,⋯, k: The estimator of

σi xij
� �

can be found in Li and Xu [36], where the smoothing parameter, mp, can be used as a

pilot smoothing parameter, which is different from m used in bf i,m xð Þ. SiZer-RS map can be

constructed based on different values of mp, which represents the different trade-offs between

the structure of regression curve and errors.

The two SiZer maps given in Figure 4 are constructed using the data plotted in Figure 3 to

compare three regression curves f 1 xð Þ ¼ f x xð Þ ¼ 0, f 3 xð Þ ¼ 0:5sin 2πxð Þ. Since the variance of

errors is a constant, it can be estimated by the sum of squares of residues. In this case, pilot

smoothing parameter is avoided [47, 48]. The two blue regions in Figure 4 clearly show their

difference across interval (0, 1). The gray color indicates that there is no sufficient data that can

be used to get credible testing results at x and nearby. The sufficiency is quantized as ESS x;mð Þ

for SiZer-RS, and pixel x;mð Þ is colored gray if ESS x;mð Þ < 5:

Figure 3. 200 observations.
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ESS x;mð Þ≜ min
i¼1, 2,⋯, k

Nm xð ÞGm0
i Gm

i 1; 1;⋯; 1ð Þ0
	 


:

Figure 4 shows that SiZer-RS map can explore the differences between regression curves

accurately.

It is worth noting that, for SiZer-RS map, the coarsest smoothing level should be m ¼ qþ 1 to

ensure the effectiveness of the qth regression spline and the finest smoothing level is recom-

mend to be the one such that avgx∈ x1;x2 ;⋯;xg½ � ESS x;mð Þ < 5, where x1, x2,⋯, xg are points at

which hypothesis Hm,x is tested and pixels are produced by combing different values of m. In

applications, a wide range of values of mp can be used to generate a family of SiZer-RS maps.

Particularly, mp and m can both be used as smoothing parameters simultaneously to construct

a 3D SiZer-RS map [47, 48].

4. Conclusion

This chapter introduces regression spline method for testing the parametric form of nonpara-

metric regression function in nonparametric, partial linear, and varying-coefficient models,

respectively. The corresponded p-values are established based on fiducial method and spline

interpolation. The test procedures on the basis of the proposed p-value are accurate in some

Figure 4. SiZer-RS map.
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cases and are consistent under some mild conditions, which means that the p-value tends to be

zero when null hypothesis is false as sample size and the number of knots used in spline

interpolation tend to be infinity. Hence, the proposed test procedures are performed well

especially in small sample size case.

The spline-based method frequently used smoothing method, which can be used easily with

other statistical methods. When using the spline-based method, the smoothing level is con-

trolled by the number of knots and their positions. In order to sidestep the determination of

knots and obtain more reliable results, multi-scale smoothing methods are proposed based on

spline regression to infer structures of regression function. The multi-scale method is a visual

method to do inference at different locations and smoothing levels. In addition, the smoothing

spline version of multi-scale method is also introduced. The proposed multi-scale method can

also be used for comparing multiple regression curves. Some real data examples illustrate the

practicability of the proposed multi-scale method.

The MATLAB code of SiZerLL and other versions of SiZer based on kernel smoother is

available from the homepage of Professor Marron JS; the MATLAB code of SiZerLS can be

downloaded from the following website:

http://www.tandfonline.com/doi/suppl/10.1080/10618600.2014.1001069?scroll=top.
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