
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 7

Stochastic Quantum Potential Noise and Quantum

Measurement

Wei Wen

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74253

Abstract

Quantum measurement is the greatest problem in quantum theory. In fact, different views
for the quantum measurement cause different schools of thought in quantum theory. The
quandaries of quantum measurement are mainly concentrated in “stochastic measurement
space”, “instantaneous measurement process” and “basis-preferred measurement space.”
These quandaries are incompatible with classical physical laws and discussed many years
but still unsolved. In this chapter, we introduce a new theory that provided a new scope to
interpret the quantum measurement. This theory tells us the quandaries of quantum mea-
surement are due to the nonlocal correlation and stochastic quantum potential noise. The
quantum collapse had been completed by the noised world before we looked, and the moon
is here independent of our observations.

Keywords: quantum measurement, quantum collapse, quantum potential noise,
Feynman path integral

1. Introduction

Schrödinger cat was born from the thought experiment of Schrödinger in 1935. However,

after more than 80 years, we still do not know whether it is dead or alive in its sealed box.

According to the modern quantum mechanics, based on Copenhagen interpretation, the fate

of this cat is entangled with the Geiger counter monitor in its box, and the cat is in a “mixed

state”—both dead and alive—if we do not open the box to look at it. It is a miserable and

mystical cat, which seems its fate depends on our look. Yes, it just seems, because we deeply

doubt that the power of our glimpse can really make the cat alive or dead. This doubt is not
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the business about human self-confidence, but the fear of our fate determination. If the

glimpse of us can determine the cat’s fate, who determines our fate? Trouble never singly

comes; many researches find that “the moon is not there” in experiments [1] responding to

what Albert Einstein said, “I like to think that the moon is there even if I don’t look at it.”

According to the physicist’s research, Albert Einstein seems worried because the world is

quantum world and all things obey quantum mechanics. This means all the definite statuses

we have observed are due to “a glimpse” of us or the god. Really? Is really the moon not here

if we do not look at it, does really the cat not exist if we do not look at it, and do we not exist

if the god does not look at us?

It must be something to worry because the moon exists more than 4.5 billion years as the

astronomer finding, which is much more than human history. We are not going to discuss the

superpower of human and if the god exists or not in this book. We return to the fundamental of

quantum mechanics and find that the hidden actor, quantum measurement, is the crime

culprit that causes these puzzling questions.

There is a confliction in modern quantum physics after its birth. The confliction is

concerning the full description between the superposition state for the behavior of matter

on the microscopic level and the definite-status appearance as what we can observe on the

macroscopic level in the real world. Schrödinger proposed Schrödinger cat in his essay to

illustrate the “putative incompleteness” of quantum mechanics, but many researches show

that quantum mechanics is still the best one of these “not satisfied theories.” To alleviate

the theory-to-world confliction, a new conception, quantum measurement, is brought out.

It is the basic assumption in quantum mechanics, thought that the superposition state will

be collapsed into one of the eigenstates with the square of amplification probability if we

do a quantum measurement. Although the quantum measurement bridges the gap of the

different behaviors of subatomic level and the macro-world, some problems still remain.

For example, its physical mechanism is dim. We do not know what will lead to the

quantum measurement and how the process that the quantum measurement undergoes.

The words “stochastic”, “instantaneous” and “irreversible” torment us more than 70 years,

and we still have no way to integrate them into the “determinate”, “time-costed” and

“reversible” quantum evolution. In fact, the manual division for the world into two parts,

quantum world and quantum measurement apparatus, is not satisfied, and we are finding

a uniform description.

In this chapter, we will overview the mechanism of quantum measurement and the main

kinds of interpretation of quantum measurement. Among these interpretations, a prom-

ised theory which can well interpret the quantum measurement quandaries—why the

quantum state collapses into some eigenstates with “stochastic” and “instantaneity”, and

what causes the “basis-preferred”—is detailed. The advantage of this theory is it is just an

extension of Feynman path integral (FPI) and is obviously compatible with the classical

quantum theory. According the conclusions of this theory, we show that the “noise” world

(or apparatus here when we do an experiment) causes the “random” and “nonlocal”

mechanism of the quantum collapse. Actually, the world exists due to itself, and the god

can go to have a rest.
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2. What is the quantum measurement?

Quantum measurement is different from the classical measurement, in which the measure-

ment accuracy is dependent on the measurement instruments. It means, we could infinitely

approach the “absolute exact value” by upgrading instruments or improving methods in the

classical measurement realm. However, the things change when we access to the quantum

world. In quantum world, the “accuracy” does not exist. We cannot speak that the velocity of

an electron is 1376:5 m=s or the distance of two electrons is 20 nm, etc., because these physical

quantities exist in the form of quantum states in quantum world. Objects are always in the

superposition states of these kinds of the basis state, such as momentum, position, energy, spin

and so on. We can just get one of the basis states under every measurement, and the “absolute

exact value” is never revealed under one measurement unless the state of the object is in the

basis state.

In quantum mechanics, the projection operator is defined as bPφi
¼ jφi⟩⟨φij, where jφi⟩ is an

element of the basis-state set jφk

� �
g. Themeasurement output for amechanical quantity operator

bQ under one quantum measurement is Qi ¼ φi
bQ
���

���φi

D E
¼ Tr bPφi

bQ
� �

, and the initial state will

instantaneously collapse into the basis state jφi⟨ with the probability pi ¼ Tr bPφi
br I

� �
, where br I is

the initial density matrix of an object, after the quantummeasurement. For multi-measurements,

the output we get is the average value ~Q ¼
P

ipiQi ¼ Tr bQ br I

� �
, and the final state of the many

object systems becomes rO ¼
P

ipi
bPφi

, which is very different from the initial state rI .

This kind of measurement, to be exact, is the projective measurement. A more general formu-

lation of measurement is the positive-operator valued measure (POVM), which can be seemed

as the partial measurement in the subsystem of a projective measurement system. No matter

what kind of quantum measurements there is, it is the kind of destructive manipulations and

irreversible. It destroys the old state and rebuilds a new mixed state. The definition of the

quantummeasurement is simple and definite, but the problem is that we do not know why the

quantum measurement acts as these strange behaviors. The irreversibility and unpredictability

are incompatible with the smooth Schrodinger differential equation and are hated by physi-

cists. What kind of objects has priority to do the quantum measurement? Taking the experi-

ment of two-slit interference of electrons, for example, the detector behind the slits usually is

regarded as a measurement tool, but the detector itself, which may be a microcavity or atom

ensemble, is also a physical system and obeys the quantum mechanism. Therefore, it seems

that the process of a quantum measurement is the interaction between the detector and

electrons and should be a “quantum evolution process”. However, the quantum evolution

process is non-destructive and reversible. In fact, in the real world, it is hard for us to distin-

guish strictly which is the quantum evolution operation and which is the quantum measure-

ment.

The second problem is the space–time nonlocality in the quantum measurement process.

This nonlocality exists not only in the correlation between particles but also in the wave
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function of single particle. We still take the experiment of two-slit interference of electrons,

for example. If the detector behind the slits has detected the signal and we can distinguish

which slit the electrons pass, then the interference phenomenon will disappear. In language

of quantum mechanics, the diffused wave function ψ x; tð Þ of the electron will collapse into

δ x0; tð Þ immediately after this measurement. This process is very fast and does not seem to

need to cost time. How this process happens and whether this process violates the law of

causation of relativity theory are still unclear for us.

The third problem is the basis-preferred problem. The basis-preferred problem refers to a quan-

tum system that is measured which prefers to collapse to a set of eigenstates. For example, a spin

system with an initial state ψj i⟩ ¼ a ↑j i⟩þ b ↓j i⟩ can collapse into the state of the set ↑⟩j i; ↓⟩j if g,
and it can also collapse into the state of the set 1=

ffiffiffi

2
p

↑j i⟩þ ↓j i⟩ð Þ; 1=
ffiffiffi

2
p�

↑j i⟩� ↓j i⟩ð Þg, but under
a certain measurement, this state prefers one of these sets. Why the state prefers some basis set

under quantum measurement? Does it have awareness?

Without any exaggeration, quantum measurement is one the most interesting and fascinating

topics in quantum theory. There are too many unsolved mysteries in quantum measurement,

and these spur us to further understand the quantum measurement and find the answers.

3. The main kinds of interpretation for quantum measurement

There are more than 10 kinds of interpretations for quantum measurement in quantum

mechanics, such as Copenhagen interpretation, quantum logic, many worlds interpretation,

stochastic interpretation, many-minds interpretation, etc. In this chapter, we just choose four of

them to expound. According this section, we will know how difficult for physicists to solve

these problems in one theory.

3.1. The Copenhagen interpretation

The Copenhagen interpretation was formed in 1925 to 1927 by Niels Bohr and Werner Heisen-

berg. In fact, it is still the most commonly taught interpretations of quantum mechanics today.

According to the Copenhagen interpretation, the physical law that microscopic objects obey

are different from that the macroscopic objects obey. Microscopic objects can be in superposi-

tion states, but the macroscopic objects are forbidden. According to the Copenhagen interpre-

tation, the statuses of macroscopic objects are definite. We can say a macroscopic object is in

this status or not, but cannot say this macroscopic object is both in this status and not. Now that

the laws in microscopic world and macroscopic world are different, then the Copenhagen

interpretation assumes the existence of macroscopic measurement apparatuses that obey clas-

sical physics to make measurement for microscopic objects that obey quantum mechanics.

However, this assumption does not solve the problems of quantum measurement. It throws all

the problems to the macroscopic apparatuses, but it even cannot answer how to distinguish

the macroscopic object that obeys the classical laws and microscopic ensemble that obeys the

Advanced Technologies of Quantum Key Distribution138



quantum mechanics. Moreover it also cannot answer how the nonlocality produces in quan-

tum measurement process because, there is no seed for nonlocality growing no matter in

classical physics or quantum mechanics.

3.2. Many worlds interpretation

Many worlds interpretation was proposed by Hugh Everett in 1952. It supposes that there are

a large, perhaps infinite, number of universes and every alternate state is in one of these

universes [2, 3]. Many worlds interpretation denies the wave function collapse under quantum

measurement. It asserts that the object that will be measured and the observer that will do the

measurement are in a relative state. Each measurement will be a branch point and makes

observer enter a universe. According to the thought of many worlds interpretation, the

Schrödinger cat is alive in a universe and dead in the other universe. After the measurement,

the observer will enter one of these two universes.

The advantage of this interpretation is that the discussion of collapse mechanism is avoided.

However, the basis-preferred problem is still the big issue in many worlds interpretation

although the quantum decoherence had been introduced into in the period of “post-Everett”.

Some researchers still think the many worlds interpretation of quantum theory exists only to

the extent that the associated basis problem is solved [4–6]. Using the decoherence to define the

Everett branches will lead to an approximate specification of a preferred basis and contradicts

with the “exact” definition of the Everett branches.

3.3. Many-minds interpretation

Many-minds interpretation is the extension of many worlds interpretation. It was proposed

by Heinz-Dieter Zeh in 1970 to solve the “branch determining problem” and the puzzling

concept of observers being in a superposition with themselves in many worlds interpreta-

tion [7–9]. The thought of this interpretation is when an observer measures a quantum

system, then a state that is consistent with minds which produced by the observer brain,

called mental states, will entangle with this quantum system. The mental state of the brain

corresponding with this system is involving, and ultimately, only one mind is experienced,

leading the others to branch off and become inaccessible. In this way, every sentient being is

attributed with an infinity of minds, whose prevalence corresponds to the amplitude of the

wave function. As an observer checks a measurement, the probability of realizing a specific

measurement directly correlates to the number of minds they have where they see that

measurement.

However, like the many worlds interpretation, the many-minds interpretation is still a local

theory. Although the correlations of individual minds and objects could be the violation of

Bell’s inequality, the interactions between them that only take place are local, and only the

separated events that are space-like separated could influence the minds of observers. Addi-

tionally, it tosses the basis-preferred problem to the mentality of observer and makes this

physical problem fall into an endless discussion of mental state of human.
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3.4. Dynamical reduction models

The theory of dynamical reduction models is a nonlinear and stochastic modification of the

Schrödinger equation. It is proposed by Bassia and Ghirardia [10]. They integrated the

master equation and linear Schrödinger equation and proposed a new nonlinear differential

equation. This theory successfully solves the problems of “stochastic output” and “preferred

basis” in quantum measurement and deduced the Born probability rule basing on the

white noise model. However, it is still a nonrelativistic theory and remains the nonlocality

problem.

4. The extended Feynman path integral and quantum measurement

4.1. Why is it concerning with the Feynman path integral?

As we know, in the history of the quantum theory, there are three equivalent expressions,

namely, the differential equation of Schrödinger, the matrix algebra of Heisenberg and the

path integral formulation of Feynman. However, these three expressions have their own

focuses. The Schrodinger and Heisenberg expressions focus on the evolution of states and

operations, respectively, whereas the path integral formulation of Feynman on the “correla-

tion” of point to point as states is evolving [11]. On the other hand, in quantum mechanics,

when do a measurement on a wave function diffusing in all of space, such as the measurement

of the position of an electron in the experiment of double-slit interference, we will find that the

whole wave function will instantaneously collapse to this position measured with some prob-

abilities. Obviously there may be some inner “correlation” in wave function transferring the

action of the measurement from local part to whole. These two “correlations” have common

characters and may be unified to be one.

Moreover, we notice that the action integral in Feynman path integral formulation is the

classical form. The classical physics is born to be a local theory and of course cannot exhibit

the character of nonlocality. However, the relativity theory is different. In relativity theory, the

time and space are coupling. Beyond the light cones in Minkowski space, the space-time

causality is broken, and this may cause the nonlocality. The superluminal velocities are forbid-

den in real world, but for a connection description of virtual paths in the path integral theory, it

might be practicable. What will happen when we extend the classical action to relativistic

action? Could the superluminal trajectories included in possible paths to calculate quantum

amplitude in the Feynman theory cause the nonlocality? How is the relationship between

“unitary evolution operation” and “quantum measurement”? These questions will be revealed

when we extend the Feynman path integral.

4.2. How to extend the Feynman path integral?

The formulation for Feynman path integral can be written as
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K r; r0; t; t0ð Þ ¼ C
X

allpaths
exp iS=ℏð Þ (1)

where the coefficient C is a constant independent of paths and S is the action with classical

form

S t0; t1ð Þ ¼
ðt1

t0

L �r tð Þ; r tð ÞÞdtð (2)

K r; r0; t; t0ð Þ in Eq. (1) is the propagator and defined into

K r; r0; t; t0ð Þ ¼ ⟨ r bU t; t0ð Þ
���

���r0⟩
D E

(3)

Eq. (1) reveals an important assumption in Feynman path integral: the weights of different

paths for propagator are the same. This assumption makes Feynman path integral very suc-

cessful in nonrelativistic quantum theory, but it is also the top offender that impedes

the integration between Feynman path integral and relativity in non-field theory. Why should

this be?

For the extension, it is necessary to break up this assumption, and Eq. (1) should be written

into a more general formulation in the following:

F r; r0; t; t0ð Þ ¼ R
X

allpaths
W ℘ð Þexp iS=ℏð Þ (4)

where R is the parameter that is independent of paths and W ℘ð Þ is the weight function with

paths [13]. Additionally, some rules should be set to limit the range of choices for R andW ℘ð Þ:

a. The formulation should be simple and concise.

b. It should obey the combination rule because the propagator is linear.

c. It is consisted by the four-dimension scalars, vectors and tensors.

d. It should be transformed into Feynman path integral in low-energy and low-velocity

condition.

Under these four limitations, the forms of R and W pð Þ are very few. The final forms of R and

W pð Þ chosen in extended Feynman path integral are

R ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2iπℏc2

p H0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 þH0p ;W ℘ð Þ ¼ P ℘ð Þ

P ℘ð Þ Δτð Þ�1=2 (5)

The H0 in Eq. (5) is the main Hamiltonian:

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p� A0ð Þ2c2

q
(6)

and
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P ℘ð Þ ¼
ðt

t0

Pj jdτ;P ℘ð Þ ¼
ðt

t0

ffiffiffiffiffiffiffiffiffiffi

2mT
p�
�

�

�

�

�dτ (7)

P, T and Δτ are called the momentum, kinetic energy and proper time in terms of four-

dimensional space–time, respectively:

Pj j ¼ mv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p , T ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p �mc2,Δτ ¼

ðt

t0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p dτ (8)

The expressions of W ℘ð Þ and R are very interesting. As we can see, under the low-energy

and low-velocity condition, H0
≪mc2 and v≪ c, then R ¼ 1

ffiffiffiffiffiffiffiffiffiffi

2iπℏc2
p and W ℘ð Þ ¼ t� t0ð Þ1=2

because Pj j ¼
ffiffiffiffiffiffiffiffiffiffi

2mT
p

in classical physical theory. This means Eq. (4) can be transformed into

the Feynman path integral if we choose the formulations of W pð Þ and R as shown in Eq. (5).

What is concerning then for us is what we can get from Eq. (4) under very high energy and

velocity.

4.3. The new differential equation and Klein-Gordon equation

It is hard to directly calculate the value of Eq. (4) because the path integral is not normal

integral term and the normal integral method is invalid for Eq. (4). A way to get some results

from Eq. (4) is to follow the method that Feynman used [11, 12]. We consider a minimal

evolution time process, t ¼ t0 þ ε, where ε ! 0. In this process:

ψ r; t0 þ εð Þ ¼
ð

∞

�∞
ψ r0; t0ð ÞF r; r0; t0 þ ε; t0ð Þdr0 ¼ R

ð

∞

�∞
ψ r0; t0ð ÞW ℘ð Þdr0 (9)

When ε ! 0, the weight function W ℘ð Þ can be simply expressed the term of

W ℘ð Þ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

� �1=2

ε1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p (10)

where v ¼ r� r0ð Þ=ε. This value can be greater than the superluminal velocity, and

F r; r0; t0 þ ε; t0ð Þ therefore will become the complex function when v > c. The integral form

should be departed into two parts: the part that contains the low-velocity paths and the part

that contains superluminal-velocity paths:

I ¼
ð

∞

�∞
ψ r0; t0ð ÞF r; r0; t0 þ ε; t0ð Þdr0 ¼

ðct

�ct

⋯dr0 þ
ð

∞

ct

⋯dr0 þ
ð�ct

�∞
⋯dr0

� 	

¼ I0 þ I1 (11)

This can be exactly calculated. The amazing thing is the final result calculated for I that

contains the term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �iℏ∇þ A0ð Þ2c2
q

. In the following context, we will detail this
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calculation in 1D space for simplification. The methods of the calculation in 2D and 3D are the

same. Before this calculation, we define two parameters as τ0 ¼ ℏ= mc2

 �

and ε0 ¼ ε=τ0:

I0 ¼

ðct

�ct

⋯dr0 ¼ ε

ðc

�ct

⋯dv ¼ 2Rτ
1=2
0

ðct

�ct

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

� �1=2

ε
1=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

ε0exp �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

ε0

� �

ψ r0; t0ð Þdv

¼

ð

∞

�∞

φpdp 2Rτ
1=2
0

ðc

0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

q
� �1=2

ε
1=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
v2

c2

r ε0exp �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
v2

c2

s

ε0

0

@

1

Aexp �ipvε=ℏð Þdv

0

B

B

@

1

C

C

A

exp ipx=ℏð Þ

¼

ð

∞

�∞

φpdp 2Rτ
1=2
0

ð1

0

1� uð Þ�1=2
ε
1=2
0 exp �iuε0ð Þ

X

m
i
pε

ℏ

� �2m 1� u2

 �m

2m!
du

 !

exp ipxð Þ

¼
X

m
2R i

pc

ℏ

� �2m cε2mþ1=2

2m!

ð

∞

�∞

φpexp ipxð Þdp

ð1

0

u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu

� 	

(12)

Similarly, we can also get the expression of I0:

The contour integral is used in the last step as shown in Figure 1.

Figure 1. Contour integral. This figure shows the contour integral in a complex plane. The black line in figure denotes the

integral �
Ð 1þi∞
1 ⋯du�

Ð 1
0 ⋯du; the blue line denotes

Ð

∞

0 ⋯du. The integral on the red line is always zero when zj j ! ∞. For

this contour integral, there is no singular point, and of course the total integral value is zero. Therefore,
Ð 1þi∞
1 ⋯du ¼

Ð

∞

1 ⋯du:
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I0 ¼
Ð

∞

ct ⋯dr0 þ ε
Ð�ct

�∞ ⋯dr0 ¼ 2Rτ
1=2
0

Ð

∞

ct

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

� �1=2

ε
1=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

ε0exp �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

ε0

� �

� ψ r0; t0ð Þ þ ψ �r0; t0ð Þð Þdu ¼
P

m2R i
pc
ℏ


 �2m cε2mþ1=2

2m!

ð

∞

�∞

φpexp ipxð Þ

�dp
Ð 1þi∞

1 u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu
� �

¼
P

m2R i
pc
ℏ


 �2m cε2mþ1=2

2m!

ð

∞

�∞

φpexp ipxð Þdp

ð

∞

1

u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu

� 	

(13)

Integrating Eq. (12) and Eq. (13), we get the conclusion finally:

I ¼
P

m2R i
pc
ℏ


 �2m cε2mþ1=2

2m!

ð

∞

0

φpexp ipxð Þdp

ð

∞

0

u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu

� 	

¼
Ð

∞

0

P

m2R i
pc
ℏ


 �2m cε2mþ1
2

2m!
Γ 2mþ

1

2

� 	

M �m;
1

2
� 2m;�2iε0

� 	

φpexp ipxð Þdp

(14)

The function M a; b; zð Þ is the Kummer’s function (confluent hypergeometric function) and

equals

M �m;
1

2
� 2m;�2iε0

� 	

¼
X

n

m!

n!

4m� 1ð Þ!

n!
�iε0ð Þn (15)

Summation in Eq. (14) is then

X

m
2R i

pc

ℏ

� �2m cε2mþ1
2

2m!
Γ 2mþ

1

2

� 	

M �m;
1

2
� 2m;�2iε0

� 	

¼ exp
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ p2c2
p

ε

ℏ

 !

(16)

And Eq. (14) can be further simplified:

I ¼
Ð

∞

0 exp
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ p2c2
p

ε

ℏ

 !

φpexp ipxð Þdp

exp
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �icℏ∇xð Þ
p

ε

ℏ

 !

Ð

∞

0 φpexp ipxð Þdp ¼ exp
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �icℏ∂xð Þ
p

ε

ℏ

 !

ψ x; t0ð Þ

(17)

It is, namely:

ψ x; t0 þ εð Þ ¼ exp
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �icℏ∂xð Þ2
q

ε

ℏ

0

@

1

Aψ x; t0ð Þ (18)

Hence, the new differential equation we get in this extended Feynman path integral is
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iℏ
d

dt
ψ x; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �icℏ∂xð Þ2
q

ψ x; tð Þ (19)

The more general formulation in 3D is

iℏ
d

dt
ψ r; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �iℏ∇� A0ð Þ2c2
q

þ V rð Þ

� 	

ψ r; tð Þ (20)

It is more complicated to get Eq. (20), and we will not detail it in this chapter. The detailed

deduction can be seen in supplementary online material of the reference [13].

It should be mentioned that Eq. (20) is not a covariant equation under the Lorentz transforma-

tion. To construct a Lorentz covariant, the antiparticle wave function should be introduced.

The antiparticle wave function is denoted as ϕ� to be distinguished from the particle wave

function ϕþ. ϕþ satisfied the relation that Eq. (20) has shown and ϕ� is satisfied

iℏ
d

dt
� V rð Þ

� 	

ϕ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �iℏ∇� A0ð Þ2c2
q

ϕ� (21)

Combining Eqs. (20) and (21), we get these two equations:

iℏ
d

dt
� V rð Þ

� 	

ψþ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �iℏ∇� A0ð Þ2c2
q

ψþ (22)

iℏ
d

dt
� V rð Þ

� 	

ψ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �iℏ∇� A0ð Þ2c2
q

ψ� (23)

where and . Eqs. (22) and (23) are the Klein-Gordon

equation.

In 1926, Oskar Klein and Walter Gordon proposed this relativistic wave equation. However, it

was found later that this equation is not suitable for one particle because the probability

density is not a positive quantity, which means the particle can be created and annihilated

arbitrarily in Klein-Gordon equation [14]. The extended Feynman path integral shows the

explanation for this non-positive probability density here. The wave function that is deter-

mined by Klein-Gordon equation is the mixed state of the particle and its antiparticle. Because

particles and antiparticles can be annihilated each other to a vacuum state, and the vacuum

state can produce particles and antiparticles, so the mixed state with superposition state of a

particle and an antiparticle is a matter of course of a non-positive quantity. This is the physical

interpretation for Klein-Cordon equation by EFPI theory.

4.4. The extended Feynman path integral and density-flux equation

In quantum mechanics, the continuity equation describes the conservation of probability

density in the transport process. It is a local form of conservation laws. It says the probability

cannot be created or annihilated and, at the same time, also cannot be teleported from one

Stochastic Quantum Potential Noise and Quantum Measurement
http://dx.doi.org/10.5772/intechopen.74253

145



place to another. However, in the extended Feynman path integral, the density-flux equation

will be revised, and the local conservation is broken.

In extended Feynman path integral, the density-flux equation can be written as the following

formula:

∂r r; tð Þ

∂t
þ ∇ � jþ

X

∞

n¼2
Bn∇

n �Qn r; tð Þ ¼ 0 (24)

where Qn r; tð Þ ¼ ψ∗
∇

nψ� ψ∇nψ∗ and Bn ¼ � �iℏð Þ2n�1c2n= mc2

 �2n�1

. The last term in the right

of Eq. (24) is caused by relativistic effect and breaks the local conservation.

4.5. The wave function collapse in extended Feynman path integral

From the theory of Neumann, the difficulties of understanding collapse are the probability,

which seems incompatible with the deterministic time-evolution equation, and the instantane-

ity, which seems that it breaks the special relativity theory. In this section, we will show that

these puzzling characters are due to the potential noise and nonlocal correlation (or relativistic

effect).

Let us return to Eq. (9). The superluminal paths are included when we calculate the propaga-

tor. The superluminal paths will support complex phases in Eq. (9), and these phases cannot be

canceled by each other like the real phases in Feynman path integral theory. These complex

phases are the main culprits that cause the nonlocal correlation.

To describe this mechanism concisely, the nonlocal correlation produced in 1D space is just

detailed here. Assume a system in the potential field with the scalar potential U xð Þ and vector

A0 xð Þ. A potential noise AI tð Þ is under this system and satisfies the white noise equations,

namely:

AI t1ð ÞAI t0ð Þh i ¼
2mkbT

η
δ t1 � t0ð Þ; AI tð Þh i ¼ 0 (25)

The Hamiltonian of this system is then

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �iℏ∂x � A0 þ AIð Þð Þ2c2
q

þ V xð Þ (26)

And we define a new Hamiltonian without potential noise as

H0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �iℏ∂x � A0ð Þ2c2
q

þ V xð Þ (27)

We will see later thatH0 is very important in quantummeasurement, because it determines the

basis-state-space that the wave function collapses into. The basis-preferred problem puzzles us

for many years; we do not know why the system measured prefers to collapse into some set of

basis state. According to the extended Feynman path integral theory, the preferred basis is

depended by the Hamiltonian H0. This will be detailed in the following.
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Considering a minimum time-evolution process, the propagator is

ð28Þ

Because the term
Ð x
x�η A0ðx0, tÞd0 exists in the integral formula of Eq. (28), then limε!0

F x1; x0; t0 þ ε; t0ð Þ 6¼ δ x1 � x0ð Þ. This is different from the normal propagator K x; x0; t0 þ ε; t0ð Þ
shown in Eq. (2), because limε!0 K x; x0; t0 þ ε; t0ð Þ ¼ δ x� x0ð Þ. This difference, caused by rela-

tivistic effect of paths, is the root that produces the nonlocality in quantum measurement

process.

In fact:

Therefore

ð29Þ

limε!0 F x1; x0; t0 þ ε; t0ð Þ 6¼ δ x0 � x0ð Þ means the change of arbitrary point should spend time

to propagate the other point and exhibit stronge nonlocal space-time character. If the value of

wave function at x ¼ x0 changes, the whole wave function will change for the nonlocal prop-

agator. In the followings, we will detail this character.

We define bR0 ¼ 1ffiffiffiffiffiffiffiffiffiffi
2iπℏc2

p H0ffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2þH0

p ; then

bR ≈
bR0 1� AIc

2 bp � A0ð Þ
H0

� 	
(30)

After this definition, we will show how the measurement happens under the potential noise.

Considering an initial state with the form ψ x; t0ð Þ ¼ P
mamφm xð Þ, where φm is the eigenstate of

H0, if we put the potential noise in this system, the initial state will change. We denote the

evolution state in arbitrary time t as ψðx, tÞ. The ψðx, tÞ can be expanded with basis states

φm as ψðx, tÞ ¼ P
mamφm. The task for us is to find out the varying value of am under each

perturbational noise:
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After rearranging the equation above, we get

an tþ δð Þ ¼
X

m
am tð ÞDm,n t� δð Þ (31)

where

Dm,n t� δð Þ ¼ λn,m t� δð Þ 1þ AIc
2pn

En
δn,m

� 	

λn,m t� δð Þ ¼
ðþ∞

�∞
φn xð ÞR x; t� δð Þ∗bR�1

0 φm xð Þdx

R x; tð Þ ¼ ψ x; tð Þ
bR�1
0 ψ x; tð Þ

δ is the time interval of the neighbor potential noise pulses. In fact, to simulate the process of

quantum measurement under potential noise, we let

AI ¼
X

∞

n¼0

2mkbT

ηΔ

� 	1=2

Random nð Þ θ t� nδð Þ � θ t� n� 1ð Þδð Þð Þ (32)

We simulate the collapse process of a wave function with the form ψj i ¼ 1=2 0j i þ
ffiffiffi
3

p
=2 1j i,

where 0j i and 1j i are the harmonic-oscillator basis. According the simulation, we show the ψj i
will randomly collapse into 0j i or 1j i quickly (Figure 2).

5. Conclusions

Measurement, in quantum theory, is not just a theory concerning the Schrödinger cat that is

alive or dead, or the moon being here or not, but also the key and basis to the problem of the

interpretation of quantum mechanics. In fact, the different views for the quantum measure-

ment yield different interpretation for quantum mechanics, such as the Copenhagen interpre-

tation, relative-state interpretation, Bohmian mechanics and so on. It has attracted many
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attentions of physicists since the beginning of the quantum theory establishment, but there is

still no consensus. The measurement problem blocks up the way for us to understand the

nonlocality and manipulate quantum state. Can the quantum measurement be controlled? Can

we get the definite output we want under every measurement? If the quantum measurement

can be controlled, the teleportation without classical communication channel can be realized,

and the aim of superfast manipulation for quantum state will arrive. We can even transfer the

energy thought nonlocality under controlled quantum measurement and make more novel

encryption scheme for quantum communication. However, the key problem is “can we control

the quantum measurement?” If yes, how? If no, why?

The extended Feynman path integral mechanism answered this question. According to this

mechanism, the character, “stochastic output” and “instantaneous collapse process” of quan-

tum measurement are rooted in the “random” potential noise and “nonlocal” wave function

inner correlation. The “nonlocality” is caused by the “relativistic effect” of superluminal paths

in path integral theory. The superluminal paths will support a complex action function S in

Eq. (4) for the expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

of S. This complex action that acted as a phase in integral

theory cannot be canceled and makes F x1; x0; t0; t0ð Þ 6¼ δ x1 � x0ð Þ. This relation reveals that the

propagator is no longer a local correlation. All points in space are correlated simultaneously,

and any local perturbation will simultaneously transfer into the whole space. The extended

Feynman path integral gives a simulation for two-energy-level system and exhibits that the

Figure 2. The process of collapse under a “potential noise”. (a) The red line denotes the absolute value of probability

amplitude a0 tð Þ with the initial value 1/2, and the blue one denotes a1 tð Þ with the initial value
ffiffiffi

3
p

=2. The black oscillatory

line is the function of potential. The different sets of noise cause the different collapse results. According the simulation,

the process time of collapse is 0.3 ns in the top picture and 0.1 ns in the bottom picture. (b) The function of AI shown in

Eq. (32).
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potential noise can indeed lead to the collapse state randomly and rapidly. Therefore, the key

to control the quantum measurement is to control the potential noise exactly. “Potential noise”

is caused by thermal fluctuation of potential filed or irregularity potential boundary. How to

control this potential noise is still an unsolved topic.

The extended Feynman path integral mechanism also solves the “basis-preferred” problem in

quantum measurement. It exhibits the reason that the state prefers to collapse some set of basis

states, which is due to the main Hamiltonian H0 defined in Eq. (27). H0 is the Hamiltonian that

contains no noise. The eigenstates are the basis state that wave function prefers to collapse into.

The extended Feynman path integral mechanism shows the relation between “quantum mea-

surement” and “unitary evolution operation”. They are one and the same thing but are departed

by jumpy potential noise. In mathematics, the function of potential noise is nowhere differentia-

ble functions, and therefore, the path integral shown in Eq. (4) is not the regular path integral

function under a noised potential. This is the main difference between “quantummeasurement”

and “unitary evolution operation” in mathematics. In physics, each potential noise point can be

quickly absorbed by wave function through the nonlocality correlation, and the amounts of noise

points will quickly accumulate to be a big quantity to change the whole wave function jbRj.

Additionally, besides the potential noise, the condition that the quantum measurement hap-

pens is that the interaction of system and environment should be big enough to distinguish the

preferred basis state “ φ
n

� �
”. If the interaction is not big enough, φ

n
jbRjφ

n

D E
≈ φ

m
jbRjφ

m

D E
and

then Dmn ! δm,n in Eq. (31), then the collapse will not happen. In other words, the instrument

that can realize the quantum measurement should be “macro” enough to produce enough

noise and have big enough energy gaps of a system measured.
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