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1. Introduction 

The changeable structures and variability of email attacks render current email filtering 
solutions useless. Consequently, the need for new techniques to harden the protection of 
users' security and privacy becomes a necessity. The variety of email attacks, namely spam, 
damages networks' infrastructure and exposes users to new attack vectors daily. Spam is 
unsolicited email which targets users with different types of commercial messages or 
advertisements. Porn-related content that contains explicit material or commercials of 
exploited children is a major trend in these messages as well. The waste of network 
bandwidth due to the numerous number of spam messages sent and the requirement of 
complex hardware, software, network resources, and human power are other problems 
associated with these attacks. Recently, security researchers have noticed an increase in 
malicious content delivered by these messages, which arises security concerns due to their 
attack potential. More seriously, phishing attacks have been on the rise for the past couple of 
years. Phishing is the act of sending a forged e-mail to a recipient, falsely mimicking a 
legitimate establishment in an attempt to scam the recipient into divulging private 
information such as credit card numbers or bank account passwords (James, 2005). Recently 
phishing attacks have become a major concern to financial institutions and law enforcement 
due to the heavy monetary losses involved. According to a survey by Gartner group, in 2006 
approximately 3.25 million victims were spoofed by phishing attacks and in 2007 the 
number increased by almost 1.3 million victims. Furthermore, in 2007, monetary losses, 
related to phishing attacks, were estimated by $3.2 billion. All the aforementioned concerns 
raise the need for new detection mechanisms to subvert email attacks in their various forms. 
Despite the abundance of applications available for phishing detection, unlike spam 
classification, there are only few studies that compare machine learning techniques in 
predicting phishing emails (Abu-Nimeh et al., 2007). We describe a new version of Bayesian 
Additive Regression Trees (BART) and apply it to phishing detection. A phishing dataset is 
constructed from 1409 raw phishing emails and 5152 legitimate emails, where 71 features 
(variables) are used in classifiers' training and testing. The variables consist of both textual 
and structural features that are extracted from raw emails. The performance of six classifiers, 
on this dataset, is compared using the area under the curve (AUC) (Huang & Ling, 2005). 
The classifiers include Logistic Regression (LR), Classification and Regression Trees (CART), 
Bayesian Additive Regression Trees (BART), Support Vector Machines (SVM), Random O
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Forests (RF), and Neural Networks (NNet). In addition to the AUC, additional measures are 
used to gauge the classifiers' performance, such as the error rate, false positive, and false 
negative rates. 

1.1 Motivation to Bayesian methodology 
We start by providing a discussion on Bayesian learning and the reasons behind choosing 
BART among another classifiers, then we illustrate the technical details of BART. BART is a 
Bayesian approach, thus it inherits all the advantages from Bayesian learning. There are 
various advantages of Bayesian learning when compared to other statistical approaches. As 
opposed to the frequentist approach for defining the probability of an uncertain event, here 
one needs a record of past information of an event. Yet, if this information is not available, 
then the frequentist approach cannot be used to define the degree of belief in the uncertain 
event. On the other hand, the Bayesian approach allows us to reason about beliefs under 
conditions of uncertainty. Thus, it helps in modeling uncertainty in a probabilistic way 
(Neal, 1995). In addition, Bayesian inference is regarded as a good approach to tackle the 
problem of data modeling (Kandola, 2001). A model is designed for a particular application 
and adapted according to the data while the data arrives from the application. The model 
then provides a representation of the prior beliefs about the application and the information 
derived from the data (Bishop, 1995). 
Another advantage of the Bayesian approach is that one does not need to update the model 
entirely when acquiring new knowledge. Yet, the new data can be used to update the 
current model instead of re-fitting the entire model. This feature comes handy especially in 
phishing detection since phishing attacks change frequently and vastly to lure filters and 
detection mechanisms. Assuming that one needs to re-fit the entire model when new batch 
of emails arrives, the procedure becomes very computationally extensive and time 
consuming, thus impractical. 
Furthermore, BART is a model-based Bayesian approach. As opposed to to those algorithm-
based learning methods, model-based approaches can provide full and accurate assessment 
of uncertainty in predictions, while remaining highly competitive in terms of predictive 
accuracy. In addition, model-based approaches are considered non-greedy, hence opposed 
to selecting the best solution at the time being and not worrying about the future (i.e. 
whether the solution is efficient or not), the solution is interchangeable accordingly. Also, 
model-based approaches are non-adhoc, hence the provided solution is not only selected to 
a particular problem; however, it can be used as a general case. 

1.2 Why Bayesian additive regression trees? 
BART automatically selects variables from a large pool of input predictors, while searching 
for models with highest posterior probabilities for future prediction, via a backfitting 
Markov chain Monte Carlo (MCMC) algorithm (see section 3.1 for further details). 
Compared to other Bayesian methods, such as Naive Bayes and Bayesian Networks, the 
latter approaches require variable selection to be done separately, otherwise they use all the 
variables supplied for training, thus the performance of the classifier will be very poor. Also, 
it is well known that variable selection in a high dimensional space is a very difficult 
problem that often requires intensive computations. As we mentioned earlier, phishing 
emails change regularly and vastly to lure detection mechanisms and the variables may 
change over time as well. Yet, the above nice feature of BART comes handy when training 
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on newly arriving emails on a regular basis. With no additional requirements to perform 
variable selection, BART simultaneously accomplishes variable selection during the training 
phase. 
In addition, in phishing detection hundreds of potential features are extracted from raw 
emails. Only an unknown subset of them are useful for prediction and others are irrelevant. 
Blindly including all the variables in the step of training often leads to overfitting, and hence 
predicting new attacks may be poor. However, with the automatic variable selection feature 
in BART this problem is solved. 
Further, many other Bayesian learning approaches require very careful prior specification, 
and hence extra effort and operational cost in training models. However, BART, as shown in 
(Chipman et al., 2006), appears to be relatively insensitive to small changes in the prior 
specification and the choice of the number of trees. According to (Chipman et al., 2006), the 
default priors work very well, which enables BART to be an objective and automatic 
training procedure. This is desirable in situations in which there is no prior information 
available or no human intervention is preferred. 
Furthermore, BART is a class of Bayesian additive models with multivariate components of 
binary trees. Using binary trees as model components makes BART more exible in practice, 
as opposed to common regression approaches, since the structure of binary trees has been 
proved to approximate well nonlinear and nonsmooth functional forms in many 
applications (Hastie et al., 2001). 
Also, BART uses a sum-of-trees-model which is more exible than any single tree model that 
can hardly account for additive effects. Each tree component is regarded as a weak learner, 
which explains a small and different part of the unknown relationship between the input 
and output. In addition, multivariate components of BART can easily incorporate high-
order interaction effects among three or more input variables, which can be dificult to 
capture by other additive models. 
Moreover, the rich structure of BART leads to its excellent learning ability, even in the 
presence of a very complicated structure embedded in data. Since phishing emails look very 
similar to legitimate emails, actually they are duplicates of legitimate emails with some 
changes, learning is a challenging problem and perhaps involves discovering an elaborate 
and subtle relationship from data. 

2. Related work 

(Chandrasekaran et al., 2006) proposed a technique to classify phishing based on structural 
properties of phishing emails. They used a total of 25 features mixed between style markers 
(e.g. the words suspended, account, and security) and structural attributes, such as the 
structure of the subject line of the email and the structure of the greeting in the body. They 
tested 200 emails (100 phishing and 100 legitimate). They applied simulated annealing as an 
algorithm for feature selection. After a feature set was chosen, they used information gain 
(IG) to rank these features based on their relevance. They applied one-class SVM to classify 
phishing emails based on the selected features. Their results claim a detection rate of 95% of 
phishing emails with a low false positive rate. 
(Fette et al., 2007) compared a number of commonly-used learning methods through their 
performance in phishing detection on a past phishing data set, and finally Random Forests 
were implemented in their algorithm PILFER. Their methods can be used to detect phishing 
websites as well. They tested 860 phishing emails and 6950 legitimate emails. The proposed 
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method detected correctly 96% of the phishing emails with a false positive rate of 0.1%. They 
used ten features handpicked for training and their phishing dataset was collected in 2002 
and 2003. As pointed out by the authors themselves, their implementation is not optimal 
and further work in this area is warranted. 
(Abu-Nimeh et al., 2007) compared six machine learning techniques to classify phishing 
emails. Their phishing corpus consisted of a total of 2889 emails and they used 43 features 
(variables). They showed that, by merely using a bag-of-words approach, the studied 
classifiers could successfully predict more than 92% of the phishing emails. In addition, the 
study showed that Random Forests achieved the maximum predictive accuracy and Logistic 
Regression achieved the minimum false positives on the studied corpus. 

3. Machine learning approaches for binary classification 

In the literature, there exist several machine learning techniques for binary classification, 
e.g., logistic regression, neural networks (NNet), binary trees and their derivatives, 
discriminant analysis (DA), Bayesian networks (BN), nearest neighbor (NN), support vector 
machines (SVM), boosting, bagging, etc. The interested reader can refer to (Hastie et al., 
2001) and the references therein for a detailed overview. Here we describe the application of 
Bayesian Additive Regression Trees (BART) for learning from data, combined with a probit 
setup for binary responses, to detect phishing emails. 
Most of the machine learning algorithms discussed here are categorized as supervised 
machine learning, where an algorithm (classifier) is used to map inputs to desired outputs 
using a specific function. In classification problems a classifier tries to learn several features 
(variables or inputs) to predict an output (response). Specifically in phishing classification, a 
classifier will try to classify an email to phishing or legitimate (response) by learning certain 
characteristics (features) in the email. 
Applying any supervised machine learning algorithm to phishing detection consists of two 
steps: training and classification. During the training step a set of compiled phishing and 
non-phishing messages (with known status) is provided as training dataset to the classifier. 
Emails are first transformed into a representation that is understood by the algorithms. 
Specifically, raw emails are converted to vectors using the vector space model (VSM) (Salton 
& McGill, 1983), where the vector represents a set of features that each phishing and non-
phishing email carries. Then the learning algorithm is run over the training data to create a 
classifier. The classification step follows the training (learning) phase. During classification, 
the classifier is applied to the vector representation of real data (i.e. test dataset) to produce 
a prediction, based on learned experience. 

3.1 Bayesian additive regression trees 
Bayesian Additive Regression Trees (BART) is a new learning technique, proposed by 
(Chipman et al., 2006), to discover the unknown relationship between a continuous output 
and a dimensional vector of inputs. The original model of BART was not designed for 
classification problems, therefore, a modified version, hereafter CBART, which is applicable 
to classification problems in general and phishing classification in particular is used. Note 
that BART is a learner to predict quantitative outcomes from observations via regression. 
There is a distinction between regression and classification problems. Regression is the 
process of predicting quantitative outputs. However, when predicting qualitative 

www.intechopen.com



Hardening Email Security via Bayesian Additive Regression Trees 

 

189 

(categorical) outputs this is called a classification problem. Phishing prediction is a binary 
classification problem, since we measure two outputs of email either phishing =1 or 
legitimate =0 (Hastie et al., 2001). 

BART discovers the unknown relationship f between a continuous output Y and a p 

dimensional vector of inputs x = (x1, ..., xp). Assume Y = f(x) + ε, where ε ~N(0, 2) is the 

random error. Motivated by ensemble methods in general, and boosting algorithms in 

particular, the basic idea of BART is to model or at least approximate f(x) by a sum of 

regression trees, 

 

(1) 

each gi denotes a binary tree with arbitrary structure, and contributes a small amount to the 
overall model as a weak learner, when m is chosen large. An example of a binary tree 
structure is given in Figure 1, in which a is the root node, c is an internal node, and b, d and e 
are three terminal nodes that are associated with parameter μ1, μ2 and μ3, respectively. Also, 
each of the interior (i.e., non-terminal) nodes is associated with a binary splitting rule based 
on some x variable. By moving downwards from the root, an observation with given x will 
be assigned to a unique terminal node, according to the splitting rules associated with the 
nodes included in its path. In consequence, the corresponding parameter of the terminal 
node will be the value of g for this observation. 
 

 

Fig. 1. A binary tree structure 

Let Ti be the ith binary tree in the model (1), consisting of a set of decision rules (associated 
with its interior nodes) and a set of terminal nodes, for i = 1, ..., m. Let Mi be the vector 
containing all terminal node parameters of Ti such that M = {M1, ..., } and bi is the number 

of terminal nodes that Ti has. Now we can explicitly write 

 (2) 

Figure 2 depicts an example of a binary tree in the BART model. Note that the BART 
contains multiple binary trees, since it is an additive model. Each node in the tree represents 
a feature in the dataset and the terminal nodes represent the probability that a specific email 
is phishing, given that it contains certain features. For example, if an email contains HTML 
code, contains javascript, and the javascript contains form validation, then the probability 
that this email is phishing is 80% (refer to Figure 2). These features are discussed in more 
details in Section 4.1.1. 
BART is fully model-based and Bayesian in the sense that a prior is specified, a likelihood is 
defined using the data, and then a sequence of draws from the posterior using Markov chain 
Monte Carlo (MCMC) is obtained. Specifically, a prior distribution is needed for T, M, and , 
respectively. Each draw represents a fitted model f * of the form (1). 
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To specify a prior distribution P(T) on T, one needs three pieces of information; (i) 
determining how likely a node will be split when a tree is created; (ii) determining which 
variable will be chosen to split the node; (iii) determining the rule that will be used for 
splitting. The main goal here is to generate small trees or “weak learners”, hence each tree 
plays a small share in the overall fit, but when combined all produce a powerful 
“committee”. 
For the prior distribution on terminal node parameters P(μ), the parameters of the terminal 
nodes are assumed independent a priori, hence the prior mean . Lastly, 

for the variance of noise 2, a prior P() is needed. The parameters of the prior on  can be 
specified from a least square linear regression of Y on the original x's. 
Now given the prior distributions a backfitting MCMC Gibbs sampler is used to sample from 
the posterior distribution as shown below. 
Repeat i = 1 to I (say I = 1000, where I is the number of simulations): 
• Sample Tj conditional on Y, all Ts but Tj , all μs, and . 
• Sample Mj given all Ts, all Ms but Mj, and . 
• Repeat the above steps m times for j = 1, ., m, where j is the total number of trees 

available. 

• Sample  given Y and all Ts, all Ms and . 
 

 

Fig. 2. Example of a binary tree. 

Since this is a Markov chain, simulation i depends on simulation i - 1. The MCMC 
simulation changes tree structures based on a stochastic tree generating process. The 
structures can be changed by randomly using any of the following four actions. Grow can be 
applied to grow a new pair of terminal nodes from a terminal node and make it become an 
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interior one. Prune can be applied to prune a pair of terminal nodes and make their parent 
node become a terminal one. Change is to change a splitting rule of a non-terminal node. 
Swap is to swap rules between a parent node and a child. By these changes, MCMC 
generates different tree structures and chooses the tree structure that provides the “best” 
sum-of-trees model according to posterior probabilities of trees. 
It is worth mentioning that BART has several appealing features, which make it competitive 
compared to other learning methods and motivate our study as well. Rather than using a 
single regression tree, BART uses a sum- of-trees model that can account for additive effects. 
Also, the binary tree structure helps in approximating well nonlinear and non-smooth 
relationships (Hastie et al., 2001). Furthermore, BART can conduct automatic variable 
selection of inputs while searching for models with highest posterior probabilities during 
MCMC simulation. In addition, by applying Bayesian learning, BART can use newly coming 
data to update the current model instead of re-fitting the entire model. 
Despite the advantages mentioned earlier, it is well known that a Bayesian approach usually 
brings heavy computation time due to its nature. Predicting the posterior probabilities via 
MCMC is usually time consuming and requires complex computations. 

3.1.1 BART for classification (CBART) 
As mentioned in Section 3.1, BART requires the output variable to be continuous, instead of 
binary. Let Y = 1 if an email is phishing; otherwise Y = 0. To use BART with binary outputs, 
we introduce a latent variable Z in connection with Y in spirit of (Albert & Chib, 1993), by 
defining 

 

(3) 

where f(x) is the sum-of-trees model in (1). Note here, we fix  at 1, due to the simple binary 
nature of Y . This yields the probit link function between the phishing probability p and f(x), 

 (4) 

where Φ(⋅) is the cumulative density function of N(0, 1). 
Under the above setup of the latent variable Z, we can use BART to learn f(x) from data, 
after appropriately modifying the prior distribution on M and the MCMC algorithm 
proposed in (Chipman et al., 2006) for posterior computation. Then we can estimate Y = 1 if 
the fitted f *(x) > 0, otherwise estimate Y = 0. Further, we can obtain the estimate of p 
through equation (4). 
Before we describe the algorithm, let T denote a binary tree consisting of a set of interior 
node decision rules and a set of terminal nodes, and let M = {μ1, μ2, ..., μb} denote a set of 
parameter values associated with each of the b terminal nodes of T. Now we explicitly 
denote the ith component of the model gi(x) by gi(x; Ti,Mi). Also, let T(j) be the set of all trees 
in the sum (1) except Tj , and M(j) the associated terminal node parameters. Let y denote the 
observed phishing status of emails in the training data. The algorithm will generate draws 
from the posterior distribution 

 (5) 
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rather than drawing from 

 

in the original algorithm. A typical draw from the new posterior (5) entails m successive 
draws of tree component(Tj ,Mj) conditionally on (T(j),M(j),Z): 

 

(6) 

followed by a draw of Z from the full conditional: 

 (7) 

Note that there is no need to draw  in our new algorithm since it is set to 1. 
We proceed to discuss how to implement (6) and (7). First, we claim that the first step is 
essentially the same as in the original algorithm. This is because in (6), no extra information 
is given by y when Z is given, since y can be completely determined by Z through (3). Hence 
we can remove the redundant y in (6), and use the original algorithm (substitute y by Z and 
set  = 1) to draw from (6). Since Z is latent, we need an extra step to draw values of Z from 
(7). It can be verified that for the jth email in the training data, Zj │(T1,M1), ..., (Tm,Mm), y is 

distributed as N(Σ  gi(x; Ti,Mi), 1) truncated at the left by 0 if yj = 1, and distributed as  

N(Σ gi(x; Ti,Mi), 1) truncated at the right by 0 if yj = 0. Thus, drawing from (7) can be 

easily done by drawing values from the normal distributions and then truncating them by 0 
either from the right or from the left based on the value of y. 
As shown above, BART is well suited for binary classification, under the probit setup with 
the use of the latent variable. In this case, it is even easier than before because  is no longer 
an unknown parameter and the draws of Z are extremely easy to obtain. 
We now briey discuss how to use BART for prediction. In an MCMC run, we can simply 
pick up the “best” f * (according to posterior probabilities or Bayes factor or other criteria) 
from the sequence of visited models, and save it for future prediction. Note that the selected 
f * perhaps involves a much less number of input variables than p since BART automatically 
screens input variables. This would allow prediction for a new email to be quickly done 
since much less information needs to be extracted from the email. A better way is to use the 
posterior mean of f for prediction, approximated by averaging the f * over the multiple 
draws from (5), and further gauge the uncertainty of our prediction by the variation across 
the draws. However, this involves saving multiple models in a physical place for future use. 
A more realistic approach is to use the best B fitted models for prediction that account for 
the 95% posterior probabilities over the space of sum-of-tree models. Usually, B is a number 
less than 20 and again, when predicting a new email is or not, a much less number of input 
variables than p are expected to be used (Abu-Nimeh et al., 2008). 

3.2 Classification and regression trees 
CART or Classification and Regression Trees (Breiman et al., 1984) is a model that describes 
the conditional distribution of y given x. The model consists of two components; a tree T 
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with b terminal nodes, and a parameter vector Θ = (θ1, θ2, ... , θb) where θi is associated with 
the ith terminal node. The model can be considered a classification tree if the response y is 
discrete or a regression tree if y is continuous. A binary tree is used to partition the predictor 
space recursively into distinct homogenous regions, where the terminal nodes of the tree 
correspond to the distinct regions. The binary tree structure can approximate well non-
standard relationships (e.g. non-linear and non-smooth). In addition, the partition is 
determined by splitting rules associated with the internal nodes of the binary tree. Should 
the splitting variable be continuous, a splitting rule in the form {xi ∈ C} and {xi ∉ C} is 
assigned to the left and the right of the split node respectively. However, should the 
splitting variable be discrete, a splitting rule in the form {xi ≤ s} and {xi > s} is assigned to the 
right and the left of the splitting node respectively (Chipman et al., 1998). 
CART is exible in practice in the sense that it can easily model nonlinear or nonsmooth 
relationships. It has the ability of interpreting interactions among predictors. It also has 
great interpretability due to its binary structure. However, CART has several drawbacks 
such as it tends to overfit the data. In addition, since one big tree is grown, it is hard to 
account for additive effects. 

3.3 Logistic regression 
Logistic regression is the most widely used statistical model in many fields for binary data 
(0/1 response) prediction, due to its simplicity and great interpretability. As a member of 
generalized linear models it typically uses the logit function. That is 

 

where x is a vector of p predictors x = (x1, x2, ... , xp), y is the binary response variable, and β 

is a p × 1 vector of regression parameters. 
Logistic regression performs well when the relationship in the data is approximately linear. 
However, it performs poorly if complex nonlinear relationships exist between the variables. 
In addition, it requires more statistical assumptions before being applied than other 
techniques. Also, the prediction rate gets affected if there is missing data in the data set. 

3.4 Neural networks 
A neural network is structured as a set of interconnected identical units (neurons). The 

interconnections are used to send signals from one neuron to the other. In addition, the 

interconnections have weights to enhance the delivery among neurons (Marques de Sa, 

2001). The neurons are not powerful by themselves, however, when connected to others 

they can perform complex computations. Weights on the interconnections are updated 

when the network is trained, hence significant interconnection play more role during the 

testing phase. Figure 3 depicts an example of neural network. The neural network in the 

figure consists of one input layer, one hidden layer, and one output layer. Since 

interconnections do not loop back or skip other neurons, the network is called feedforward. 

The power of neural networks comes from the nonlinearity of the hidden neurons. In 

consequence, it is signi_cant to introduce nonlinearity in the network to be able to learn 

complex mappings. The commonly used function in neural network research is the sigmoid 

function, which has the form (Massey et al., 2003) 
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Although competitive in learning ability, the fitting of neural network models requires some 
experience, since multiple local minima are standard and delicate regularization is required. 
 

 
Fig. 3. Neural Network. 

3.5 Random forests 
Random forests are classi_ers that combine many tree predictors, where each tree depends 
on the values of a random vector sampled independently. Furthermore, all trees in the forest 
have the same distribution (Breiman, 2001). In order to construct a tree we assume that n is 
the number of training observations and p is the number of variables (features) in a training 
set. In order to determine the decision node at a tree we choose k << p as the number of 
variables to be selected. We select a bootstrap sample from the n observations in the training 
set and use the rest of the observations to estimate the error of the tree in the testing phase. 
Thus, we randomly choose k variables as a decision at a certain node in the tree and 
calculate the best split based on the k variables in the training set. Trees are always grown 
and never pruned compared to other tree algorithms. 
Random forests can handle large numbers of variables in a data set. Also, during the forest 
building process they generate an internal unbiased estimate of the generalization error. In 
addition, they can estimate missing data well. A major drawback of random forests is the 
lack of reproducibility, as the process of building the forest is random. Further, interpreting 
the final model and subsequent results is difficult, as it contains many independent 
decisions trees. 

3.6 Support vector machines 
Support Vector Machines (SVM) are one of the most popular classifiers these days. The idea 
here is to find the optimal separating hyperplane between two classes by maximizing the 
margin between the classes closest points. Assume that we have a linear discriminating 
function and two linearly separable classes with target values +1 and -1. A discriminating 
hyperplane will satisfy: 

 

Now the distance of any point x to a hyperplane is │ w’xi+w0 │ / ║ w ║ and the distance to 
the origin is │ w0 │ / ║ w ║. As shown in Figure 4 the points lying on the boundaries are 
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called support vectors, and the middle of the margin is the optimal separating hyperplane 
that maximizes the margin of separation (Marques de Sa, 2001). 
Though SVMs are very powerful and commonly used in classification, they suffer from 

several drawbacks. They require high computations to train the data. Also, they are 

sensitive to noisy data and hence prone to overfitting. 
 

 
Fig. 4. Support Vector Machines. 

4. Quantitative evaluation 

4.1 Phishing dataset 
The phishing dataset constitutes of 6561 raw emails. The total number of phishing emails in 

the dataset is 1409 emails. These emails are donated by (Nazario, 2007) covering many of the 

new trends in phishing and collected between August 7, 2006 and August 7, 2007. The total 

number of legitimate email is 5152 emails. These emails are a combination of financial-

related and other regular communication emails. The financial-related emails are received 

from financial institutions such as Bank of America, eBay, PayPal, American Express, Chase, 

Amazon, AT&T, and many others. As shown in Table 1, the percentage of these emails is 3% 

of the complete dataset. The other part of the legitimate set is collected from the authors' 

mailboxes. These emails represent regular communications, emails about conferences and 

academic events, and emails from several mailing lists. 
 

 

Table 1. Corpus description. 

4.1.1 Data standardization, cleansing, and transformation 
The analysis of emails consists of two steps: First, textual analysis, where text mining is 

performed on all emails. In order to get consistent results from the analysis, one needs to 

standardize the studied data. Therefore, we convert all emails into XML documents after 

stripping all HTML tags and email header information. Figure 5 shows an example of a 

phishing email after the conversions. Text mining is performed using the text-miner 

software kit (TMSK) provided by (Weiss et al., 2004). Second, structural analysis. In this step 
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we analyze the structure of emails. Specifically, we analyze links, images, forms, javascript 

code and other components in the emails. 

 

 

Fig. 5. Phishing email after conversion to XML. 

Afterwards, each email is converted into a vector x
f

= 〈x1, x2, ..., xp〉, where x1, ..., xp are the 

values corre- sponding to a specific feature we are interested in studying (Salton & McGill, 

1983). Our dataset consists of 70 continuous and binary features (variables) and one binary 

response variable, which indicates that email is phishing=1 or legitimate=0. The first 60 

features represent the frequency of the most frequent terms that appear in phishing emails. 

Choosing words (terms) as features is widely applied in the text mining literature and is 

referred to as “bag-of-words”. In Table 2 we list both textual and structural features used in 

the dataset. As shown in Figure 6, we start by striping all attachments from emails in order to 

facilitate the analysis of emails. The following subsections illustrate the textual and 

structural analysis in further details. 

4.1.2 Textual analysis 
As we mentioned earlier we start by stripping all attachments from email messages. Then, we 

extract the header information of all emails keeping the email body. Afterwards, we extract 

the html tags and elements from the body of the emails, leaving out the body as plain text. 

Now, we standardize all emails in a form of XML documents. The <DOC> </DOC> tags 

indicate the beginning and ending of a document respectively. The <BODY> </BODY> tags 

indicate the starting and ending of an email body respectively. The <TOPICS> </TOPICS> 

tags indicate the class of the email, whether it is phish or legit (see Figure 5). 
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Table 2. Feature description. 

 

Fig. 6. Building the phishing dataset. 

Thus, we filter out stopwords from the text of the body. We use a list of 816 commonly used 
English stopwords. Lastly, we find the most frequent terms using TF/IDF (Term Frequency 
Inverse Document Frequency) and choose the top 60 most frequent terms that appear in 
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phishing emails. TF/IDF calculates the number of times a word appears in a document 
multiplied by a (monotone) function of the inverse of the number of documents in which the 
word appears. In consequence, terms that appear often in a document and do not appear in 
many documents have a higher weight (Berry, 2004). 

4.1.3 Structural analysis 
Textual analysis generates the first 60 features in the dataset and the last 10 features are 

generated using structural analysis. Unlike textual analysis, here we only strip the 

attachments of emails keeping HTML tags and elements for further analysis. First, we 

perform HTML analysis, in which we analyze form tags, javascript tags, and image tags. 

Legitimate emails rarely contain form tags that validate the user input. Phishing emails, on 

the other hand, use this techniques to validate victims' credentials before submitting them to 

the phishing site. In consequence, if an email contains a form tag, then the corresponding 

feature in the dataset is set to 1, otherwise it is set to 0. Figure 7 shows an example of a 

Federal Credit Union phish which contains a form tag. 
 

 

Fig. 7. Form validation in phishing email. 

Similarly, legitimate emails rarely contain javascript, however, phishers use javascript to 
validate users input or display certain elements depending on the user input. If the email 
contains javascript, then the corresponding feature in the dataset is set to 1, otherwise it is 
set to 0. Figure 8 shows an example of javascript that is used by a phisher to validate the 
victims account number. 
 

 

Fig. 8. Javascript to validate account number. 

Spammers have used images that link to external servers in their emails, also dubbed as Web 

beacons, to verify active victims who preview or open spam emails. Phishers also have been 

following the same technique to verify active victims and also to link to pictures from 

legitimate sites. We analyze emails that contain image tags that link to external servers. If the 

www.intechopen.com



Hardening Email Security via Bayesian Additive Regression Trees 

 

199 

email contains such an image, then the corresponding feature in the dataset is set to 1, 

otherwise it is set to 0. Figure 9 shows an example of a image tag with an external link. 
 

 

Fig. 9. Image linking to an external server. 

The second part in structural analysis involves the link analysis process. Here we analyze 
links in emails. It is well known that phishers use several techniques to spoof links in emails 
and in webpages as well to trick users into clicking on these links. When analyzing links we 
look for link mismatch, URL contains IP address, URL uses non-standard ports, the 
maximum total number of dots in a link, total number of links in an email, URL redirection, 
and URL encoding. In what follows we describe these steps in more details. 
When identifying a link mismatch we compare links that are displayed to the user with their 
actual destination address in the <a href> tag. If there is a mismatch between the 
displayed link and the actual destination in any link in the email, then the corresponding 
feature in the dataset is set to 1, otherwise, it is set to 0. Figure 10 shows an example of a 
PayPal phish, in which the phisher displays a legitimate Paypal URL to the victim; however, 
the actual link redirects to a Paypal phish. 
 

 

Fig. 10. URL mismatch in link. 

A commonly used technique, but easily detected even by naive users, is the use of IP 
addresses in URLs (i.e. unresolved domain names). This has been and is still seen in many 
phishing emails. It is unlikely to see unresolved domain names in legitimate emails; 
however, phishers use this technique frequently, as it is more convenient and easier to setup 
a phishing site. If the email contains a URL with an unresolved name, then the 
corresponding feature in the dataset is set to 1, otherwise, it is set to 0. Phishers often trick 
victims by displaying a legitimate URL and hiding the unresolved address of the phishing 
site in the <a href> tag as shown in the example in Figure 10. 
Since phishing sites are sometimes hosted at compromised sites or botnets, they use non-
standard port numbers in URLs to redirect the victim's traffic. For example instead of using 
port 80 for http or port 443 for https traffic, they use different port numbers. If the email 
contains a URL that redirects to a non-standard port number, then the corresponding 
feature in the dataset is set to 1, otherwise it is set to 0. Figure 11 shows an example of a 
phishing URL using a non-standard port number. 
 

 

Fig. 11. Phishing URL using non-standard port number. 

We count the number of links in an email. Usually, phishing emails contain more links 
compared to legitimate ones. This is a commonly used technique in spam detection, where 
messages that contain a number of links more than a certain threshold are filtered as spam. 
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However, since phishing emails are usually duplicate copies of legitimate ones, this feature 
might not help in distinguishing phishing from financial-related legitimate emails; however, 
it helps in distinguishing phishing from other regular legitimate messages. 
Since phishing URLs usually contain multiple sub-domains so the URL looks legitimate, the 
number of dots separating sub-domains, domains, and TLDs in the URLs are usually more 
than those in legitimate URLs. Therefore, in each email we find the link that has the 
maximum number of dots. The maximum total number of dots in a link in an email thus is 
used as a feature in the dataset. Figure 12 shows an example of a Nationwide spoof link. 
Note the dots separating different domains and sub-domains. 
 

 

Fig. 12. Number of dots in a Nationwide spoof URL. 

Phishers usually use open redirectors to trick victims when they see legitimate site names in 
the URL. Specifically, they target open redirectors in well known sites such as aol.com, 
yahoo.com, and google.com. This technique comes handy when combined with other 
techniques, especially URL encoding, as naive users will not be able to translate the 
encoding in the URL. Figure 13 shows an example of an AOL open redirector. 
 

 

Fig. 13. Open redirector at AOL. 

The last technique that we analyze here is URL encoding. URL encoding is used to transfer 
characters that have a special meaning in HTML during http requests. The basic idea is to 
replace the character with the “%” symbol, followed by the two-digit hexadecimal 
representation of the ISO-Latin code for the character. Phishers have been using this 
approach to mask spoofed URL and hide the phony addresses of these sites. However, they 
encode not only special characters in the URL, but also the complete URL. As we mentioned 
earlier, when this approach is combined with other techniques, it makes the probability of 
success for the attack higher, as the spoofed URL looks more legitimate to the naive user. 
Figure 14 shows an example of URL encoding combined with URL redirection. 
 

 

Fig. 14. URL encoding combined with URL redirection. 

Figure 6 depicts a block diagram of the approach used in building the dataset. It shows both 
textual and structural analysis and the procedures involved therein. 

4.2 Evaluation metrics 
We use the area under the receiver operating characteristic (ROC) curve (AUC) to measure 
and compare the performance of classifiers. According to (Huang & Ling, 2005), AUC is a 
better measure than accuracy when comparing the performance of classifiers. The ROC 
curve plots false positives (FP) vs. true positives (TP) using various threshold values. It 
compares the classifiers' performance across the entire range of class distributions and error 
costs (Huang & Ling, 2005). 
Let NL denote the total number of legitimate emails, and NP denote the total number of 

phishing emails. Now, let nL→L be the number of legitimate messages classified as legitimate, 
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nL→P be the number of legitimate messages misclassified as phishing, nP→L be the number of 

phishing messages misclassified as legitimate, and nP→P be the number of phishing messages 

classified as phishing. False positives are legitimate emails that are classified as phishing, 

hence the false positive rate (FP) is denoted as: 

 
(8) 

True positives are phishing emails that are classified as phishing, hence the true positive rate 

(TP) is denoted as: 

 
(9) 

False negatives are phishing emails that are classified as legitimate, hence the false negative 

rate (FN) is denoted as: 

 
(10)

True negatives are legitimate emails that are classified as legitimate, hence the true negative 

rate (TN) is denoted as: 

 
(11)

Further we evaluate the predictive accuracy of classifiers, by applying the weighted error 

(WErr) measure proposed in (Sakkis et al., 2003) and (Zhang et al., 2004). We test the 

classifiers using λ = 1 that is when legitimate and phishing emails are weighed equally. 

Hence the weighted accuracy (WAcc), which is 1 - WErr(λ), can be calculated as follows 

 
(12)

In addition, we use several other measures to evaluate the performance of classifiers. We use 

the phishing recall(r), phishing precision(p), and phishing f1 measures. According to (Sakkis et 

al., 2003), spam recall measures the percentage of spam messages that the filter manages to 

block (filter's effectiveness). Spam precision measures the degree to which the blocked 

messages are indeed spam (filter's safety). F-measure is the weighted harmonic mean of 

precision and recall. Here we use f1 when recall and precision are evenly weighted. For the 

above measures, the following equations hold 

 
(13)

 
(14)
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(15)

We use the AUC as the primary measure, as it allows us to gauge the trade off between the 
FP and TP rates at different cut-off points. Although the error rate WErr (or accuracy) has 
been widely used in comparing classifiers’ performance, it has been criticized as it highly 
depends on the probability of the threshold chosen to approximate the positive classes. Here 
we note that we assign new classes to the positive class if the probability of the class is 
greater than or equal to 0.5 (threshold=0.5). In addition, in (Huang & Ling, 2005) the authors 
prove theoretically and empirically that AUC is more accurate than accuracy to evaluate 
classi_ers' performance. Moreover, although classifiers might have different error rates, 
these rates may not be statistically significantly different. Therefore, we use the Wilcoxon 
signed-ranks test (Wilcoxon, 1945) to compare the error rates of classifiers and find whether 
the di_erences among these accuracies is significant or not (Demšar, 2006). 

4.3 Experimental studies 
We optimize the classifiers’ performance by testing them using different input parameters. 
In order to find the maximum AUC, we test the classifiers using the complete dataset 
applying different input parameters. Also, we apply 10-fold-cross-validation and average the 
estimates of all 10 folds (sub-samples) to evaluate the average error rate for each of the 
classifiers, using the 70 features and 6561 emails. We do not perform any preliminary 
variable selection since most classifiers discussed here can perform automatic variable 
selection. To be fair, we use L1-SVM and penalized LR, where variable selection is 
performed automatically. 
We test NNet using different numbers of units in the hidden layer (i.e. different sizes (s)) 
ranging from 5 to 35. Further, we apply different weight decays (w) on the interconnections, 
ranging from 0.1 to 2.5. We find that a NNet with s = 35 and w = 0.7 achieves the maximum 
AUC of 98.80%. 
RF is optimized by choosing the number of trees used. Specifically, the number of trees we 
consider in this experiment is between 30 and 500. When using 50 trees on our dataset, RF 
achieves the maximum AUC of 95.48%. 
We use the L1-SVM C-Classification machine with radial basis function (RBF) kernels. L1-
SVM can automatically select input variables by suppressing parameters of irrelevant 
variables to zero. To achieve the maximum AUC over different parameter values, we 
consider cost of constraints violation values (i.e. the “c” constant of the regularization term 
in the Lagrange formulation) between 1 and 16, and values of the γ parameter in the kernels 

between 1 ×10-8 and 2. We find that  γ= 0.1 and c = 12 achieve the maximum AUC of 97.18%. 
In LR we use penalized LR and apply different values of the lambda regularization 

parameter under the L2 norm, ranging from 1 × 10-8 to 0.01. In our dataset λ = 1 × 10-4 

achieves the maximum AUC of 54.45%. 
We use two BART models; the first is the original model and as usual, we refer to this as 
“BART”. The second model is the one we modify so as to be applicable to classification, 
referred to as “CBART”. We test both models using different numbers of trees ranging from 
30 to 300. Also, we apply different power parameters for the tree prior, to specify the depth 
of the tree, ranging from 0.1 to 2.5. We find that BART with 300 trees and power = 2.5 
achieves the maximum AUC of 97.31%. However, CBART achieves the maximum AUC of 
99.19% when using 100 trees and power = 1. 
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4.4 Experimental results 
In this section we present the experimental results be measuring the AUC using the 
complete dataset. In addition, we compare the precision, recall, f1, and WErr measures using 
the optimum parameters achieved from the previous section. Figure 15 illustrates the ROCs 
for all classifiers. 
 

 

Fig. 15. ROC for all classifiers using the complete dataset. 

Table 3 illustrates the AUC, FP, FN, presicion, recall, f1, and WErr for all classi_ers. Note that 
the FPrate = 1 - precision and the FNrate = 1 - recall. 
 

 

Table 3. Classifiers AUC, WErr, precision, recall, f1, false positive, false negative. 

In Table 4, we compare p-value of the error rate for each subsample among the 10 
subsamples in cross validation by applying the Wilcoxon signed-rank test. Since CBART has 
a comparable error rate to that of RF, SVM, and NNet, we merely compare these three 
classifiers. 

 

Table 4. Comparing the p-value using the Wilcoxon-signed ranked test 

4.5 Discussion 
Here we investigate the application of a modified version of BART for phishing detection. 
The results demonstrate that CBART outperforms other classifiers on the phishing dataset, 
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achieving the maximum AUC of 99.19%. The results show that CBART has the highest 
AUC, followed by NNet with 98.80%, BART with 97.31%, SVM with 97.18%, CART with 
96.06%, RF with 95.48%, and LR with 54.45% respectively. Apparently the AUC for CBART 
has improved by 1.88% compared to the original BART model. 
The results show that CBART's error rate is comparable to other classifiers (merely RF, SVM, 
and NNet). When the error rates for the 10 subsamples are compared using the Wilcoxon-
singed ranked test, the p-value of the tests for SVM and NNet are greater than 0.05, which is 
an indication that the difference in the results is not statistically significantly different (see 
Table 4). However, for RF, the p-value is less than 0.05, which is an indication that the error 
rates may be statistically significantly different. Table 3 illustrates that the AUC for CBART is 
greater than RF by approximately 4%, therefore, we conclude that CBART's performance is 
better than RF. 
SVM achieves the minimum error rate (maximum accuracy) of 2.39%, followed by RF with 
3.68%, NNet with 4.31%, CBART with 4.41%, BART with 4.74%, LR with 5.34%, and CART 
with 7% respectively. Note that the accuracy of CBART has improved, insignificantly 
though, by 0.33%. 
CBART achieves the minimum FP rate of 2.98%, followed by RF with 4.24%, SVM with 
5.43%, NNet with 6.16%, BART with 6.18%, LR with 7.29%, and CART with 11.55%. The 
minimum FN rate is achieved by CBART with 11.14%, followed by RF with 13.20%, SVM 
with 13.77%, NNet 14.32%, BART 16.48%, LR 18.38%, and CART 22.10% respectively. 
It is well known that LR performs very well when the relationship underlying data is linear. 
We believe that the comparatively low predictive accuracy of LR is an indication of a non-
linear relationship among the features and the response in the dataset. 
With its superior classification performance, relatively high predictive accuracy, relatively 
low FP rate, and distinguished features, CBART proves to be a competitive and a practical 
method for phishing detection. 

5. Conclusions 

A modified version of Bayesian Additive Regression Trees (CBART) proved to be suitable as 
a phishing detection technique. The performance of CBART was compared against well-
known classification methods on a phishing dataset with both textual and structural 
features. 
The results showed that CBART is a promising technique for phishing detection and it has 

several features that make it competitive. Further, the results demonstrated that the 

performance of the modified BART model outperforms other well-known classifiers and 

comparatively achieves low error rate and false positives. CBART outperformed all the 

other classifiers and achieved the maximum AUC of 99.19% on the phishing dataset we 

built, decreasing by 1.88% compared to AUC of BART prior to the modification. SVM 

achieved the minimum error rate of 2.39% leaving behind, RF with 3.68% and NNet with 

4.31% followed by CBART with 4.41%. In addition, CBART achieved the minimum FP rate 

of 2.98% followed by RF with 4.25%, SVM with 5.43%, NNet with 6.16%, and BART with 

6.18%. 

Automatic variable selection in BART motivates future work to explore BART as a variable 
selection technique. This includes comparing its performance to other well known variable 
selection methods. 
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