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Abstract

This chapter presents a new application of scanning interferometric synthetic aperture 
radar (ScanSAR) interferometry in monitoring land surface deformation caused by large 
earthquakes. To make better use of the ScanSAR data and obtain a wider deformation 
observation, this research studied and analyzed certain key elements of ScanSAR inter-
ferometry, including coherence, co-registering, methods of removing orbit errors, cor-
rection of atmosphere effects, and geoid undulation. The wide swath mode (WSM) is 
also known as the ScanSAR mode by which synthetic aperture time is shared by adja-
cent sub-swaths and azimuth resolution that is traded off for a wider coverage. So, it is 
possible to monitor a larger area of earthquake deformation. In this study, we obtained 
ScanSAR and Image Mode (IM) data and analyzed coherence, co-registering, meth-
ods of removing orbit errors, correction of atmosphere effects, and geoid undulation 
to monitor land surface deformation caused by large earthquakes in the 405 × 405 km 
field of the Wenchuan earthquake and Yutian earthquake, respectively, in China. The 
results obtained agree well with that of the investigations of the crustal motion in the 
study areas.

Keywords: deformation monitoring, ScanSAR interferometry, large earthquake

1. Introduction

Scanning synthetic aperture radar (ScanSAR) interferometry uses the wide swath synthetic 

aperture radar (SAR) mode to get geometrical information about the earth’s surface [1, 2], 
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that is, all of the sub-swaths processed images were obtained to form a wider ScanSAR image. 

A wider swath can allow for multiple observations of an area in a single orbit cycle. In other 

words, the region in question can be observed by the sensors in several different orbit tracks 
[3–5]. Although resolution of the ScanSAR mode is relatively low, its many merits such as 

wider swaths and short intervals [6] for the deformation of a large area can contribute to 

effective imaging.

The ScanSAR concept was first introduced in the 1980s and the ScanSAR mode of Radarsat 
satellite was designed in 1988. Burst mode radar was first applied to the Magellan mission to 
map the Venus surface in order to reduce data volume and allow the use of other instruments 

in between radar bursts [5, 7, 8]. To our knowledge, the first ScanSAR amplitude image of 
the Earth was in 1996 [9]. The first ScanSAR interferogram was obtained by using ScanSAR 
data of Radarsat satellite in 1999 [10]. The ScanSAR mode was initially used on the National 

Aeronautics and Space Administration (NASA) Spaceborne Imaging Radar C-band (SIR-

C) mission in 1994 [7, 10]. Many SAR sensors such as Envisat, Radarsat-2, Advanced Land 
Observing Satellite (ALOS), COSMO-SkyMed, and TerraSAR-X are capable of imaging in the 
ScanSAR mode. On Envisat, the ScanSAR mode was called as Wide Swath Mode (WSM) and 
has five sub-swaths. Unfortunately, communication with Envisat was lost on April 8, 2012 
and, consequently, the mission officially ended on May 9, 2012. The Sentinel-1A satellite was 
launched in April 2014 and can operate the satellite SAR sensor that is capable of imaging in 

the ScanSAR mode. The ScanSAR mode is called as Interferometric Wide-swath mode (IW).

With many of the current SAR satellites carrying advanced imaging capabilities, ScanSAR 
mode acquisitions are replacing the conventional strip-map mode acquisitions for portions of 

a SAR mission [11]. In light of future SAR missions and modifications of existing SAR mission 
imaging strategies, a detailed study of ScanSAR interferometry for ground motion monitor-

ing of large earthquakes will provide significant input for mission planning and InSAR appli-
cations [6].

To use ScanSAR data for deformation monitoring, same as Image Mode (IM) data, many 
studies have been focused on the following three points: (1) imaging algorithms [12–15]; (2) 

removing coherence of spaceborne ScanSAR interferometry [3–5]; and (3) developing new 

algorithms of ScanSAR interferometry [12, 13].

With regard to ScanSAR interferometry, scholars have studied how to form the interfer-

ence [4–6, 12, 13], but the effects of errors are yet to be studied systematically. For example, 
ScanSAR interferometry was applied in Wenchuan earthquake [16, 17]; however, in the study 

of monitoring the surface deformation, they only considered the influence of the atmosphere 
on the results using Medium Resolution Imaging Spectrometer (MERIS) data. In fact, to 
obtain a high accuracy ScanSAR interferogram, some key techniques such as geoid undula-

tion, correction of atmosphere effects, and reducing orbit error besides removing coherence 
and mosaicking of wide swath SAR data were studied. In this chapter, we applied these key 

techniques to the wider deformation fields of ENVISAT ScanSAR images to monitor the land 
deformation caused by large earthquakes such as Wenchuan (2008) and Yutian (2008), respec-

tively, in China.
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2. Settings and data processing

The ScanSAR mode is able to image multiple strips of land called sub-swaths from a single 

satellite pass. This can be achieved by electronically steering the radar beam through a set of 

elevation or look angles. Each sub-swath is collected in the burst mode, wherein the inter-

burst gap time corresponds to the time when the sensor is imaging the remaining sub-swaths 

[5]. The raw data from each sub-swath are processed to burst mode images and merged into 

a composite ScanSAR image. In the ScanSAR mode, the satellite electronically steers the beam 

between sub-swaths, while in the strip-map mode, the beam is maintained within a single 

sub-swath. The elevation angle is often cycled enough during ScanSAR operation to maintain 

contiguous ground coverage. The process of ScanSAR interferometry is shown in Figure 1, 

which includes mosaicking bursts, image co-registration, common band filtering, and so on. 
In addition to mosaicking bursts to sub Single Look Complex (SLC) and sub-interferograms, 
the other is the same as the IM interferometry.

The principle of ScanSAR interferometry in the burst is the same as that of IM [5, 6, 12, 13]. If 

the SAR satellite at certain time intervals orbits (typically tens to 100 m) and scans on a region 

repeatedly, the spatial positions are S1 and S2, respectively, during the two different flight 
processes. The spatial interferometric baseline vector is B and named baseline length. The 

Figure 1. The data processing of ScanSAR interferometry.
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angle between the baseline vector B and horizontal vector is baseline obliquity, and θ is the 
incident angle. In addition, two spatial positions, S1 and S2 to ground point P are r and r+ 𝛥r . 

At the same time, the interferometric baseline is divided into a parallel baseline component 

 which is parallel to the line-of-sight direction and vertical baseline compo-

nent  (perpendicular to the view direction). According to the principle of 

conventional Differential Interferometric Synthetic Aperture Radar (DInSAR), the interfero-

metric phase of the ScanSAR interferogram can be expressed as:

  
(1)

where  φ  is the total phase after unwrapping and  𝛥p  is surface deformation of the line of sight. 

If surface deformation is obtained using two pass methods, surface deformation of the line of 

sight, i, can be written as:

  
(2)

From Eq. (2), it can be seen that surface deformation of the line of sight is closely related to the 
ground phase  and Digital Elevation Model (DEM)error. If Eq. (2) is transformed as the 

derivation of B, h, and a, the results are as follows:

  

(3)

That is,

  

(4)

where   σ  
B
    is the error of baseline,   σ  

a
    is the error of baseline obliquity, and   σ  

h
    is DEM error. 

According to the abovementioned equation, regardless of baseline length error, baseline 

obliquity errors will affect the results of ScanSAR interferometry, and the influence degree is 
related to the slant range. However, DEM error is related to both the oblique distance, angle of 
incidence, and the vertical baseline length. In addition to these errors, the atmospheric refrac-

tion phase is also an influencing factor. Undoubtedly, in order to obtain deformation data of 
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large earthquakes with ScanSAR interferometry, the following techniques and methods were 

applied to eliminate these errors in the monitoring of land deformation.

2.1. Removing influence of geoid difference

In order to obtain deformation data of the region in question through DInSAR, it is neces-

sary to use two or more scenes of SAR data to form a differential interferogram. Since the 
SAR data are not sufficient and an outlay of the research project is not relatively scarce, 
there is only one way to use DEM to get a differential interferogram. Currently, DEM such 
as Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission 
and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) are referenced 
to the Earth Gravitational Model 1996 (EGM96) geoid datum, while in interferometry SAR 
(InSAR), data processing is established on the ellipsoidal height (e.g., WGS84); therefore, both 
data are inconsistent.

In this study, geodetic height was obtained based on the EGM96 gravity field model. To con-

vert EGM96 height into geodetic height, geoid gap N can be calculated using the following 
formula [18]:

  
(5)

According to Eq. (5), the elevation of SRTM or GDEM data is converted into geodetic height.

2.2. Correction of atmosphere effects

Atmospheric refraction is an important source of error for interferometric synthetic aperture 

radar, the reason is that the radar signal propagation in atmosphere by tropospheric and iono-

spheric refraction is delayed, or it gets ahead of its phase. With other similar mode interfer-

ence, atmospheric effects with other errors (such as DEM and baseline error) also seriously 
affect the final deformation monitoring results for ScanSAR interferometry; however, unlike 
other laws of error influence, atmospheric effects are not affected by radar imaging geometry 
but are only related to the atmospheric relative states of the two ground observations. The 

ionosphere at about 60–2000 km height has inhomogeneous bodies from several kilometers 

to hundreds of thousands of meters. SAR satellites are inclined cone when exposed to the 
ground; at the same time, the scanning area of the ground is less than a few hundred kilome-

ters, so it has less influence. In general, it is basically eliminated by the difference in the spatial 
domain. Tropospheric delay can be divided into two parts, the dry and wet delay. Dry delay is 

generated by no water vapor atmospheric delay and accounts for about 90% of the total delay, 
and the model accuracy can reach submillimeter range. In addition, the time domain is rela-

tively stable and has the characteristics of large-scale changes in the airspace, while dry delay 

is negligible after double difference. The wet delay is caused by the water vapor in the atmo-

sphere, which accounts for about 10% of the total delay. However, it is difficult to establish a 
real-time and accurate model due to the uneven distribution of water vapor in the atmosphere 

and the rapid change. Therefore, the main error of troposphere delay is caused by wet delay.
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In order to reduce or remove the wet delay of ScanSAR interferometry [5, 6, 12, 13], the atmo-

spheric effects of corrections were analyzed based on medium-resolution imaging spectrom-

eter (MERIS) data. When compared with the correction method of atmospheric effects using 
external data such as Moderate Resolution Imaging Spectroradiometer (MODIS), making use 
of MERIS, correct atmospheric effects of advanced synthetic aperture radar (ASAR) interfero-

gram have great superiority, for the imaging time of ASAR and MERIS are synchronous, and 
the resolution of ScanSAR is close to the resolution of MERIS data.

The reason of correction of atmospheric effects based on MERIS data is that atmosphere delay 
information is first obtained using two MERIS data corresponding to two SAR data to be con-

verted into path delay by using function mode. In the end, this path delay will be removed 

so that atmospheric effects in the ScanSAR interferogram is corrected. The process of correct-
ing atmospheric effects is shown in Figure 2. When using MERIS data to correct atmosphere 
effects, it involves removing cloud, difference, and co-registration. As the water vapor algo-

rithm of MERIS is very sensitive to the cloud, it is necessary to use Cloud product categories 
to obtain cloud pollution and then to interpolate relevant data. To reduce interpolation errors, 

MERIS data will only be calibrated without the removal of the mask method.

2.3. Reducing orbit error

Orbit error is another key factor in ScanSAR interferometry because it influences baseline 
estimation precision. Baseline estimation is required for a number of operations, including 

Figure 2. The process of basic idea of the correction of atmospheric effects using MERIS data.
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common band filtering, flattening of the interferogram, phase unwrapping, and derivation of 
interferometric heights from the unwrapped phase [5, 6].

The baseline can be estimated using (1) orbital information, (2) fringe rate of the interfero-

gram, and (3) ground control points (after unwrapping). It is clear that the method based on 

state vectors works well when accurate state vectors are available. In the absence of reliable 

state vector information, the local fringe rate at the center of the interferogram can be used to 

obtain an estimated perpendicular baseline. The third method is the most effective because its 
coverage is very wide and the fringe rate is not always constant. Moreover, the size and influ-

ence of the baseline error can be seen more clearly in the ScanSAR interferogram.

3. Case study: Wenchuan earthquake

3.1. Background

Wenchuan earthquake struck on May 12, 2008 with M8.0 of the high strength of a large earth-

quake, which resulted in a large number of collapsed houses, about 80,000 casualties, tens of 
thousands of geological hazards, such as landslide and collapse, and debris flow. The earth-

quake led to a large number of rupture and regional ground deformation on the surface, 

including the gaining of much of the information of the earth’s dynamics [16, 19] (Figure 3). 

Figure 3. Location of Wenchuan earthquake (★is center of Wenchuan earthquake).
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After the Wenchuan earthquake, many studies were conducted to simulate the seismogenic 
structure and seismic characteristics [16, 19–22], such as tectonic activities, intensity, and 

focal mechanism, by which the research methods including field survey, gravity survey, 
GPS, and the conventional interferometric SAR were applied, and there were some valu-

able achievements [19–22]. However, since the approaches applied have their own limita-

tions and shortcomings (i.e., low precision, large discreteness, narrow scopes, influences of 
natural factors, etc.), results on the fracture zone length, direction of rupture, and rupture 

surface size for Wenchuan earthquake are different [23–25]. The co-seismic deformation 

field of the Wenchuan earthquake by ScanSAR interferometry was studied because of the 
defects of the abovementioned methods [17]. However, there were a lot of errors which 

had not been removed and considered in the processing of interferometry such as geoid 

undulation and orbit error. In addition, when atmospheric effects had been considered for 
removal, Moderate Resolution Imaging Spectroradiometer (MODIS) data was only used to 
reduce the influence of atmosphere. In fact, MERIS is better than MODIS because the MERIS 
and ScanSAR data used were derived from the ENVIronmental SATellite (ENVISAT) sat-

ellite, so as to maintain synchronization. Therefore, these factors were considered in this 

chapter.

3.2. Data and processing

The Wenchuan earthquake was so strong and its rupture zone was about 300 km. In order to 
mantle the overall earthquake deformation field, two scenes of ENVISAT ScanSAR data were 
selected to cover the deformation field, with the imaging times of January 25, 2008 (before the 
earthquake) and June 13, 2008 (after earthquake), respectively.

Before interferometry processing, the geoid difference of the GDEM of Wenchuan was com-

puted based on EGM96. The regional level of the contour line is presented in Figure 4, from 

which the maximum and minimum value of the regional level is −28.78 and − 42.98 m, respec-

tively, with a difference of 14.2 m.

The deformation zone of Wenchuan earthquake is located in the Western Sichuan province. 
In addition, the imaging time of both ASAR image and MERIS vapor products were consis-

tent with the similar spatial resolution of both ScanSAR interferogram and MERIS, so that 
the atmospheric effects can be reduced using MERIS data. Figure 5 shows the result that 

is absolute wet delay of January 25, 2008 (Figure 5a) and June 23, 2008 (Figure 5b) in the 

Wenchuan earthquake area. Figure 6 shows the corresponding relative atmospheric wet delay 

after difference. As shown in Figure 5, the weather of two periods were in good condition, 

and the regional atmospheric wet delays of the two periods were about 3 mm. Therefore, it is 

necessary for the ScanSAR differential interferogram to correct atmosphere effects based on 
the relative wet delay.

Image co-registration of ScanSAR with the same IM mode can determine the final result qual-
ity. In order to form a robust and reliable interferogram and to make the co-registration preci-

sion to remain less than 0.2-pixel, it is applied with the co-registration method based on DORIS 
precise orbit and the external DEM. After co-registration and differential interferometry, it is 
possible to obtain the sub-swath interferogram and sub-swath interferograms are mosaicked 

to the total ScanSAR interferogram. At the end, flat and topographic phases are removed from 
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the interferogram to obtain the differential interferogram as shown in Figure 7a and b after 

phase unwrapping which is the result where the baseline is mended using the ground control 

point (GCP) method.

Figure 4. Wenchuan regional level of contour lines.

Figure 5. Wenchuan area of absolute wet delay of January 25, 2008 (a) and June 23, 2008 (b) (unit mm).
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Figure 6. Relative atmospheric wet delay after difference (unit mm).

Figure 7. Differential interferogram of Wenchuan earthquake. (a) before phase unwrapping (b) after phase unwrapping.
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3.3. Results and discussions

Figure 7 shows that the size of the whole area that the ScanSAR interferogram covered is 

about 405 × 405 km, which is sufficient to reflect the total seismic deformation field and seis-

mogenic fault location of the Wenchuan earthquake. The deformation region can be roughly 
divided into three areas, while the middle one is a noncoherent region where the Wenchuan 
seismic belt is located. The noncoherent field results from the fact that the deformation 
gradient in the region exceeds the C-band monitoring ability of ASAR images. This means 
that if the deformation of two adjacent pixels exceeds  π  radian, the coherence is pure noise. 

Consequently, landslides and the destruction of vegetation investigated in the field caused by 
the earthquake led to the loss of coherence. The other two regions of the interference fringes 

with increasing distance away from the fault and is more and more sparse, but the right side 

of the noncoherent area is the footwall (i.e., Chengdu Plain), while the wrapped phase image 
shows nearly parallel extension. On the other side of the noncoherent zone is the hanging wall 
of fault which is the concentric circular interference fringe area.

According to the phase in Figure 7, considering relative atmospheric wet delay in Figure 6 and 

its space imaging geometric relationship, ScanSAR interferometry value is transformed into 

the deformation of line of sight (LOS) as shown in Figure 8. To further analyze  deformation, as  

Figure 8. Wenchuan earthquake deformation field by ScanSAR interferometry.
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the center of interferogram is a noncoherent district, the interferogram is unwrapped, respec-

tively, at different points of the upper west and lower east image as the reference point, so 
that it is possible to gain two deformation results. Figure 8 is the deformation field taken 
at the lower east corner as reference point, which shows that the deformation scope of the 

Wenchuan earthquake is very great, even the A’ba region recorded deformation. In addition, 
deformation of the Chengdu region is about 0.10 m. To analyze the deformation, its profile is 
mapped as shown in Figure 9. Based on profile of the two points, the max deformation value 
of the left part of the fault is 0.48 m, while that of the right part is −0.42 m. When compared 
with the west part, the deformation scope of the east part is narrow, while the deformation 

grades are very high, especially near the fault.

4. Case study: Yutian earthquake

4.1. Background

There was an M7.3 earthquake at the boundary of Yutian County in Hotan Prefecture, Xinjiang, 
China, on March 21, 2008, and the epicenter of earthquake (Latitude: 35.6, Longitude: 81.6) 
was 225 km from the Hetian city and about 120 km from the Yutian county, as presented 
in Figure 10. Yutian earthquake was considerably destructive. This is again an earthquake 
higher than M7.0 in the western edge of the Qinghai Tibet Block that occurred after Kunlun 

Figure 9. Deformation profile of Wenchuan earthquake along the black line in Figure 8 (unit: M).

Recent Advances and Applications in Remote Sensing172



Mountain earthquake of magnitude 8.1 in 2001, and a M6.2 earthquake was in this region in 
2012. According to statistics, there were 33 above M3.0 earthquakes in this region from January 
2012 to November 2013. Thus, this is an earthquake-prone area and as a research hotspot [26].

Yutian earthquake occurred in the intersection of the East Kunlun earthquake belt, Kangxiwar 
fault zone and Altyn Tagh earthquake belt, which is near the edge of the West Kunlun 
Mountains, located in the southern part of Tarim Basin, belonging to Tibet and two big west-
ern active plots. Although the Yutian earthquake in the basin limits the distribution range 
of aftershocks, the earthquake deformation range still reflects the motion state of the active 
block [26]. The activities of Arkin fracture zone are the main causes of the Yutian earthquake. 
Strong earthquake activities of Arkin fault are often accompanied by earthquake activity in 

the Qinghai Tibet Plateau and its surrounding main fault zone. For example, Wenchuan M8.0 
earthquake took place more than 1 month after the Yutian earthquake, and 2 years later, the 
M7.1 Yushu earthquake occurred.

4.2. Data and processing

To monitor the total deformation field of Yutian earthquake, ASAR data of ScanSAR and two 
IM models of the ESA ENVISAT satellite were selected to study seismic deformation as shown 

Figure 10. Location of Yutian earthquake (★ is center of Wenchuan earthquake).
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in Table 1. Using Global Digital Elevation Model (GDEM) to get differential interferogram 
and the geoid difference of the GDEM of Yutian was computed based on EGM96. The regional 
level of the contour line is shown in Figure 11, in which the maximum and minimum value of 
the regional level is 62.3 and −19.8 m, respectively, and the difference between them is 42.5 m.

After co-registering and differential interferometry, sub-swath interferogram was acquired 
and then sub-swath interferograms were mosaicked to the total ScanSAR interferogram. At 

the end, the flat and topographic phase were removed from the interferogram to obtain a 
differential interferogram as seen in Figure 12a, while Figure 12b is the differential interfero-

gram obtained after phase unwrapping, and its perpendicular baseline is 75.6 m, in both cases 

the data of November 29, 2007 and April 17, 2008 were applied.

4.3. Results and discussions

As shown in Figure 12, the ScanSAR differential interferogram mantle scope is about 
405 × 405 km, almost reflecting the deformation field and fault place of the Yutian earthquake. 
At the same time, it also shows that the surface deformation influence on the scope of Yutian 
earthquake was enormous. In addition, the earthquake isoseismal is oval, and the differen-

tial interferogram is roughly divided into two areas, namely, the coherent and noncoherent 

regions. Yutian earthquake center is located in the noncoherent region (shown in Figure 12).

The noncoherent area on the left is the hanging wall of the earthquake, while the right side is 

the footwall of the earthquake. Moreover, interference fringes in these regions with increasing 
distance away from the fault are more and more sparse, but when compared with the hanging 

wall of the earthquake, footwall deformation decays earlier.

As shown on the upper right corner area in Figure 12b, even far away from the fault, the case 

still remained strips. To verify whether the interference fringes is caused by the seismic defor-

mation, another four landscape ScanSAR data before and after the earthquake were processed 

and the results are shown in Figure 13. Figure 13a is the interferometry result using two data 

of pre-earthquake and Figure 13a shows the interferometry result using two data between 

pre-earthquake and post-earthquake.

Track 
number

Imaging time 
(YY-MM-DD)

Ascending or 
Descending

Imaging 
mode

Polarization 

mode

Orbit number

434 2007-05-03 Descending WSS HH 30,862

2007-06-07 Descending WSS HH 31,363

2007–2011-29 Descending WSS HH 28,085

2008-04-17 Descending WSS HH 33,095

2008-05-22 Descending WSS HH 33,196

477 2008-04-20 Descending IM HH 33,093

2008-04-01 Descending IM HH 33,083

Table 1. SAR data to obtain deformation of Yutian earthquake.
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From Figure 13a, it is clear that the upper right corner areas of the interferogram remain as 

interference fringes even when the vertical baseline is 2.87 m; however, Figure 13b has no 

interference fringes. Undoubtedly, this proved that these stripes are not caused by a DEM 
error or other factors but Yutian earthquake. Although the region from the earthquake center 
is about 170 km and located in east Kunlun and Arkin faults, it is found that transition part 
between the region and earthquake deformation field has no interference fringes, which may 
be related to the Bayan Kara block geological structure.

Based on the spatial geometry and differential interferogram, ScanSAR interferometry obser-

vations are transformed into the deformation value of the line of sight. As shown in Figure 14, 

the rupture strip of Yutian earthquake is about 80 km. The maximum deformation of hang-

ing wall for the fault is 0.41 m and the maximum of the footwall deformation value is 0.32 m. 
When compared with the footwall, the hanging wall deformation range is narrow, but the 
deformation gradient near the fault is great. In addition, ASAR image mode data are used 

to form the interferometry and deformation results as shown in Figure 15. It is clear that the 

differential interferometry results of the image mode reflect almost fault and deformation dis-

tribution of the Yutian earthquake. The maximum deformation of the hanging wall is 0.60 m 

Figure 11. Geoid isolines of Yutian region.
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and the maximum deformation of the footwall is 0.63 m. The noncoherent region of the IM 
interferometry is in a certain range in comparison with results from the ScanSAR mode inter-

ference. Furthermore, the non-coherent region is small and the deformation results reflected 
is not the same, which is mainly due to the higher resolution induced by IM.

Figure 13. Other differential interferogram of Yutian earthquake (wrapped). (a) Before earthquake. (b) After earthquake.

Figure 12. Differential interferogram of Yutian earthquake. (a) wrapped interferometric phase and (b) unwrapped 
interferometric phase.
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Figure 14. Wide deformation field of Yutian earthquake.

Figure 15. Result of IM mode for Yutian earthquake. (a) Interferogram. (b) Deformation result.
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5. Conclusions

In this chapter, we studied several key techniques of monitoring large area deformation 

caused by earthquakes. The wider deformation fields of ScanSAR interferometry data were 
employed to monitor the land deformation after Wenchuan earthquake (2008) and Yutian 
earthquake (2008), respectively, in China. The results show that in the deformation field of 
Yutian earthquake, the maximum deformation of hanging wall for the fault is 0.41 m and the 
maximum of the footwall deformation value is 0.32 m. But in Wenchuan earthquake, its defor-

mation field is greater than that of Yutian earthquake, which can preferably reflect the land 
deformation, especially for the deformation information of far fields. The max deformation 
value of the hanging wall part of the fault is 0.48 m, while that of the foot wall part is −0.42 m. 
These results agree well with our field investigations after the two earthquakes.

The result also indicates that ScanSAR mode can fully reflect the deformation field and the 
corresponding seismic geological structure characteristics. Although the conventional SAR 

interferometry method is relatively effective because of its narrow covering area, it is very 
important to explore the mechanism and the dynamics of earthquakes using wider deforma-

tion fields of ScanSAR images to monitor the land deformation caused by large earthquakes 
such as Wenchuan 2008 and Yutian 2008 earthquakes.

Acknowledgements

Data from the European Space Agency (ESA) and the ESA Earth Observation Missions 
Helpdesk Team are highly appreciated. This research is jointly supported by the Natural Science 

Foundation of China and Jangsu province (41004003, BE2016701, SH1506, SH1608, JC1604, 
Z2015013), the National Key Research and Development Program of China (Project Ref. No. 
2016YFB0501501), the Priority Academic Program Development of Jiangsu Higher Education 
Institutions, and Qing Lan Project Sponsored by Overseas Training Plan of Outstanding 
Young and Middle-aged Teachers of Colleges and Universities in Jiangsu Province.

Conflicts of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design 
of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-

script; and in the decision to publish the results.

Author contributions

Tinhchen Jiang and Yuanzhi Zhang conceived and designed the experiments; Xiuping Wang 
performed the experiments; TingchenJiang, Yu Li, and Yuanzhi Zhang analyzed the data and 
wrote the chapter.

Recent Advances and Applications in Remote Sensing178



Author details

Tingchen Jiang1, Xiuping Wang1, Yuanzhi Zhang2,3* and Yu Li4

*Address all correspondence to: yuanzhizhang@hotmail.com

1 School of Surveying and Mapping, Huaihai Institute Technology, Lianyungang, China

2 Chinese Academy of Sciences, Key Lab of Lunar Science and Deep-space Exploration, 
Beijing, China

3 Center for Housing Innovations, Chinese University of Hong Kong, Hong Kong

4 Faculty of Information Technology, Beijing University of Technology, Beijing, China

References

[1] Cumming IG, Guo Y, Wong FH. A comparison of phase-preserving algorithms for burst-
mode SAR data processing. IEEE Geoscience and Remote Sensing Society’97. 1997; 
2:731-733

[2] Cumming IG, Wong FH. Digital Processing of Synthetic Aperture Radar Data: Algo-
rithms and Implemention; 2005

[3] Ferretti A, Monti-Guarnieri A, Prati C, Rocca F. InSAR Principles: Guidelines for SAR 
Interferometry Processing and Interpretation. Netherlands: ESA Publications; 2007

[4] Guccione P. Interferometry with ENVISAT wide swath ScanSAR data. IEEE Geoscience 
and Remote Sensing Letters. 2006;3(3):377-382

[5] Ortiz AB, Zebker HA. ScanSAR-to-Stripmap mode interferometry processing using 
ENVISAT/ASAR data. IEEE Transactions on Geoscience and Remote Sensing. 2007; 
45(11):3468-3480

[6] Gudipati KV. Deformation monitoring using scanning synthetic aperture radar interfer-

ometry [PhD dissertation]. The University of Texas; 2009

[7] Johnson W. Magellan imaging radar mission to Venus. Proceedings of the IEEE. 1991; 
79:777-790

[8] Lemoine FG, Kenyon et al. The development of the joint NASA GSFC and the national  
imagery and mapping agency (NIMA) geopotential model EGM 96. NASA no.19980218814;  
1998

[9] Chang CY, Jin MY, Lou Y-L, Holt B. First SIR-C scansar results. IEEE Transactions on 
Geoscience and Remote Sensing. 1996;34(5):1278-1281

[10] Bamler R, Geudtner D, Schattler B, Vachon PW. RADARSAT ScanSARInterferometry. 
In: Proceedings of the International Geoscience and Remote Sensing Symposium, 
IGARSS’99. Vol. 3. 1999. pp 1517-1521

Monitoring Land Surface Deformation with Satellite ScanSAR Images: Case Studies on Large…
http://dx.doi.org/10.5772/intechopen.72834

179



[11] Guarnieri AM. ScanSAR interferometric monitoring using the PS technique. In: Pro-
ceedings of the ERS/ENVISAT Symposium; 2000

[12] Bamler R. Adapting precision standard SAR processors to ScanSAR. IGARSS. 1995;3: 
2051-2053

[13] Guarnieri AM, Guccione P. Optimal “focusing” for low resolution ScanSAR. IEEE Trans-
actions on GARS. 2001;39(3):479-491

[14] Guarnieri AM, Prati C. ScanSAR focusing and Intexferometry. IEEE Transactions on 
Geosclence and Remote Sensing. 1996;34(4):1029-1039

[15] Guarnieri AM, Rocca F. Combination of low- and high-resolution SAR images for dif-
ferential interferometry. IEEE Transactions on Geoscience and Remote Sensing. 1999; 
37(4):2035-2049

[16] Shen ZK, Sun JB, Zhang PZ. Slip maxima at fault junctions and rupturing of barriers 
during the 2008 Wenchuan earthquake. Nature Geoscience. 2009;2:717-724

[17] Xu CJ, Wang H, Jiang GY. Study on crustal deformation of Wenchuan Ms8. 0 earthquake 
usingwide-swath ScanSAR and MODIS. Geodesy and Geodynamics. 2011;2(2):1-6

[18] Lemoine FG, Kenyon SC, Factor JK. The development of the joint NASA GSFC and 
NIMA geopotential model EGM96, NASA technical paper, Nasa/TP-1998-206861; 1998

[19] Shi C, Lou Y, Zhang H, Zhao Q, Geng J, Wang R, Fang R, Liu J. Seismic deformation of 
the mw 8.0 Wenchuan earthquake from high-rate GPS observations. Advances in Space 
Research. 2010;46(2):228-235. DOI: 10.1016/j.asr.2010.03.006

[20] Burchfiel BC. A geological and geophysical context for the Wenchuan earthquake of 12 
May 2008. GSA. 2008;18:4-11

[21] Hashimoto M, Enomoto M, Fukushima Y. Coseismic deformation from the 2008 Wenchuan, 
China, Earthquake derived from ALOS/PALSAR images. Tectonophysics. 2009, 2010; 
491(1-4):59-71

[22] Wang W-M, Zhao L-F, Li J, Yao Z-X. Rupture process of the Ms 8.0 Wenchuan earth-

quake of Sichuan¸ China. Chinese Journal of Geophysics. 2008;51:1403-1410

[23] Wei M, Sandwell D, Smith-Konter B. Optimal combination of InSAR and GPS for mea-

suring interseismic crustal deformation. Advances in Space Research. 2010;46(2):236-

249. DOI: 10.1016/j.asr.2010.03.006

[24] Song XG, Shan X, Qu C, Zhang G, Guo L, Zhang G. Coseismic surface deformation 
casused by the Wenchuan M8 earthquake from InSAR data analysis. IGARSS2009, III: 
pp. 69-73; 2009

[25] Zhang Y, Feng WP, Xu LS, Zhou CH. Spatio-temporal rupture process of the 2008 great 
Wenchuan earthquake. Science in China Series D: Earth Sciences. 2009;52(2):145-154

[26] Wu L, Xiao AC, Wang LQ. EW-trending uplifts along the southern side of the central 
segment of the AltynTagh fault, NW China: Insight into the rising mechanism of the 
Altyn Mountain during the Cenozoic. Science China Earth Sciences. 2012;55:926-939. 
DOI: 10.1007/s11430-012-4402-7

Recent Advances and Applications in Remote Sensing180


