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Abstract

Many real-world datasets can be naturally described by multiple views. Due to this, multi-
view learning has drawn much attention from both academia and industry. Compared to
single-view learning, multi-view learning has demonstrated plenty of advantages. Clus-
tering has long been serving as a critical technique in data mining and machine learning.
Recently, multi-view clustering has achieved great success in various applications. To
provide a comprehensive review of the typical multi-view clustering methods and their
corresponding recent developments, this chapter summarizes five kinds of popular clus-
tering methods and their multi-view learning versions, which include k-means, spectral
clustering, matrix factorization, tensor decomposition, and deep learning. These clustering
methods are the most widely employed algorithms for single-view data, and lots of efforts
have been devoted to extending them for multi-view clustering. Besides, many other
multi-view clustering methods can be unified into the frameworks of these five methods.
To promote further research and development of multi-view clustering, some popular and
open datasets are summarized in two categories. Furthermore, several open issues that
deserve more exploration are pointed out in the end.

Keywords: clustering, multi-view clustering, multi-view k-means, multi-view spectral
clustering, multi-view matrix factorization, tensor decomposition, deep learning

1. Introduction

Clustering is one of the most critical unsupervised learning techniques, which has been widely

applied for data analysis, such as social network analysis, gene expression analysis, heteroge-

neous data analysis, and market analysis. The goal of clustering is to partition a dataset into

several groups such that data samples in the same group are more similar than those in

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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different groups. Clustering plays an important role in mining the hidden patterns. However,

most of the existing clustering algorithms are designed for single-view data.

With the rapid development of Internet and communication technology (ICT), the accesses to

extract data are dramatically extended. That is, data can be collected from multiple sources or

multiple facets. In such setting, each datum is associated with much richer information, which

results in the requirement that to mine the intrinsic and valuable patterns hidden in the data, it

is a necessity to take full advantage of the information contained in multiple sources. This issue

is formally referred to as multi-view learning. To be more specific, each view corresponds to one

source of information. For example, web pages can be described by both the page-contents

(one view) and the hyperlink information (another view). Besides, different facets of a datum

can also be treated as different views. For instance, an image can be characterized by its shape,

color, and location.

Obviously, integrating the information contained in multiple views can bring great benefits for

data clustering. The most straightforward way to utilize the information of all views is to

concatenate the data features of each view together and then perform the traditional clustering

methods such as k-means. However, such a method lacks the ability to distinguish the different

significance of different views. That is, the important views and less important views are

treated equally, which may degrade the ultimate performance severely. To take better advan-

tage of the multi-view information, the ideal approach is to simultaneously perform the

clustering using each view of data features and integrate their results based on their impor-

tance to the clustering task. Formally, this approach is known as multi-view clustering.

As an emerging and effective paradigm in data mining and machine learning, multi-view

clustering refers to the clustering of the same class of data samples with multi-view represen-

tations, either from various information sources or from different feature generators. It is clear

that if the clustering method cannot cope appropriately with multi-views, these views may

even degrade the performance of multi-view clustering. To make use of multi-view informa-

tion to improve clustering results, there are two main challenges to overcome. The first one is

how to naturally ensemble the multiple clustering results of all the views. The second one is

how to learn the importance of different views to the clustering task. In addition, these two

issues should be figured out simultaneously. Thus, to achieve these goals, new clustering

objective function should be designed, followed by the new solving method.

Multi-view clustering was first studied by Bickel and Scheffer [1] in 2004. They extended the

classic k-means and expectation maximization (EM) clustering methods to the multi-view

environment to deal with text data with two conditionally independent views. Based on this

seminal work, a variety of multi-view clustering methods have been proposed over the past

two decades [2–4]. Since covering all the proposed methods in one chapter is hard, to provide a

comprehensive review of the typical multi-view clustering methods and their corresponding

recent developments, we summarize five kinds of popular clustering methods and their multi-

view learning versions, which include k-means, spectral clustering, matrix factorization, tensor

decomposition, and deep learning. This is based on the consideration that these clustering

methods are the most widely employed algorithms for single-view data, and lots of efforts

have been devoted to extending them for multi-view clustering. Besides, many other multi-
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view clustering methods can be unified into the frameworks of these five methods. Therefore,

when readers become familiar with these five multi-view clustering methods, they can capture

the core ideas of other multi-view clustering methods easily. This chapter is self-contained,

which follows a line of introduction from the preliminaries of these clustering methods for

single-view data to their variant forms for multi-view clustering.

The remainder of this chapter is organized as follows. Section 2 describes the benefits of multi-

view clustering. Section 3 details the aforementioned five multi-view clustering methods.

Section 4 summarizes two kinds of popular open datasets. Several open issues are illustrated

in Section 5. Section 6 concludes this chapter.

2. Benefits of multi-view clustering

Compared with the clustering methods that are implemented on single-view data, multi-view

clustering is expected to obtain more robust and novel partitioning results by exploiting the

redundant and complementary information in different views [5], as stated in the following

sections.

2.1. Benefit one: accurate description of data

It is obvious that single-view data may contain incomplete knowledge, while multi-view data

usually contains complementary and redundant information, which results in a more accurate

description of the data. For example, it may fail to identify the intrinsic community structures

of a social network via just leveraging the friendships. However, if more information such as

users’ demographics can be obtained, it is more inclined to find out the implicit relationships

between users.

2.2. Benefit two: reducing noises of data

Even when the information contained in single-view data is complete, there may exist some

unavoidable noises. It is apparent that data cleaning is one critical issue in data analysis, which

can tremendously affect the performance of clustering algorithms. It is quite hard and costly to

remove all the noises of data, and thus single-view noisy data usually leads to unsatisfactory

clustering results. On the other hand, multi-view clustering is able to circumvent the side effect

of noises or corrupted data in each view and emphasize the common patterns shared by multi-

view data.

2.3. Benefit three: wider range of applications

There is no doubt that all the multi-view clustering methods can be applied to single-view

data. However, many clustering tasks are impossible to implement by single-view clustering

due to its limitations. For example, data with multiple modalities is becoming more and more

common and heterogeneous information networks are gaining increasing popularity as well.
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These types of data naturally fit into multi-view learning, while cannot be settled by single-

view learning methods appropriately. In all, the complementary property among multi-view

data can overcome the limitations of single-view data and expand their application areas.

3. Multi-view clustering methods

Due to the widespread use of multi-view datasets in practice, many realistic applications are

accomplished by multi-view learning methods, such as community detection in social networks,

image annotation in computer vision, and cross-domain user modeling in recommendation

systems [6]. Meanwhile, based on the seminal work of Bickel and Scheffer [1], plenty of multi-

view clustering methods have been proposed [2, 3, 5]. As explained in Section 1, this chapter

seeks to review five kinds of typical clustering methods and their multi-view versions, which

include k-means, spectral clustering, matrix factorization, tensor decomposition, and deep learn-

ing. All of these five methods are popular methods for single-view clustering. Although there are

some other multi-view clustering methods not contained in this chapter, such as the canonical

correlation analysis (CCA)-based multi-view clustering methods [7], the DBSCAN-based multi-

view clustering methods [8], and the lower dimensional subspace-based multi-view clustering

methods [9], most of them can be unified into the frameworks of these five involved methods.

For instance, a pair-wise sparse subspace representation model for multi-view clustering pro-

posed in [10] can be unified into the framework of matrix factorization.

3.1. Multi-view clustering via k-means

k-means is one of the most popular clustering algorithms with a history of more than 50 years

[11]. Except for its simplicity, k-means has a good potential to deal with large-scale datasets.

Owing to these properties, k-means has been successfully used in various topics, including

computer vision, social network analysis, and market segmentation, to name but a few.

Although it has been studied deeply over the past few decades, many variants of k-means are

put forward continuously [12–15].

3.1.1. Preliminaries of k-means

As a classic clustering algorithm, k-means employs K prototype vectors (i.e., centers or cen-

troids of the K clusters) to characterize each data sample and minimizes a sum of squared loss

function to find these prototypes. Consider a dataset denoted by X ¼ x1; x2;…; xN½ �∈ IRM�N,

where xi ∈ IRM represents the attribute (feature) vector of the i-th data sample xi. In order to

partition the dataset X into K disjoint clusters, denoted by C ¼ C1;C2;…;CKf g, k-means tries to

optimize the following objective function:

ε ¼
XN

i¼1

XK

k¼1

δik∥xi � vk∥
2
2, vk ¼

PN
i¼1 δikxiPN
i¼1 δik

¼
1

∣Ck∣

X

x∈Ck

x, (1)

where δik is an indicator variable with δik ¼ 1 if xi ∈Ck and 0 otherwise and vk is the k-th

prototype vector, i.e., the k-th cluster center.
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As can be seen, Eq. (1) adopts the Euclidean distance to measure the similarities between data

samples. However, there are many data structures or data distributions in real world. Thus, it

is not always suitable to apply this basic form of k-means to accurately identify the hidden

patterns of datasets. What is more, some datasets may be not separable in the low-dimensional

space. Recently, kernel method has been of wide concern in the field of machine learning. By

introducing a kernel function, the original nonlinear datasets are mapped to a higher dimen-

sional reproducing kernel Hilbert space. In the new space, the datasets become linearly sepa-

rable. For this reason, the kernel k-means algorithm [16, 17] has been proposed. It is just a

generalization of the standard k-means algorithm and has the following objective function:

ε ¼
X

N

i¼1

X

K

k¼1

δik∥ϕ xið Þ � v
0
k∥

2
2, v

0
k ¼

PN
i¼1 δikϕ xið Þ
PN

i¼1 δik
, (2)

where ϕ : X ! H is a nonlinear transformation function. Define a kernel function

K : X� X ! IR with K xi; xj

� �

¼ ϕ xið ÞTϕ xj

� �

. Then, Eq. (2) can be rewritten into the kernel form

as below:

ε ¼
X

N

i¼1

X

K

k¼1

δik K xi; xið Þ � 2

PN
j¼1 δjkK xi; xj

� �

PN
j¼1 δjk

þ

PN
j¼1

PN
l¼1 δjkδlkK xj; xl

� �

PN
j¼1

PN
l¼1 δjkδlk

 !

: (3)

With the aid of the kernel function, there is no need to explicitly provide the transformation

function ϕ. This is because, for certain kernel function, the corresponding transformation

function is intractable. However, the inner products in the kernel space can be easily obtained

according to the kernel function.

3.1.2. Basic form of multi-view k-means

Both the k-means and the kernel k-means described above are designed for single-view data. To

solve the multi-view clustering problem, some new objective functions should be developed.

Assume that there are V views in total. Let X ¼ X
1ð Þ
;X

2ð Þ
;…;X

Vð Þ
n o

denote the data of all the

views. It is obvious that different views should have different contributions according to their

conveyed information. To achieve this goal, it is straightforward to modify the standard k-means

to make it applicable in the multi-view environment with a new objective function as follows:

ε ¼
X

V

v¼1

μγ
vεv, s:t:μv ≥ 0,

X

V

v¼1

μv ¼ 1,γ > 1, (4)

where μv is the weight factor for the v-th view, γ is a parameter used to control the weight

distribution, and εv corresponds to the objective function (i.e., loss function) of the v-th view:

εv ¼
X

N

i¼1

X

K

k¼1

δik∥x
vð Þ
i � v

vð Þ
k ∥22, v

vð Þ
k ¼

PN
i¼1 δikx

vð Þ
i

PN
i¼1 δik

: (5)

Similarly, the objective function of the multi-view kernel k-means can be obtained, which is

omitted here. Note that finding the optimal solution of Eq. (4) is an NP-hard problem; thus,
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some iterative algorithms are developed according to the greedy strategy. One basic iterative

algorithm works in a two-stage manner: (1) updating the clustering for given weights and (2)

updating the weights for given clusters; see [18] for details.

Denote ∥X∥F as the Frobenius norm of a given matrix X, i.e., ∥X∥F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i, j¼1 x

2
ij

q

. Then, Eq. (4)

can be easily transformed into a matrix form as shown in the following:

min
V

vð Þ,U,μv

X

V

v¼1

μγ
v∥X

vð Þ �V
vð Þ
U

T∥2F, s:t:uik ∈ 0; 1f g,
X

K

k¼1

uik ¼ 1,μv ≥ 0,
X

V

v¼1

μv ¼ 1,γ > 1, (6)

where V
vð Þ ∈ IRMv�K denotes the centroid matrix for the v-th view and U∈ IRN�K denotes the

clustering indicator matrix with the i; kð Þ element being δik. Note that all the views share a

common clustering indicator matrix U.

3.1.3. Variants of multi-view k-means

The basic formulations of multi-view k-means shown in Eqs. (4) and (6) do have some draw-

backs. For example, it assumes that all the views are sharing a common clustering indicator

matrix U. However, the structure information contained may be very limited or even lost in

some views. In such case, the performance will be severely affected if all the views share a

common clustering indicator matrix. To tackle the issues, many variants of multi-view k-means

clustering algorithms have been proposed in recent years. Instead of the ℓ2-norm, the struc-

tured sparsity-inducing norm, i.e., the ℓ2,1-norm, is adopted to strengthen the basic multi-view

k-means, in the hope that the effect of outlier data samples will be reduced [19]. In [20], a

k-means-based dual-regularized multi-view outlier detection method (DMOD) is proposed to

identify the cluster outliers and the attribute outliers simultaneously, which is based on a novel

cross-view outlier measurement criterion. Moreover, in the DMOD model, each view is asso-

ciated with a particular clustering indicator matrix, and another alignment matrix is intro-

duced to enforce the consistency between different views. An automated two-level variable

weighting clustering algorithm, called TW-k-means, is developed in [21]. TW-k-means is able to

compute weights for each view and each individual attribute simultaneously. More specifi-

cally, in this algorithm, to identify the compactness of the view, a view weight is assigned to

each view, and an attribute weight is assigned to each attribute in the view to identify the

importance of the attribute. Both view weights and attribute weights are employed in the

distance function to determine the cluster structures of data samples. Similar strategies have

also been taken in [22, 23] to learn more robust multi-view k-means models.

As aforementioned, it is NP-hard to find the optimal solution of the multi-view k-means

clustering problem. The greedy iterative algorithm has a high risk of getting stuck in local

optima during the optimization. Recently, the self-paced learning has been used to alleviate

this problem. The general self-paced learning model consists of a weighted loss function on all

data samples and a regularizer term imposed on the weights of data samples. By gradually

increasing the penalty on the regularizer, more data samples are automatically added into

consideration from “easy” to “complex” via a pure self-paced approach. In this, Xu et al. [24]

Recent Applications in Data Clustering200



present a new multi-view self-paced learning (MSPL) algorithm for clustering based on multi-

view k-means. MSPL learns the multi-view model by not only progressing from “easy” to

“complex” data samples but also from “easy” to “complex” views. The objective function of

MSPL is quite succinct, which is shown in Eq. (7).

min
V vð Þ,U,U

X

V

v¼1

∥ X vð Þ �V vð ÞUT
� �

diag
ffiffiffiffiffiffiffiffi

μ vð Þ

q

� �

∥2F þ f Uð Þ, s:t:uik ∈ 0; 1f g,
X

K

k¼1

uik ¼ 1, (7)

where μ vð Þ ¼ μ
vð Þ
1 ;μ

vð Þ
2 ;…;μ

vð Þ
N

h i

∈ 0; 1½ �N denotes the weights of data samples in the v-th view,

U ¼ μ 1ð Þ
;μ 2ð Þ

;…;μ Vð Þ
	 


, and f Uð Þ denotes the regularization term on demand.

3.2. Multi-view clustering via spectral clustering

Spectral clustering is built upon the spectral graph theory. In recent years, spectral clustering

has become one of the most popular clustering algorithms and shown its effectiveness in

various real-world applications ranging from statistics, computer sciences to bioinformatics.

Due to its adaptation in data distribution, spectral clustering often outperforms traditional

clustering algorithms such as k-means. In addition, spectral clustering is simple to implement

and can be solved efficiently by standard linear algebra.

3.2.1. Preliminaries of spectral clustering

Spectral clustering is closely related to the minimum cut problem of graphs. It first performs

dimensionality reduction on the original data space by leveraging the spectrum of the similar-

ity matrix of data samples and then performs k-means on the low-dimensional space to

partition data into different clusters. Therefore, for a set of data samples, a similarity matrix

should be constructed at first. Typically, each data sample is treated as a node of a graph and

each relationship between data samples is regarded as an edge in the graph. Besides, each edge

is associated with a weight. It is obvious that the value of the edge weight between two far-

away data samples should be low and the value between two close data samples should be

high. For a given dataset X ¼ x1; x2;…; xN½ �∈ IRM�N, let G ¼ V;ℰ;Sð Þ be the generated undi-

rected weighted graph, where V denotes the set of nodes representing the data samples and ℰ

denotes the set of edges representing the relationships between data samples. The similarity

matrix S is a symmetric matrix with each element sij representing the similarity between xi and

xj. There are three popular approaches to construct graph G, that is, the ε-neighborhood graph,

the k-nearest neighbor graph, and the fully connected graph (see details in [25]). To partition G

into disjoint subgraphs (clusters), the minimum cut problem requires that the edge weights

across different clusters are as small as possible, while the total edge weights within each

cluster are as high as possible.

According to the above graph cut theory, two popular versions of spectral clustering are

developed, i.e., the ratio cut (RatioCut) and the normalized cut (Ncut). The classical relaxed

form of the RatioCut [26] is shown as below:
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min tr U
T
LU

� �

, s:t:UT
U ¼ I, (8)

where tr computes the trace of a matrix, U∈ IRN�K is the clustering indicator matrix, I is an

identity matrix, and L is the graph Laplacian matrix defined as L ¼ D� S. Here, D is a

diagonal matrix with dii ¼
PN

j¼1 sij. The objective function of Ncut [27] is similar to Eq. (8) by

replacing L by the normalized Laplacian matrix ~L ¼ I�D
�1=2

SD
�1=2. Both RatioCut and

NCut can be solved efficiently by the eigenvalue decomposition (EVD) of L or ~L.

3.2.2. Basic form of multi-view spectral clustering

Multi-view spectral clustering is able to learn the latent cluster structures by fusing the infor-

mation contained in multiple graphs. Similar to multi-view k-means, it is not hard to extend

the basic spectral clustering to the multi-view environment. Given a dataset X ¼

X
1ð Þ;X 2ð Þ;…;X Vð Þ

n o

with V views, V graphs G 1ð Þ;G 2ð Þ;…;G Vð Þ
n o

and the corresponding

Laplacian matrices L
1ð Þ;L 2ð Þ;…;L Vð Þ

n o

can be constructed.

Kumar et al. [28] firstly present a multi-view spectral clustering approach, which has a flavor

of co-training idea widely used in semi-supervised learning. It follows the consistency of

multi-view learning that each view gives the same labels for all data samples. So it can use

the eigenvector of one view to “label” another view and vice versa. For example, via comput-

ing two views’ eigenvectors, say U
1ð Þ and U

2ð Þ, the clustering result of U 1ð Þ can be used to

modify the graph similarity matrix S
2ð Þ, and then the clustering result of U 2ð Þ can be used to

modify the graph similarity matrix S
1ð Þ. For more than two views, the same strategy can be

applied. Kumar et al. [29] further propose a multi-view spectral clustering approach using co-

regularization idea that makes the clustering results of different views agree with each other.

The co-regularization form is stated as the disagreement between clustering results of two

views: Φ U
pð Þ;U qð Þ

� �

¼ �tr U
pð Þ
U

pð ÞT
U

qð Þ
U

qð ÞT
� �

. Then the goal is to minimize the disagreement

to achieve the consistency between views with the following objective function:

min
X

V

v¼1

tr U
vð ÞT

L
vð Þ
U

vð Þ
� �

�
X

V

p, q¼1

λpqtr U
pð Þ
U

pð ÞT
U

qð Þ
U

qð ÞT
� �

, s:t:U vð ÞT
U

vð Þ ¼ I, (9)

where λpq represents the degree of disagreement between the p-th view and the q-th view.

From another perspective, all the views sharing a common indicator matrix U
∗ is also rational

according to the consistency requirement. So the model in Eq. (9) can be rewritten as

min
X

V

v¼1

tr U
vð ÞT

L
vð Þ
U

vð Þ
� �

�
X

V

v¼1

λvtr U
vð Þ
U

vð ÞT
U

∗
U

∗T
� �

, s:t:U vð ÞT
U

vð Þ ¼ I, (10)

where λv controls the degree of disagreement between U
vð Þ and U

∗.
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3.2.3. Variants of multi-view spectral clustering

The basic form of multi-view spectral clustering achieves the basic goals of multi-view learn-

ing. However, some issues have not yet been considered. For instance, the weight parameter λ

in Eq. (9) needs to be set manually. To make up this issue, it is necessary to adaptively compute

the weight of each view. Xia et al. [30] assume that each view has a weight μv representing its

importance and the weight distribution should be sufficiently smooth. They further consider a

unified indicator matrix U across all views, which can be fulfilled via exploring the comple-

mentary property of different views. To this end, they develop a novel model as follows:

min
XV

v¼1

μγ
v tr U

T
L

vð Þ
U

� �
, s:t:

XV

v¼1

μv ¼ 1,μv > 0: (11)

The model above needs a manually specified parameter γ to adjust the weights of different

views, which is sometimes intractable. Thus, Nie et al. [31] propose a parameter-free auto-

weighted multiple graph learning method (AMGL), wherein the weight parameter μv is

replaced by αv ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr U

T
L

vð Þ
U

� �r
. Thus, AMGL does not require additional parameters, and

αv can be self-updated. To avoid the considerable noise in each view which often degrades the

performance severely, Xia et al. [32] propose a robust multi-view spectral clustering (RMSC)

method via low-rank and sparse decomposition. In RMSC, a novel Markov chain is designed

for dealing with the noise. First, the similarity matrix S
vð Þ and the corresponding transition

probability matrix P
vð Þ ¼ D

vð Þ
� ��1

S
vð Þ are computed. Then, the row-rank latent transition

probability matrix bP and the deviation error matrix E
vð Þ are constructed via low-rank and

sparse decomposition. Finally, based on the transition probability matrix bP, the standard

Markov chain method is applied for partitioning data into K clusters. Note that the methods

above have a high cost in optimization computation. There are numerous variables that need

to be updated and the derivation process is also extremely complex during the optimization.

To overcome this limitation, Chen et al. [33] present a novel variant of the Laplacian matrix

named block intra-normalized Laplacian defined as follows, without the linear combination of

multiple Laplacian matrices.

B ¼ Bw þ βBa ¼

L
1ð Þ 0 ⋯ 0

0 L
2ð Þ

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ L
Vð Þ

0

BBB@

1

CCCAþ β

V � 1ð ÞI �I ⋯ �I

�I V � 1ð ÞI ⋯ �I

⋮ ⋮ ⋱ ⋮

�I �I ⋯ V � 1ð ÞI

0

BBB@

1

CCCA, (12)

where Bw denotes the within Laplacian matrix of V views and Ba denotes the across Laplacian

matrix between different views. Based on B, the block intra-normalized Laplacian matrix is

then defined as bB ¼ D
�1=2

BwD
�1=2 þ βBa, where D is a block diagonal matrix with the v-th

block being D
vð Þ. By proving that the multiplicity of the zero eigenvalue of the constructed

block Laplacian matrix is equal to the number of clusters K, the eigenvectors of the block
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Laplacian matrix can be used for clustering via the classical form of spectral clustering. At the

end, the lower and upper bounds of the optimal solution are also established. See [33] for more

details.

3.3. Multi-view clustering via matrix factorization

In the fields of data mining and machine learning, matrix factorization (MF) is an effective

latent factor learning model. Given a data matrix X∈ IRM�N, MF tries to find two low-rank

factor matrices V∈ IRM�K and U∈ IRN�K whose multiplication can well approximate it, i.e.,

X ≈VUT . MF has shown many promising applications in real world, such as information

retrieval, recommendation system, signal processing, document analysis, and so on. Usually,

the nonnegativity constraints are enforced to the factor matrices to promote the interpretability

of the MF models. Therefore, in this part, we focus on the introduction of the nonnegative MF

(NMF)-related clustering models. For a comprehensive review of NMF-based models and

applications, please refer to [34].

3.3.1. Preliminaries of matrix factorization

As is well known, there are many matrix factorization models, including the singular value

decomposition, Cholesky decomposition, LU decomposition, QR decomposition, and Schur

decomposition. These factorization models either have too strict restrictions on the factor

matrices or lack the ability to be applied to data analysis. Due to the wide applications of

NMF in recommending systems, NMF has drawn much attention in both academia and

industry. In fact, NMF can be regarded as an extension of the standard k-means algorithm by

relaxing the constraints imposed on the clustering indicator matrix. For a given dataset

X ¼ x1; x2;…; xN½ �∈ IRM�N
þ , NMF seeks to learn a basis matrix V and a coefficient matrix U via

optimizing the following objective function:

min
V,U

∥X�VUT∥2F, s:t:V ≥ 0,U ≥ 0, (13)

where V∈ IRM�K
þ can be considered as the cluster centroid matrix and U∈ IRN�K

þ can be treated

as a “soft” clustering indicator matrix. The objective function above is not convex in U and V;

therefore, it is impractical to find the global optima. Typically, there are two methods to solve

Eq. (13). The first one is the gradient descent method [35]. The other one is the multiplicative

method [36] where the iterative updating rules are as follows:

V V⊙
XU

VUTU
, U U⊙

XTV

UVTV
, (14)

where ⊙ and �½ �
�½ � denote the element-wise multiplication and division, respectively. It is note-

worthy that there are many other criterions to measure the difference between X and VUT ,

such as the ℓ1-norm, the ℓ2,1-norm, and the Kullback-Leibler divergence (a.k.a. relative

entropy). For these criterions, the updating rules can be derived similarly.
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3.3.2. Basic form of multi-view matrix factorization

The hypothesis behind multi-view clustering is that different views should admit the same

underlying clustering structures of the datasets. That is, the coefficient matrices learned from

different views should be as consistent as possible. To this end, a soft regularization term is

introduced to enforce the coefficient matrices of different views toward a common consensus

[37]. For a given dataset X ¼ X
1ð Þ

;X
2ð Þ
;…;X

Vð Þ
n o

with V views, the following objective func-

tion can be derived to partition X into K clusters:

min
V

vð Þ,U vð Þ

X

V

v¼1

∥X vð Þ �V
vð Þ
U

vð ÞT∥2F þ
X

V

v¼1

λv∥U
vð Þ �U

∗∥2F, s:t:V
vð Þ
≥ 0,U vð Þ

≥ 0,U∗
≥ 0, (15)

where U∗ is a consensus matrix that characterizes the intrinsic clustering structures of datasets

among all views and λv is the parameter used to tune both the relative importance of different

views and the contribution between the first reconstruction error term and the second dis-

agreement term. Note that Eq. (15) does not require that all the views share a common U
∗;

thus, this model is more robust to low-quality views, i.e., the effect of low-quality views is

reduced by setting the corresponding λv to be small enough.

Instead of enforcing a rigid common consensus constraint on all the views as in Eq. (15),

another form of basic multi-view NMF for clustering is the pair-wise CoNMF model [38],

which imposes similarity constraints on each pair of views. Through the pair-wise co-

regularization, it is expected that the coefficient matrices learned from two views can comple-

ment with each other during the factorization process. And therefore, high-quality clustering

results can be yielded. The co-regularization objective function of the pair-wise CoNMF model

is defined intuitively as follows:

min
V

vð Þ,U vð Þ

X

V

v¼1

λv∥X
vð Þ �V

vð Þ
U

vð ÞT∥2F þ
X

V

p, q¼1

λpq∥U
pð Þ �U

qð Þ∥2F, s:t:V
vð Þ
≥ 0,U vð Þ

≥ 0, (16)

where λv is the parameter employed to combine the factorization of different views and λpq is

the parameter used to denote the weight of similarity constraint on U
pð Þ and U

qð Þ. As the

column vector of the coefficient matrix U represents a cluster, when adopting the vector-based

ℓ2-norm, each element of UT
U gives the cosine similarity between two clusters. Obviously, in

the multi-view environment, the cluster similarity between different views should also be

consistent, which results in the cluster-wise CoNMF model. Cluster-wise CoNMF replaces the

pair-wise regularization term in Eq. (16) by the following cluster-wise regularization term:

X

V

p, q¼1

λpq∥U
pð ÞT

U
pð Þ �U

qð ÞT
U

qð Þ
∥2F: (17)

Similar to the optimization of the standard single-view NMF model, all the three basic multi-

view NMF clustering models can be optimized via the multiplicative updating rules.
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3.3.3. Variants of multi-view matrix factorization

As the locality preserving learning and the manifold learning have been shown very important

to promote the performance of clustering algorithms, Cai et al. [39] propose a graph (or

manifold) regularized NMF model GNMF for single-view clustering with satisfying perfor-

mance. Note that the aforementioned multi-view NMF models cannot preserve the local

geometrical structures of the samples. To overcome this limitation, a multi-manifold regular-

ized NMF model (MMNMF) is proposed in [40]. MMNMF incorporates consensus manifold

and consensus coefficient matrix with multi-manifold regularization to preserve the local

geometrical structures of the multi-view data space. The multi-manifold regularization has

also been considered in [41]. Moreover, the correntropy-induced metric (CIM) is adapted to

measure the reconstruction error, since CIM has achieved excellent performance in many

applications. CIM is also insensitive to large errors that are mainly introduced from heavy

noises. A much simpler formulation of the manifold regularized multi-view NMF model is

developed in [42]. Without the explicit constraint that enforces a rigid common manifold

consensus, an auxiliary matrix is involved to add constraints on the column sums of the basis

matrix V
vð Þ such that the coefficient matrix U

vð Þ is comparable. A weighted extension of multi-

view NMF is presented in [43] to address the image annotation problem. In this model, two

weight matrices are introduced. One weight matrix is used to bias the factorization toward

improved reconstruction for rare tags. The other weight matrix gives more weight to images

containing rare tags and is applied to all views. A weighted extension of the pair-wise CoNMF

model has also been developed in [44] to handle those attributes that are unobserved in each

data sample so as to resolve the sparseness problem in all views’ matrices. For the realistic

cases that many views suffer from missing of some data samples resulting in many partial

examples, Li et al. [45] firstly devise a partial multi-view clustering method to handle this

problem. A multi-incomplete-view clustering method MIC [46] is also designed to deal with

the incompleteness of the views. MIC is built upon the weighted NMF model with a ℓ2,1-norm

regularization. Zhang et al. [47] further propose a constrained multi-view clustering algorithm

for unmapped data in the framework of NMF. The proposed algorithm uses inter-view con-

straints to establish the connections between different views.

Due to its great interpretability and high efficacy, NMF has been widely employed for graph

clustering [48]. In such setting, the data matrix X is replaced by the adjacency matrix A. In

many applications, graph data may be collected from heterogeneous domains or sources.

Integrating multiple graphs has been shown to be a promising approach to improve the graph

clustering accuracy. Clearly, multi-view NMF is suitable for multiple graph processing. In [49],

a flexible and robust NMF-based framework, named co-regularized graph clustering (CGC), is

developed to address the multi-domain graph clustering problem. CGC supports many-to-

many cross-domain node relationships, and it also incorporates weights on cross-domain

relationships. Besides, CGC allows partial cross-domain mapping so that graphs in different

domains may have different sizes. Considering the fact that in many real-world applications,

different graphs have different node distributions, the assumption that the multiple graphs

share a common clustering structure does not hold. Given this, Ni et al. [50] develop a novel

two-phase clustering method NoNClus, based on the NMF framework. At first, a main graph
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is constructed via modeling the similarity between different domains. Then, the main graph is

utilized to regularize the clustering structures in different domain-specific graphs. In the

NonClus model, multiple underlying clustering structures can co-exist among domain-specific

graphs, while for similar domains, the corresponding clustering structures should be as con-

sistent as possible.

3.4. Multi-view clustering via tensor decomposition

In this part, we analyze multi-view clustering from a multilinear algebra perspective and

present several novel multi-view clustering algorithms (note that the notations used in this

part are self-contained). Tensor is known as a multidimensional matrix or multiway array [51].

In multi-view research field, data can be naturally modeled as a third-order tensor with

objects, features, and view dimensions. An intuitive way is to compact different views along

the view dimension of the tensor (see Figure 1). Another widely adopted way is to transform

each feature matrix to a similarity matrix before compacting them.

3.4.1. Preliminaries of tensor decomposition

In the field of data mining and machine learning, tensor decomposition is an emerging and

effective tool for processing multi-view data. In this section, some basic knowledge on tensors

and tensor decomposition methods is provided. We refer the readers to [51, 52] for a compre-

hensive understanding of these topics.

3.4.1.1. Notations

Let X be an m-order tensor of size I1 � I2 �⋯� Im. The mode-p matricization of X is denoted

as an Ip � I1⋯Ip�1Ipþ1⋯Im
� �

matrix X pð Þ, which is obtained by arranging the mode-p fibers to

be the columns of the matrix X pð Þ. The p-mode multiplication Y ¼ X�pU can be manipulated as

matrix multiplication Y pð Þ ¼ UX pð Þ, where U∈ IRJp�Ip and Y∈ IRI1⋯Ip�1JpIpþ1⋯Im . The Frobenius

norm of a tensor X is the sum of the squares of all its elements xi1 i2…im . The tensor X is a rank-

one tensor if it can be written as the outer product of m vectors, i.e., X ¼ x 1ð Þ
∘x 2ð Þ

∘…∘x mð Þ,

where ∘ represents the vector outer product.

Figure 1. Visualization of the process of transforming the feature matrices to a third-order tensor.
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3.4.1.2. CP decomposition

The idea of expressing tensor as the sum of a number of rank-one tensors comes from the study

of Hitchcock [53]. Then, Cattell [54] proposed the idea of parallel proportional analysis. The

popular CP decomposition comes from the ideas of Carroll and Chang [55] (canonical decom-

position) and Harshman [56] (parallel factors). Taking a third-order tensor X∈ IRI�J�K as an

example, the CP decomposition tries to approximate tensor X with R components of rank-one

tensor, i.e.,

X ≈

X

R

r¼1

ur∘vr∘wr, (18)

where ur ∈ IRI , vr ∈ IRJ , and wr ∈ IRK. For simplicity, we denote U ¼ u1;u2;…;uR½ �,

V ¼ v1; v2;…; vR½ �, W ¼ w1;w2;…;wR½ �, and ½½U;V;W�� as the CP decomposition of X.

3.4.1.3. Tucker decomposition

The idea of Tucker decomposition is introduced by Tucker [57]. The Tucker decomposition is a

form of higher-order singular value decomposition (HOSVD) [58]. It decomposes a tensor

X∈ IRI�J�K into a core tensor G∈ IRP�Q�R multiplied by several orthogonal matrices along each

mode, i.e.,

X ≈G�1U�2V�3W ¼
X

P

p¼1

X

Q

q¼1

X

R

r¼1

gpqrup∘vq∘wr: (19)

The cutting-edge technique for calculating the factor matrices is proposed in [59].

3.4.2. Tensor decomposition-based multi-view clustering

In multi-view clustering, the goal is to find out some meaningful group of objects from the

data. The above CP decomposition naturally divides the multi-view data into several compo-

nents, which can be seen as the clusters. Thus, it can be directly applied to solve multi-view

clustering problems. For a given dataset X ¼ X
1ð Þ

;X
2ð Þ
;…;X

Vð Þ
n o

with V views, where X
vð Þ of

each view takes value from IRN�M,X can be formulated as a third-order tensorX∈ IRN�M�V. In

this part, a variant of CP decomposition is introduced first, which is quite straightforward.

Then we shed light on the relations between several classic multi-view spectral clustering

methods and the Tucker decomposition.

3.4.2.1. Total variation based CP (TVCP)

In some clustering problems, a consecutive range of time points is non-negligible. For example,

in the dataset with authors, publications, and a sequence of time points, we are interested in

figuring out which group of authors work in the same topics during a period of time. Chen

et al. [60] propose a total variation based tensor decomposition method (TVCP) for the
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constraint on a period of consecutive time points. The total variation regularizes the time factor

to obtain a piece-wise constant function w.r.t. time points. Owing to the piece-wise constant

function, the decomposition can be relatively consistent in a cluster and separated between

clusters. The TVCP model is formulated as follows:

min
½½U;V;W��

1

2
∥X�

X

R

r¼1

ur∘vr∘wr∥
2
F þ τ

X

R

r¼1

∥Fwr∥1, (20)

where F is the first-order difference V � 1ð Þ � V matrix such that f ii ¼ 1 and f i iþ1ð Þ ¼ �1 for

i ¼ 1, 2,⋯, V � 1, and the other elements are zeros, τ is a positive regularization parameter,

and ∥ � ∥1 denotes the ℓ1-norm. The first term corresponds to the CP decomposition of X, and

the second term constrains the time mode (w) to be a piece-wise constant function.

3.4.2.2. Relations between Tucker decomposition and spectral clustering

Liu et al. [61] propose a framework of multi-view clustering via tensor decomposition, mainly

the Tucker decomposition. According to the framework, the common type of multi-view

spectral clustering is equivalent to a Tucker decomposition problem as follows:

min
U

X

V

v¼1

tr UTL vð ÞU
� �

, s:t:UTU ¼ I, ⇔ max
U

∥X�1U
T�2U

T�3I
T∥2F: (21)

Another form of multi-view spectral clustering can also be written as a Tucker problem:

min
U,μ

tr UT
X

V

v¼1

μvL
vð Þ

 !

U

 !

,

s:t:UTU ¼ I,μv ≥ 0,
X

V

v¼1

μv ¼ 1,

⇔

max
U,μ

∥X�1U
T�2U

T�3μ
T∥2F,

s:t:UTU ¼ I,μv ≥ 0,
X

V

v¼1

μv ¼ 1:

(22)

With this framework, variety of spectral clustering problems can be solved by a tensor decom-

position algorithm. We can see the strong connection between them as well as the strong

capability of tensor methodology.

Canonical correlation analysis is designed to inspect the linear relationship between two sets of

variables [62]. In multi-view learning, a typical approach is to maximize the sum of pair-wise

correlations between different views [63]. Without loss of high-order correlations, Luo et al.

[64] propose a tensor canonical correlation analysis (TCCA), which is equivalent to CP decom-

position of the correlation tensor. Khan et al. [65] propose a Bayesian extension of CP decom-

position for multiple coupled tensors sharing common latent factors.

3.5. Multi-view clustering via deep learning

With the third wave of artificial intelligence, deep learning is gaining increasing popularity in

recent years. Deep learning has demonstrated excellent performance in many real-world
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applications, such as face recognition, image annotation, natural language processing, object

detection, customer relationship management, and mobile advertising. Typically, deep learn-

ing models are composed of multiple nonlinear transformations and thus can learn a better

feature representation than traditional shallow models [66]. However, deep learning requires

labeled training data to learn the models, which limits its application in data clustering for the

reason that training data with cluster labels are not available in many cases. Despite the

hardness, there are some works devoted to adjusting shallow clustering models for deep

learning. Here, we introduce two popular deep clustering models and their extensions to the

multi-view environment.

3.5.1. Deep auto-encoder

An auto-encoder [67] is an artificial neural network adopted for unsupervised learning, the

goal of which is to learn a representation for each data sample. An auto-encoder always

consists of two parts: the encoder and the decoder. The encoder plays the role of a nonlinear

mapping function that can map each data sample to a representation space. The decoder

demands accurate data reconstruction from the representation generated by the encoder.

Auto-encoder has been shown to be similar to spectral clustering in theory; however, it is more

efficient and flexible in practice. The auto-encoder can be easily deepened via adding more

encoder layers and corresponding decoder layers. Figure 2 (a) gives an example of the frame-

work of the deep auto-encoder.

Although auto-encoder can learn a compact representation for each data sample, it contributes

little to clustering since it does not require that the representation vectors of similar data

samples should also be similar. To make the learned feature representation better capture the

cluster structures, many variants of deep auto-encoder models have been proposed. In [68], a

novel regularization term that is similar to the objective function of k-means is introduced to

guide the learning of the mapping function. In this way, the learned feature representation is

more stable and suitable for clustering. In [69], a deep embedded clustering method is pro-

posed to simultaneously learn feature representations and cluster assignments using deep

auto-encoders. These deep clustering models are designed for single-view data. For deep

multi-view clustering, the learned feature representations should not only capture the cluster

structure of each single view but also implement a consensus between different views. To this

end, a common encoder is utilized to extract the shared feature representation for all views,

Figure 2. Frameworks of deep auto-encoder and deep matrix factorization (depth is 2).
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and different decoders are used to reconstruct view-specific input data samples [70]. In [71], an

extension of CCA based on deep neural networks is proposed to learn a shared representation

of two views. In fact, the feature representations of the two views are not exactly the same,

but their correlations are maximized. Following this line, the deep canonically correlated

auto-encoder (DCCAE) is developed in [72]. DCCAE simultaneously optimizes the canonical

correlation between the learned feature representations and the reconstruction errors of the

auto-encoders. Benton et al. [73] further extend the deep CCA model for multiple views.

3.5.2. Deep matrix factorization

Another line of developing deep clustering models is deepening the MF models. As shown

earlier, MF, especially NMF, has demonstrated outstanding performance in many applications.

Thus, it is worth building a deep structure for MF in the hope that better feature representa-

tions can be obtained to facilitate clustering. Figure 2(b) illustrates an example of the frame-

work of the deep MF models. Compared to the deep auto-encoders, both deep MF and deep

auto-encoders are trying to minimize the reconstruction errors. However, unlike deep auto-

encoders, the mapping function of deep MF is linear.

The first nonnegative deep network based on NMF is proposed in [74] for speech separation.

This architecture can be discriminatively trained for optimal separation performance. Then Li

et al. [75] propose a novel weakly supervised deep MF model to uncover the latent image

representations and tag representations embedded in the latent subspace by collaboratively

exploring the weakly supervised tagging information, the visual structure, and the semantic

structure. In [76], a deep semi-NMF model is further developed for learning latent attribute

representations. Semi-NMF is a popular variant of NMF by relaxing the factorized basis matrix

to be real-valued. This practice makes semi-NMF have much wider applications than NMF

since the datasets in real world may contain complex information, for instance, the attributes

may be mix-signed. Considering the fact that these deep MF models are trying to factorize the

basis matrix hierarchically alone, Qiu et al. [77] further propose a deep orthogonal NMF model

which can decompose the coefficient matrix hierarchically. This model is able to learn higher-

level representations for clusters. These deep MF models have achieved great success in data

clustering for single-view data. However, they are seldom utilized for multi-view clustering. A

recent work [78] attempts to extend the deep semi-NMF model for multi-view clustering,

which can dissemble unimportant factors layer by layer and generate an effective consensus

representation in the last layer. Another work [79] proposes to address the incomplete multi-

view clustering problem via deep semantic mapping. The proposed model first projects all

incomplete multi-view data to a unified representation in a common subspace, which is

further executed by standard shallow NMF for clustering.

4. Open datasets

No one can make bricks without straw. In this section we will first list two kinds of open

datasets that can be used in multi-view clustering, i.e., feature-based and graph-based

datasets. Then we will discuss the performance of multi-view clustering on them briefly.
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4.1. Feature-based datasets

Audio genre [80] consists of 1886 audio tracks classified into 9 music genres, which are Blues,

Electronic, Jazz, Pop, Rap/HipHop, Rock, Folk/Country, Alternative, and Funk/Soul. Forty-

nine low-level audio features have been extracted and they are grouped into 15 vector spaces.

NUS-WIDE [81] is a web image dataset composed of 269,648 images, 5018 related tags, and 81

ground-truth concepts. Six types of low-level features have been extracted: 64-D color histo-

gram, 144-D color correlogram, 73-D edge direction histogram, 128-D wavelet texture, 225-D

block-wise color moments extracted over 5�5 fixed grid partitions, and 500-D bag of words

based on SIFT descriptions.

UCF101 [82] consists of 101 human action classes. These actions can be divided into five types:

human-object interaction, body-motion only, human-human interaction, playing musical

instruments, and sports. There are over 13,000 clips and 27 hours of video data in it.

Handwritten numerals [83] is composed of 2000 handwritten digits which are divided into 10

classes. Four types of feature sets have been extracted: Zernike moments, Karhunen-Loeve

features, Fourier descriptors, and image vectors. For Zernike set, it has 47 rotation invariant

Zernike moments and 6 morphological features. For Fourier set, it has 76 two-dimensional

shape descriptors. Both Zernike and Fourier feature sets are rotation invariant. For Karhunen-

Loeve set, it has 64 Karhunen-Loeve transform which corresponds to the projection of images

onto the eigenvectors of a covariance matrix.

4.2. Graph-based datasets

DBLP coauthorship [84] is a coauthorship network composed of 10,305 authors. There are 617

layers in it, each layer representing different publication categories.

Facebook [85] is a three-layer social network composed of 1640 users with multiple types of

ties. The first layer shows whether two users are friends. The second layer shows whether

users are in a same group. The third layer shows whether users are in the same photos

uploaded by users.

CiteSeer [86] consists of 3312 scientific publications classified into 6 classes, which are Agents, AI,

DB, IR, ML, and HCI. It can be represented as an annotated network, where nodes represent

scientific publications and links represent the citation relationships. For each node, there is a

3703-dimensional one-hot encoding vector representing the absence/presence of key words.

Enron e-mail [87] consists of 184 users and 44 layers. Although it is a temporal network, it can

be considered as a multi-layer network. Each layer represents communication in different

months.

4.3. Performance on different datasets

For feature-based datasets, when confronted with the situation where we need to reconstruct

the views, the performance of classical methods, like deep learning, is not promising. But
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multi-view clustering can give satisfactory results under this condition. In some cases, classical

methods can also give good performance for feature-based datasets where all features are

descriptions of the same object from different perspectives. For graph-based datasets, multi-

view clustering naturally fits into them since different graphs can be processed by different

views.

For both feature-based and graph-based datasets, when the scale of datasets becomes signifi-

cantly large, most multi-view clustering methods have the potential to outperform other

clustering methods on speed. For example, multi-view matrix factorization is quite suitable to

parallel process.

5. Open issues

Although multi-view clustering has demonstrated its superiority over single-view clustering

in many applications, there are still many open issues deserving much more attention from

both academia and industry. Several vital open issues are summarized in this part.

5.1. View construction

Although there are many typical methods to construct views, they all have their own draw-

backs. It is well known that if we cannot extract valuable information from the original data

and put it into different views appropriately, the performance will be highly limited no matter

how delicate the algorithm is. So it is important to find efficient ways of constructing and

evaluating multiple views.

5.2. Incomplete view

When constructing different views, we may find that for some views, the information is not

complete. In other words, even though we know how to construct views appropriately, we do

not have enough information to do it, which is very common in practical problems. In real

world, it is very difficult to ensure the completeness of data. This unbalanced relationship

between complete views and incomplete views could cause huge problems. Moreover, these

incomplete views may influence views with complete information. To solve it, one possible

way is to construct these lost information from other views.

5.3. Single-view to multi-view

In multi-view learning, sometimes researchers will convert single-view data into multiple

views and apply relevant algorithms on them. In practice, it may give good performance, but

there are few theoretical researches on the proof of its reliability. Since the original data is

single view, it is important to make it clear: is it necessary to complicate a simple task? We

should not only focus on the final performance, the trade-off between cost and benefit is also

important.
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5.4. Deep leaning in multi-view

Deep learning has shown remarkable performance in many fields. One common way to deal

with data composed of different types of sources is to combine them together and then feed them

into a deep learning model. It often works well. Although multi-view learning seems to be a

more reasonable way to deal with data composed of different types of sources, there is no

evidence showing that multi-view learning has an obvious advantage over deep learning.

Another issue is that when using deep learning in multi-view learning, we need to train different

neural networks for different views separately. This method has two drawbacks. One is that the

number of neural networks depends on the number of views. When there are many views, the

calculation is huge. The other is that it fails to unify different views during training.

6. Conclusion

Multi-view clustering has demonstrated variety of real-world applications, such as community

detection in social networks, image annotation in computer vision, cross-domain user model-

ing in recommendation systems, and protein interaction analysis in bioinformatics. This chap-

ter provides a comprehensive review of the typical multi-view clustering methods and their

corresponding recent developments by focusing on five most typical and popular clustering

methods, which include k-means, spectral clustering, matrix factorization, tensor decomposi-

tion, and deep learning. The basic forms of these five clustering methods are introduced in

detail, followed by a substantial overview of their recent developments. Several open datasets

and open issues are discussed in the end, which deserves more attention to facilitate the future

research of multi-view clustering.

In the field of multi-view clustering, there are many algorithms whose source codes are

exposed by their authors. For example, the co-training1 and co-regularization2 methods of

classical multi-view spectral clustering are open in GitHub with MATLAB. The variants MSE3

and AMGL4 are also implemented by MATLAB.
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