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1. Introduction 

This chapter deals with supervised learning problems under the ranking framework. 
Ranking algorithms are typically introduced as a tool for personalizing the order in which 
document recommendations or search results - in the web, for example - are presented. That 
is, the more important a result is to the user, the earlier it should be listed. To this end, two 
possible settings can be considered : 
i. the algorithm tries to interactively rearrange the results of one search such that relevant 

results come the closer to the top the more (implicit) feedback the user provides, 
ii. the algorithm tries to generalize over several queries and presents the results of one 

search in an order depending on the feedback obtained from previous searches. 
The first setting deals with an active learning while the second setting deals with a passive 
supervised learning. This kind of problems have gain major attention given the nowadays 
amount of available informations. This is without doubt a challenging task in the medium 
and large scale context. 
Several methods have been proposed to solve these problems. For the passive setting, the 

Rankboost algorithm (Freund et al. (2003)) is an adaptation from the Adaboost algorithm to 

the ranking problem. This is a boosting algorithm which works by iteratively building a 

linear combination of several “weak” algorithms to form a more accurate algorithm. The 

Pranking algorithm (Crammer & Singer (2001)) is an online version of the weighted 

algorithm. The SVRank and RankSVMalgorithms are the adaptation of the Support Vector 

machines for classification and regression, respectively, while the MPRank (Cortes et al. 

(2007)) is a magnitude-preserving algorithm, which searches not only to keep the relative 

position of each sample but also to preserve the distance given by the correct ordering. This 

last algorithm has as well the form of a regularization problem as the two previous with a 

different cost function. 

Later, the Ranking SVM (RankSVM) algorithm was proposed by Herbrich et al. (2000) and 
Joachims (2002) as an optimization problem with constraints given by the induced graph of 
the ordered queries’ results. This algorithm forms part of the family of kernel algorithms of 
the SVM type (Boser et al. (1992); Schölkopf & Smola (2002)). 
Kernel methods like the SVM or the ranking SVM solve optimization problems of the form O
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(1) 

where V : H → R+ is a loss function, λ ∈ R+ is a regularization parameter, Ω: H → R+ is the 

regularizer (which allows to enforce some nice properties as smoothness or simplicity of f) 

and H represents the hypothesis space. Usually H is chosen as a reproducing kernel Hilbert 

space. Although a key bottleneck for applying such algorithms in the real-world is choosing 

λ, research often ignores this. As empirical results, however, strongly depend on the chosen 

λ, runtime intensive repeated cross-validations have to be performed. Hence, in this chapter 

we concentrate on speeding up and automating this choice by building on the regularization 

path for SVMs (Hastie et al. (2004)). 

2. Piecewise linear solutions 

This framework is a kind of a more generic regularized optimization problems, already 

studied for regularization problems (Rosset & Zhu (2007)) and for parametric quadratic 

programming (Markowitz (1959)) for portfolio optimization. We are interested by the 

efficient computation of the regularization path. Hence, let us define first this notion. 

Definition 2.1 (Regularization path) 

The regularization path of Problem (1) is the set of all solutions obtained when varying λ over R+ i.e. 

Path = {fλ, with λ ∈ [0,+∞]}. 
As one can see, with this definition, the pursued policy can have a high computational price. 

In order to gain in efficiency, the family of piecewise linear solution path is of particular 

interest. To highlight this fact, we consider the following definition. 

Definition 2.2 (piecewise linear solution path) 
The solution path is said to be piecewise linear when there exists a strictly decreasing (or increasing) 

sequence λt, t = 1, . . . , N such that : 

 (2)

where ht, t = 1, . . . , N denotes a sequence of functions in H. 

With such property, it is easy to efficiently generate the whole path of solution. Indeed, in 

such case, one only needs the sequence λt and the corresponding ht. Any other functions in-

between can be simply obtained by linear interpolation. Hence, owing to such property, the 

computational cost of obtaining the whole path of solution may be of the order of a single 

solution computation. 

The question induced by this remark is to find which kind of objective functions makes the 

solution path piecewise linear. In Rosset and Zhu (2007), the necessary conditions were 

given for Problem (1) to admit a linear solution path. The main result is summarized by the 

theorem below. 

Theorem 1 

Assume the loss V(f) and the regularizer Ω(f) are convex functions. If one objective function (either 

V(f) or Ω(f)) is piecewise linear and the other one piecewise quadratic then the solution path of the 

Problem (1) is piecewise linear. 
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Proof Assume V(f) and Ω(f)) are twice differentiable in a neighborhood of  solution of (1) 

corresponding to λt. Let also λ = λt +δλ and its related solution fλ . Consider finally J(f) = V(fλ) 

+λ Ω(fλ). The optimality conditions associated to  and fλ are respectively 

 (3)

 (4)

where ∇f J(f) represents the functional derivative of J in H. For small values of δλ we can 

consider the following second order Taylor expansion of (4) around  

 

with
 

 Using it we have the following limit 

 

that gives 

 

The piecewise behavior is possible if  is constant. To fulfill this condition, it requires 

 (independence with respect to λ) and  to be constant. The latter 

condition is satisfied as the loss or the regularizer are assumed linear or quadratic. These 
requirements achieve the proof. 

In fact, similar to SVM classification, it turns out that  as a function of λ is piecewise linear 
and hence forms a regularization path. Indeed, in the RankSVM algorithm, the loss function 

V(f) is the hinge loss (which is a L1 type-function) and the regularizer Ω(f) is chosen as a 

quadratic or L1 function (see Figure 1). These choices therefore fulfill the requirements of the 
theorem. 
 

 
Fig. 1. Illustration of the typical choices of loss function and regularizer in SVM framework. 
Left) Hinge loss, Right) Square regularizer. 
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As in SVM classification, the breakpoints of this path correspond to certain events 
(described in more detail in Section 5). Points of the regularization path which are not 
breakpoints can not be distinguished in terms of margin-errors of the training data. To 
choose a particular regularization parameter, and hence a particular solution to the ranking 

problem, we evaluate  on a validation set for each breakpoint of the regularization path. 

Before delving into the details of solution path computation, the next two sections present 
the ranking SVM algorithm. 

3. Ranking SVM 

For clarity and simplification sakes, let consider the example of web pages search in ranking 
problems like (i) and (ii) from the introduction. To this purpose, we consider a set of query-

document samples x = (q, d) ∈ X, together with a label y  that induces a relative order or 
preference between the documents d accordingly to a query q. Each query induces a directed 

acyclic graph (X, E), with E ⊆ X2 (See Figure 2). 
 

 

Fig. 2. Induced graph from ranking constraints for a particular query 

For (i) the set of web pages forms the vertex set X of the digraph and we are also given some 
further information about the web pages (like a bag-of-words representation). For (ii) each 

vertex of the graph is a pair containing a query (q ∈ Q) and a document (d ∈ D). Hence, the 

vertex set is X X Q × D and edges of the form ((q, d), (q, d′)) ∈ E with d, d′ ∈ D;  

q ∈ Q represent that d was more relevant than d′ for an user asking query q. In addition one 

typically assumes some joint representations of queries and web pages. 
The beauty of these problems is that classification and ordinal regression problems can be 
written as a ranking problem, therefore, the ranking SVM framework can be as well used for 
this kind of problems. The exact decision frontier can be calculated via a ROC curve, for 
example. 
In both cases, ranking algorithms aim to find an ordering (permutation) of the vertex  

π : X →  where n = |X| and  = {1, . . . , n} such that the more relevant a document is, 

the higher it is placed after the permutation, while as few as possible preferences are 
violated by the permutation. 
Ranking SVM approaches such learning problems by solving the following primal 
optimization problem : 
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(5)

Here, H is a reproducing kernel Hilbert space (RKHS), λ ∈ R+ is a regularization parameter, 

and the square norm  in the Hilbert space serves as the regularizer. As in SVM for 

classification, the slack variables ξvu, (u, v) ∈ E traduce the cost related to the violation of the 

constraints (u, v). The final permutation π is then obtained by sorting X according to f and 

resolving ties randomly. 

Now, to easy the notation, let k : X × X → R be the reproducing kernel of H and denote the 

vertex by xi such that X = {xi | i ∈ }. The set of violated constraints is {(xi, xj) ∈ E | π(xi) < 

π(xj)}. The decision function will have the form  with βi ∈ R. With 

slight abuse of notation we write k(x) = (k(x, x1), k(x, x2), ..., k(x, xn))T. Using this notation, a 
ranking problem (5) with m preferences  can be written as : 

 

(6)

with K = [Kij
 = k(xi, xj)] ∈ Rn×n the Gram matrix and β = [β1 ... βn]T. 

The complexity of the problem comes from the fact that the number of such preference 
constraints m is of order the square of the training set size that is m = O(n2). The Lagrangian 
L of problem (6) is given by : 

 

with αi ≥ 0, γi
 ≥ 0. A matrix P ∈ Rm×n can be defined with entries 

 

(7)

so that the Lagrangian can be expressed as : 

 
 

with α ≥ 0, γ ≥ 0 (the vectors α and γ contain respectively the Lagrange parameters αi and γi). 

Using the Karush-Kuhn-Tucker (KKT) conditions, we obtain: 
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These equations result in conditions,  so that 

 

Finally, the dual of Problem (6) is: 

 

(8)

4. RankSVM singularity 

As mentioned in the introduction, the Ranking SVM optimization problem induces a 
directed graph for each query. This structure constraints an edge for each relationship of 
relevance between samples that has to be satisfied. These constraints include as well all 
transitive relationships that could in fact be induced by other ones. This redundancy in the 
constraints setting cause the Hessian matrix in Problem (8) to be singular. 
This issue can be overcome by designing for each query a sample as the maximum of all his 
rank for this query, so that edges from the chosen sample will be added to the other 
samples. For the immediate upper level, all samples in it will be joint to the maximum of the 
previous rank and so on. The obtained graph would look as in Figure (3). 
 

 

Fig. 3. New graph that will generate a non singular Hessian on the dual problem 

The advantage of this new formulation is that the number of constraints is significantly 
smaller than in the original RankSVMalgorithm. The first one can be of order O(n2), while 
the second one is of order O(n) This will lead to a smaller problem and faster training time 
with a consistent problem equivalence. 

5. Regularization path for ranking SVM 

Following the arguments developed in Rosset and Zhu (2007), it can be shown that the 

solution (λ) of the above dual problem is a piecewise linear function of λ. Hence the 
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problem admits a piecewise linear regularization path. A regularization path has 

breakpoints λ1 > λ2 > . . . such that for an interval [λt+1, λt] (i.e., with no breakpoint) the 

optimal solutions  (λ) and (λ) can easily be obtained for all λ ∈ [λt+1, λt]. 

Following the work of Hastie et al. (2004) we now derive the regularization path of ranking 

SVM. For given λ, and to simplify the notations, let f(x) and α be the decision function and 

the optimal solution for Problems (6) and (8), respectively (i.e. (x) ≡ f(x) and (λ) ≡ α). 

Then, the following partition derived from the KKT optimality conditions can be made : 

 
 

The set I0
 represents the satisfied constraints whereas I1

 is devoted to the violated 

constraints and Iα includes the “margin constraints”. 

Similarly, we will denote by αt and f t(x) the optimal solution of the dual Problem (6) for the 

regularization parameter λt. Note that we assume the above sets  induced by the 

solution of the optimization problem for λt remain unchanged for 

. Hence, α i ∈ Iα depends linearly on λ, This 

can be seen by writing f (x) as follows : 

 

(9)

 

where the last line is true as  for all  is the submatrix of P containing the 

rows corresponding to  and all columns. For all i ∈  we have that 

 leading to 

 

Therefore 

 
(10)

This equation is valid for all pairs in  for fixed sets . It can be simplified 

by transposing Eq. (10) and using Eq. (7) in it, getting : 

 
(11)
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If we define  a vector of ones of size | |, then it can finally 

be seen that αi, i ∈  changes piecewise linearly in λ as follows : 

 (12)

For all λ ∈ [λt+1, λt], the optimal solution α (and consequently the decision function f(x)) can 

be easily obtained until the sets change, i.e., an event occurs. From any optimal solution 

α for λ, the corresponding sets Iα, I0, and I1 can be deduced and thereon the successive 

solutions for different λ. 

5.1 Initialization 

If λ is very large, β = 0 minimizes Problem (6). This implies that ξi
 = 1, ∀i and because of the 

strict complementary and KKT conditions, γi
 = 0 ⇒ αi = 1. To have at least one element in Iα, 

we need a pair  that verifies 1. We know that 

 and therefore α = 1I solves , for all pairs, the equation 

 

Hence, initially all pairs will be in I1 and, as initial λ value, we take 

 

The set Iα will contain the pairs which maximize the value of λ0. 

5.2 Event detection 

At step t the optimal solution αt defines a partition Iα, I1, I0. If these sets remain fixed for all 

λ in a given range then the optimal solution α(λ) is a linear function of λ. If an event occurs, 

i.e., the sets change, then the linear equation has to be readjusted. Two types of events have 

to be determined: 

- a pair in Iα goes to I1 or I0 

- a pair in I1 or I0 goes to Iα. 

5.2.1 Pair in Iα goes to I1 or I0 
This event can be determined by analyzing at which value of λ the corresponding αi turns 

zero or one. Eq. (12) is used and the following systems are solved for λi : 

 (13)

 (14)

Using these last equations, the exact values for λi that produces an event on pairs in 

Iα moving to I0 ∪ I1 can be determined. 
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5.2.2 Pair in I1 or I0 goes to Iα 

To detect this event, note that Equation (11) can also be written as follows : 

 

(15)

Plugging Eq. (15) in Eq. (9), we can write f(x) in a convenient manner: 

 

If we let 
 
then 

 
(16)

 

An event on pair (ki, li) ∈ I0 ∪ I1 b Iα means that  and can be detected 

by using Equation (16). The corresponding λi that generates this event is calculated as 

follows: 

 

(17)

 

Finally, λt+1 will be the largest resulting λi
 < λt from Equations (13), (14) and (17). In a cross 

validation framework, model selection can be done by learning the parameters in the 

training sets, an estimation of the generalization error (or ranking accuracy) can be taken by 

applying each model to the validation set.  

The path computation is summarized by the pseudo-code of Algorithm 1. 

5.3 Remarks and comments 
Here we discuss briefly some issues of the algorithm related to the piecewise variation, the 

numerical complexity and how to address the emptiness of the set Iα. 

On the functional piecewise variation 

Let the function g = λf corresponding to the regularization parameter λ. In a similar manner, 

consider the function gt = λtf t which corresponds to the solution for the value λt. From Eq. 

(16), one derives easily the relation g = gt +(λ−λt)ht. Therefore, we recover the piecewise 

linear variation stated in theorem 1. This linear variation formally concerns the function g 

instead of f. However the parameters α involved in f evolves linearly with λ. 
On the numerical complexity 
The numerical complexity of the algorithm can be analyzed as follows. We assume the 

whole matrix P K PT is available beforehand as it can be built and stored at the beginning of  
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the algorithm and this computation requires O(mn2) operations from the knowledge of the 

matrices P and K. At each iteration, solving the linear system (11) involves a cost of order 

O(|Iα|3). The calculation of all next values λt+1 (using Eq. 13-14 and 17) has a numerical 

complexity of O(m|Iα|) whereas the detection of the next event is of order O(m). Let 
 the evaluation of the preference , i ∈ . According to (16), 

the update of all yi is O(m). We can note that the computational complexity is essentially 

related to the cardinality of Iα|. The cubic complexity of the linear system can be decreased 

to square complexity using a Sherman-Morrison rule to update the inverse of the matrix 

 or a Choleski update procedure. The exact complexity of the algorithm is hard to 

predict since the total number of events needed for exploring entirely the regularization 

path is data-dependent and the mean size of |Iα| is difficult to guess beforehand. However, 

the total complexity is few multiples of the cost for solving directly the dual problem (8). 

On the emptiness of Iα 

It may happen during the algorithm that the set Iα becomes empty. In such situation, a 

new initialization of the algorithm is needed. We apply the procedure developed in 

Subsection 5.1 except the fact we consider solely the pairs in I1 keeping unchanged the set 

I0. 
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6. Experimental results 

Several datasets where used to measure the accuracy and time to process the regularization 
path for the RankSVM algorithm. Firstly, a toy example generated from Gaussian 
distributions (Hastie et al. (2001)) was applied. Some invetisgations on real life datasets 
taken from the UCI repository1 are further presented. 
The mixtures dataset of Hastie et al. (2004) was originally designed for binary classification 

with instances xi and corresponding labels yi ∈ {±1}. However, it can be viewed as a ranking 
problem with E = {(xi, xj) | yi > yj}. It contains 100 positive and 100 negative points which 
would induce 10000 constraints. The regularization path was run on this dataset and a 
decision function was taken on zero. This decision boundary can still be improved by 
observing the generated ROC curve at each level. Figure (4) illustrates the decision function 
 

 

                              (a) Initialization                                (b) Solution after some iterations 

 

                      (c) Solution after more iterations                    (d) Solution for the smallest λ 

Fig. 4. Illustration of the regularization path for the mixture dataset, all red points must be 

ranked higher than the blue points. As λ decreases, the margin gets smaller and the distance 
between pairs tends to be larger than one. 

                                                 
1
 http ://archive.ics.uci.edu/ml/datasets.html 
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for different breakpoints of the regularization path. The initial solution (a) is poor but after 

some iterations the results are improved as shown in subfigure (b). The most interesting 

solution is illustrated on subfigure (c) where almost constraints are satisfied. 

The others datasets are regression problems and can also be viewed as ranking problems by 

letting E = {(xi, xj) | yi > yj}. 

The number of induced constraints on the complete dataset and those obtained after 

following the graph design in Figure (3) are compared in Table 1. 

For the experiments, a training, a validation and a test sets where built, being the last two of 

about half the size of the training set each. The number of involved features, training and 

test instances, and training and test constraints are summarized in Table 2. 

Finally, the experiment was run 10 times, the error is measured as the percentage of 

misclassified samples. The size of A tells the number of support vectors and finally the time, 

is the average time (in seconds) to train a regularization path. The results are gathered in 

Table 3. We can see that the computation cost needed to obtain all possible soultions and 

their evaluation on test samples (in order to pick up the best one) is fairly cheaper making 

the approach particularly interesting. 

7. Conclusions 

Regularization parameter search for the ranking SVM can be efficiently done by calculating 

the regularization path. This approach calculates efficiently the optimal solution for all 

possible regularization parameters by solving (in practice) small linear problems. This 

approach has the advantage of overcoming local minimum of the regularization function. 

These advantages make the parameter selection considerably less time consuming and the 

obtained optimal solution for each model more robust. 

 
 

 
 

Table 1. Number of training instances under the original RankSVM and the ones obtained 
after the graph reformulation 

 
 

 
 

Table 2. Summary of the features of the training, validation and test sets 
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Table 3. Obtained results by running the regularization path on the datasets described in 
Table 1. The results are averaged over 10 trials. 

The numerical complexity of the algorithm depends on the number of iterations needed to 

explore the overall solution path and the mean size of Iα. At each iteration, a linear 

system is solved to get η which has complexity O(|Iα|2). Empirically we observed that 

the number of iterations is typically only 2-3 times larger than the number of training 

pairs 
Another key point is the determination of kernel hyper-parameter. This problem was not 

tackled here. However, one can seek to combine our regularisation path with the kernel 

parameter path developed in Gang Wang and Lochovsky (2007). 
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